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ABSRACT 

A renormalization procedure of the boson v model based on the finite field 

equations of Brandt-Wilson is given. We first show that the current operators 

appearing in the field equations, which are finite local limit of sums of nonlocal 

field products and suitable subtraction terms, can be chosen to be the same 

form as the one given for the symmetric limit except for the symmetry breaking 

constant source term itself. The set of integral equations derived from the 

field equations is shown to be equivalent to the usual Bogoliubov-Parasiuk-Hepp 

renormalization theory, and gives us immediately ali the renormalized Green’s 

functions in each order of perturbation theory in clear and straightforward 

fashion. We then analyze the structures of the model in detail. In particular, 

Ward identities are shown to be satisfied to all orders of perturbation theory. 

The Goldstone theorem is a particular consequence of these identities. 
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The object of our interest in this paper is the so-called o-model studied by 

Schwinger (3, Polkinghorne (3, and Gell-Mann and Levy (3J. For simplicity, 

we shall neglect the baryonic fields and imagine a world composed of a pseudo- 

scalar meson $(x) and a scalar meson c(x) . 
1 The formal Lagrangian of the 

world is then 

Z(x) =; 
22 

:+$g:(c2+7f) : + co- 

U-1) 

Except for the source term co, y (I. 1) possesses the chiral symmetry which 

is in the present case an O2 symmetry in the two-dimensional space ($,(T) . We 

may define the axial vector current Ap(x) associated with this symmetry formally 

as follows 

I. INTRODUCTION 

A&X) = &x) 3p c(x) -‘(+tx) ap $4x) (1.2) 

Because of the simple form of the symmetry breaking term cc(x) in (I. l), the 

model acquires the following very interesting features 

a. We expect <OlolO> = F. # 0, since we can create the (7 particle freely 

from the vacuum. If F. # 0 in the limit c 40, then the situation is precisely the 

spontaneously broken symmetry. 
3 

That is, we expect that the Goldstone 

mechanism would be in operation. 
c 

b. We also expect that the axial vector current Ap(x) would be conserved 

If partially. ‘I Indeed, if we manipulate with the formal expression (I. 2)) we get 

the P. C .A. C . condition for the Lagrangian model, 

~//-$tx) = c Nx) P-3) 
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Now both of the above features are very interesting in connection with the 

recent development of particle physics. It is usually assumed that the Lagrangian 

of the real world is approximately chiral symmetric with a small symmetry 

breaking parameter E . 
4 If one further assumes that the limit E + 0 is the 

Goldstone limit, then one can show that the usual statement of the P. C . A. C . 

must be true (3. 

We shall study the u model in renormalized perturbation theory and examine 

in detail the properties a and b in this paper, our primary task will be to make 

the various results derived from formal argument rigorous and precise. We 

shall prove the Goldstone theorem to all orders in perturbation theory. As for 

the P.C.A.C., instead of constructing an explicit renormalized axial vector 

current operator, we shall prove a set of identities known as Ward identities. 

In formal Lagrangian theory, these identities follows from the P. C . A. C. con- 

dition (I. 3) . Conversely, we can prove the usual P. C .A. C. relations from these 

identities. 

Most of the results we find here are known already from some lower order 

calculation, or from a different approach. The first work along such a line was 

done by Lee (1,8J, who has examined the model to some orders in g. The model 

was also studied by Symanzik (9,lO) to all orders in perturbation theory in the 

framework of BPH procedure.’ Our approach in this paper is that of Brandt 

and Wilson, 6 who ba&d the renormalization procedure on finite field equations. 

By employing this technique, we shall be able to exhibit the problems in a clear 

and rigorous fashion. 

We now briefly summarize the content of this paper. In Section II, we pre- 

pare ourselves by discussing the symmetric model which corresponds to the 

formal Lagrangian (I. 1) with c=O. This will serve as an introduction to the B-W 
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renormalization theory, and at the same time will enable us to get used to the 

diagrammatic representation which we shall employ extensively throughout this 

paper. This diagrammatic technique is very useful for problems of such com- 

plexity. With the tools thus obtained, the o- model is defined in the framework 

of the B-W renormalization theory in Section III. The finite local field equations 

of the model are first assumed to be of the same form as for the symmetric 

model except for the source term in the o- equation. Then its correctness and 

consistency is established explicitly by considering equivalent BPH theory. In 

Section IV, the Ward identities of the u model are introduced and proved to all 

order in perturbation series. By means of these identities, we examine some 

of the physical properties of the model in Section V. We first prove the Goldstone 

theorem in all orders of perturbation theory. Then by trivially extending the 

model to include a triplet of fields corresponding to pions, we shall see that 

Weinberg’s low energy theorem as well as Adler’s consistancy condition are 

simple consequences of Ward identities. Appendix A is devoted to low order 

calculations to illustrate our general discussion. Finally in Appendix B, diagram- 

matic Lemma’s which is necessary for the proof of Ward identities are proved. 
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II. THE RENORMALIZATION OF THE SYMMETRIC THEORY 

As an introductory preparation for the method we shall adopt throughout 

this paper, we shall study the renormalized perturbation theory of the symmetric 

model in this section, which corresponds to the formal Lagrangian (I. 1) with 

c=o 

gs = ; : c (6p2 -I- (8,0j2 
1 
: - 2 ~p2:(u2+qJ2):+~g:(u2+$b2)? (II. 1) 

We first explain briefly the finite field equation approach to the renormalization 

procedure. The field equations corresponding to the Lagrangian (II. 1) is then 

written down. In order to derive integral equation for the Green’s function, we 

must establish some notations and definitions, in particular, the connectivity 

concepts. By means of these tools, we write down the set of the coupled inte- 

gral equations connecting all the Green’s functions of our theory with simple 

diagrammatic notations. The symmetry properties of their solutions are briefly 

discussed. 

A. B-W Renormalization Procedure 

The Lagrangian (II. 1) dictates, via standard method, the rules of calculation 

for the unrenormalized nth order scattering amplitude corresponding to a 

Fe-an diagram D(VI. . .V,;@ with vertices VI. . .Vn and a set of lines 

Lz+,. . JL}. The Feynman rules for our theory are described in Fig. 1. 

Instead of standaFd renormalization procedure established most completely 

by Bogoliubov, Parasiuk (3, and Hepp (12), we shall employ in this paper the 

elegant formalism initiated by Wilson (13,14). Their idea is to note that the 

infinities arise in quantum field theory because of the meaningless field products 

at same points as in the Lagrangian (and in the derived field equations). 
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Therefore if we work with the field equations of the form 

(0 +p2) Cp(x) = j+(x) = Em &m-o w-l) +e+#‘e-?)) m) -wbgMJ 
5*rl do 

tfl. 2) 

(and similar equations for u), where q(q , 5, x) is determined in such a way that 

the resulting j 
cp 

(x) is finite, then we might be able to get the finite answers 

directly in terms of the field equations. The work along this line was completed 

recently by Brandt . 7 Brandt has shown that Wilson’s prescription (14) of con- 

strutting the finite current operator j 
@ 

(x) gives a finite and consistent result by 

proving that the field equation is equivalent to a BPH-theory. 8 

This procedure of basing renormalization procedures on finite field equations 

has several definite advantages over the usual BPH renormalization procedure. 

This approach allows one to work with a meaningful and rigorous expression of 

the current operator. The importance of a finite and well-defined expression of 

a current operator is clear from the recent development of particle physics. By 

means of these expressions of currents, one can, for example, evaluate rigorously 

the current-current or current-field commutation rules in perturbation theory. 9 

Another significant advantage of this formulation lies in the fact that we can 

impose symmetries of the theory directly on the expressions of the current. In 

the usual formulation of the renormalization, this symmetry condition cannot be 

incorporated into the theory in such a simple fashion, and we must constantly 
c 

remove infinite quantities in order to maintain the symmetries. In our analysis 

of the symmetric model and the u model, this symmetry of the current operator 

will play an essential role. 
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B. Field Equations and Current Definitions 

The B-W field equations for the symmetric model are 

(O+ p2) @(x) = j&4 = : t92txl + u2(x)) q(x) : 

( 02+ p2) u(x) = ju(x) = : (c#~~(x) + C2(x)) u(x) : 
(II. 4) 

with the current definitions; 

j+(X) = : (G’(x) + u2(x)) q(x) : = Iim ToNx-8 
t 

$(X-T) +W+O ~<X-T~] $4x) 
t?)+ 

ju(x) = : (c#J~(x) + u’(x)) u(x) : = lim 
&T-+0 

(T[(@(x-[) $(X-T) +cr(x-0 ~(x-?)I o(x) 

-R1kWdx) -$t&$ 3$~-tx) -J$‘k,ri) 8p ~vut4 -R4(S4 j,(x)] 

(D-4) 
Here the symbol : : represents the fact that we are taking out the finite part 

of the operator product occurring inside the symbol. This finite part will be 

called a generalized Wick product because it is the generalization of ordinary 

Wick products for free fields. The limit in (II.4) are assumed to exist in a weak 

sense which need not be specified here. The R’s are covariant functions of 5‘ 

and 77 with singularities at 6 = rl = 0. This form of the currents, first given by 

Wilson (14), is suggested by the result of the lower order perturbation theory. 
c 

In perturbation theory, the leading singularities of products of field operators 

at small distance occur (within logarithms) as mass independent coefficients of 

local field operators 0 Since dim @ = dimu = 1 in mass unit, we shall have the 

following expansion as c,q + 0: 

T[$(x-& $(X-r]) +u(X-() u(X-T)J G(X) N z Eit5’77) ‘i(X) ‘-f(X) (II. 5) 
i 
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Here the sum is over all local fields Oi(x) (which can be Lorentz tensors of any 

rank, and which can be generalized Wick products themselves) with dimensions 

less than or equal to 3. Ei([,~) has singularity of form (within log) 

with 

s+t = 3-dim(Oi(x)) . 

f(x) is finite field operator and has no singularity in the limit [,r) -+ 0. The sub- 

stitution terms in (II. 4) are then exactly the terms Ei([,v) Oi(x) in (II. 5) . 

It must be noted that the allowed terms like R([,?) : C+(X) u(x) : are absent 

in (II.4). This is because of the internal symmetry of our theory. Firstly we 

want to impose the chiral symmetry 

@(x) + G(x) - ic u(x) 
(II. 6) 

u(x) -+ u(x) + ie G(x) 

in our theory. Then the current j 
+ 

(or j,) should transform in the same way as 

the field C#J (or u) . Secondly, we assume that parity of r+(x) (or u(x)) is positive 

(or negative) so that j 
4 

(x) (ju) has odd (even) parity. In view of the described 

prescription of substracting out the singular parts together with the above two 

conditions from symmetries, one can easily convince oneself that the form (II. 4) 

is the only possibility. 

The exact forms of the functions Ri(t,~) are not determined yet. They are 

to be determined iteratively as we solve the field equations themselves. 

To solve (II. 3)) we first derive integral equations relating various Green’s 

functions. These integral equations are the renormalized version of those 

studied by Schwinger (18) and Dyson (19). In terms of these integral equations, 
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an unambiguous scheme of perturbation processes can be established, giving 

fully renormalized Green’s functions of any order. 

In our analysis of the (+ model to be discussed in the later chapters, we 

need not determine the explicit form of the subtraction functions Ri([,r]). Our 

main concern will be the algebraic properties of the form of the current operator 

(II. 4) dictated by Wilson’s prescription and the symmetry requirement. 

An exactly analogous procedure as given by Brandt (15) for a simpler model 

can be employed for our model to derive from (II. 3) and (II. 4) the set of the 

coupled integral equations for the Green’s functions.- This can be solved order 

by order in g and determine all of the Green’s functions of our model completely. 

Their equivalence to the BPH Green’s functions can be seen by showing that we 

can also derive the integral equations in BPH theory and they are exactly the 

same as those obtained by the B-W procedure. These derivations and proof of 

the equivalence are also along the same line as in Brandt’s work (15) except for 

the slight complication due to the form of our four-point coupling given by the 

Lagrangian (II. 1). Here we shall accept the correctness of the field equations 

(II. 3) - (II. 4)) and proceed to consider the consequency of these equations. 

C. Some Notations and Definitions, Integral Equations 

In order to write down the integral equations derived from the field equations, 

it is best to introduce some definitions and notations which we will adopt through- 
c 

out this work. We begin with the notations for the Green’s functions. 
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1. Green’ s Functions 

We write 
10 

-i 
( 
C qi*xi+Cp: y. 

J J ) G(ql- . l q,; I+ l -Pm) 

n dgi 
n- 

m dPi 
n- 

i=l (2794 j=l (2~)~ 
) - 

. 

For the case of two-point functions, we have 

<01@(x) $(y)Io) s ic+(x-y)-= @~,y;)=ae-ik*(~-~) iG+(k) 

5 

a 

eeikotxBy) G(k,k;) , tn. 8) 

(II. 7) 

and similarly for the u propagator. 

Notice that in (II. 7), the external propagators are included in the definition. 

Sometimes we want to play with the Green’s functions with their external propa- 

gator s amputated. This amputation will be represented by a bar below the 
c 

appropriate momentum or space level. 

Example: G(Pl;P2,P3) = 
G(PI;P~ 9 P,) 

. 
-- iG+(pI) iG (p2) ’ 

When there is no ambiguities, we simplify (II. 7) as follows; 

G(qi. l . qn; PI’ . l pm) = G(N;NI) 
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Here N denotes the set of the $ lines with momentum qI.. .qn and M is for the 

u lines. Again a bar will represent the amputation of the external lines. For 

example, G(N*M) is the momentum space Green’s function with all the external -’ 

lives belonging to N amputated. We sometimes further simplify the notation by 

G(N;M) = G(A), where A denotes NUM . (II. 9) 

The notations given above are very useful and will be needed in some occa- 

sions . Frequently, however, it is more convenient for our purposes to introduce 

a diagrammatic notation for the Green’s functions. The following correspondence 

is obvious : 

Example 1: 

93 

G(ql, q2s q3, q4;) = x 
94 

q2 
Other Green’s functions shall be similarly represented. 

Example 2: 

, 
= iG$(k) 

AJVVVM = iG (k), etc. 

Amputation of external propagators is expressed by a slash on the leg. 

Example 3: c 

= G(Q, 
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Frequently some of the external lines are combined together to form a 

closed loop; then the integration over the loop momenta is to be understood. 

Example 4: 

-4 
p1 

k q 
E 

k-q 
J- Gtq, k-q, ~~9 p2;) 
q 

(The sense of this correspondence is understood if we consider the configura- 

tion space function @x,x,xI,x~~. 0)0) In many cases, we shall neglect the mo- 

mentum levels when they are not important for our consideration. 

2. Definition of Connectivity 

We now turn to the connectivity concept of the renormalized Green’s func- 

tions. This will turn out to be very important for our later analysis. First we 

define the disconnected part CD(N) of G(N) with the 

N = I Ql,Q2,. 0. ,Qnj- Let a partition P decompose N 

with ip # 1. Then 

set of external lines 
P into the subsets N1 , . . . ,N; 

GD(N) = c G”(N;) G"(N;) . . . Gc 

P 

forn > 1 

G; = 0 forn = 1 
c 

G’(N) = G(N) - GD(N) . (II. 10) 

Here Qj is sum of the all momentum of the lines in Nf. 

The above definition includes the general case where one of the fields, say 
C 

u’(x), has nonvanishing vacuum expectation value F. In this case, GI = Gl = 

<Olu’lO> = F. If we introduce new fields by u’ =u+F, and denote 6 of and 
i I 
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Gj4 the Green’s function associated with u’ and c respectively, then from the 

above definition it can be shown easily that 

G;\‘” = G&,(Nl for n > 1 . (II. 11) 

This will be relevant for our u model analysis in the next chapter. 

We also define one particle irreducibility (1PI) concept. It is defined as the 

part of the Green’s function in which one particle poles do not appear in the inter- 

mediate state. This differs slightly from the BPH definition (12) in the case 

where some of the fields can disappear into the vacuum through a vertex c. But 

in the framework of the B-W integral equation, our present definition is the only 

possible one. This point will be relevant in the next chapter. 

One can give the algebraic definition of the 1PI part of Gr(N) of G(N) as 

follows 0 Pick up one external line Q from N = N”{Q\. Let a partition P decom- 

#J pose N’ into subsets Ni . 0. N. lp with i > 1 
iP P l 

Then for w(N) > 2 (w(A) = number 

of the elements in A) 

G’(N) = C Gr({Q,Ql,Q2, l l l ,Qip\)Gc(N;pu(Ql\) 
-- - 

P 

x GC(N;'jQ2/) . . . GC(N;pPUiQip]) (II. 12) 

For w(N) = 2 the !PI parts c$(p)(C,(p)) of G+(p) (Gu(p)) are defined as 

G@(P) = 2 ’ 
p -p2 - ix@(P) 

(@--,‘a l (II. 13) 
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Example 5: For the symmetric model where <$>, = 0 <u>, = 0, l1 

1 2 1 2 1 2 

1 2 
I 

3 4 + + 

4 3 4 3 4 x 3 

+ 

(II. 14) 

The consistency and the correctness of the definition (II. 14) can be seen 

most easily from the corresponding Feynman diagram and the BPH definition. 

Consider the sum of all connected Feynman diagrams of order n with external 

lines Q,QI, . . .Qne For each of these diagrams, we can find a maximal 1PI part 

attached to line Q, which corresponds to the blob I’ in (II. 14). The rest of the 

diagram is of the form given by (II. 14). Now for different partition P, the 

resulting diagrams are also distinct. Since the renormalized Green’s function 

is obtained by a linear’ operation on the Feynman diagram, this establishes the 

consistency of the definition (II. 14). 

Another important definition we shall employ throughout this paper is the 

xM type X part G (N) of G(N) with respect to a subset M of N. This is defined as 

the part which does not have poles in any of the momentum variables Qu = PM+Pu, 

UCN’=N-MandP =c,, PQo U can be null set or N’ itself. In general, 
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type X part of a Green’s function could involve some of the terms occurring in 

the disconnected part of the function. But the separation of the function into its 

connected and disconnected parts are not hard, and therefore one need only to 

define a connected and type X part (CX). We may define a CX part algebraically 

as follows. 

G cxM (N) = G’(N) -x1 G (II. 15) 
U 

Here the sum extends over all subset U of N’ with w(N’-U) 2 2. For w(N’) = 1, 

G cxM 
(N) = GcUW 

The correctness of above definition can also be seen from the corresponding 

Feynman diagram analysis. Let DF@?) denote the sum of all Feynman diagrams 

with the set of external lines 3 and with connectivity CR . Then any diagram 

which has pole in the variable Qp-= PM+ Pu belongs to 

D;“(MUU’u{Q})* DC,\{Q\’ N’-U’/ 

for some U’ 5 U. Furthermore for different U’, the set defined above is different. 

Therefore the decomposition (II. 15) follows. For w(N-M) = 1, we obviously have 

cx 
G M(N) = G’(N) . (II. 16) 

X 
It is important to realfze that the type X part G M(M”NJ becomes 1PI part when 

the lines belonging to M are joined together. In fact, this property is our moti- 

vation for the definition of type X diagram, and is very important in writing down 

the integral equation in the next subsection. 

In the graphical notation we adopted, the various parts of a Green’s function 

will be represented by the letters, C, I’, X, etc. When considering the type X 
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diagram, we shall either put the reference set on the left side of the blob, or 

we shall have already closed all the lines in M. In such a case, the set M is 

clear and will not be specified. 

belongs to the type X parts of the 

4 . 

5 

The integral equations to be discussed in the next subsection relate various 

1PI functions and type X functions to each other. The complete Green’s functions 

can, of course, be constructed out of them by means of the above definitions. 

In Section IV these definitions of the various parts of a Green’s function are 

very important. There we will use diagramatic notations instead of the 

Symanzik’s notation to help our intuition. 

3. Integral Equations 

With these notatignal preparations, we can write down the integral equations 

obtained from the B-W field equations (II. 3, II. 4) in a concise and intuitively 

appealing fashion. They can be derived in exactly the same manner as given by 

Brandt and Wilson (15). The procedure is as follows. We multiply both sides 

of (II. 3) by any combination of fields #(x,)~ . . mu. . .u(y,) and take the 

vacuum expectation value of its time ordered product. In view of (II. 4)) we 
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will get an integral equation involving various Green’s functions. With the help 

of the definition given in the previous subsection, this can be transformed into 

a simpler form. In order not to lengthen this already too long a section, we 

will not go into the details of this procedure. Here we will merely write down 

the result of this process for our later convenience. 

In the following, we will make extensive use of the graphical representation 

for the integral equations. It is possible to write them in terms of the Symanzik’s 

notation G(pIO . . ; qI’ D O )O For some of the cases following, the latter notation 

might be more comfortable to some readers. However, it is the author’s opinion 

that by using this diagram technique, we can develop an intuitive feeling on the 

complicated jargon of the integral equations. 

Now we begin with the 1PI parts of the propagators. 

e P+ eN P -IR) -2 c@(P) 
I 

l (II. 17) 

R4 
P- {R) - ig C,(P) 

I 
0 (II.18) 

iR\ = R1(tM- ids R;(&r)) - pc,pV R;‘(&rl) 

The limit 6,~ -+ 0 in (II. 17), (II. 18) was taken by 

lim W&I) = 
/ 

lim e 
-iek,-iqk, 

(,q + 0 q klkZ ‘h -? 
R(kl$) 
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and the integral symbols are to be shared with the other terms in the right-hand 

side of (II. 1’7)) (II. 18). In other words, (II. 17) really means 

c,(P) = ig4 /, i3 GGtkl) G+(k2) Gq(p-kl-k2) Gx(kl,k2,p, p-Q-k23 
-- 

1 2 

+ i3 G&) G,(k2) G+(P-kl-k2) Gx(p-k,-k,,p;kl.k2) 

- Rl(kl,k2) + ippR!$kl,k2) + PIP,, Bz*(klSk2) 

R4 
- ig (kl’k2) l C+(P) l 

For higher n-point functions, we have first 

+ =ig[+ + +- 2 (+j](II.l9) 

This form looks slightly different from the one given by Brandt (15). They 

are actually the same, and the simpler form (II. 19) is obtained because of our 

definition of the type X diagram. 

The case for a general higher n-point function is also immediate: 

for certain integer n. 

Rn 

- k5tvl 

r 
i”g 

(II. 20) 

Equations (II. 17) - (II. 20)) together with the renormalization conditions to 

determine the subtraction points, form the complete set of integral equations 

for the symmetric model. They can be solved order by order in g, and give 
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exactly the same result as the BPH procedure (12). Perhaps it is important to 

remark that the type X diagrams in Eq. (II. 17) - (II. 20) have in general discon- 

nected contributions. (C.f. Example 6, Section II.) For practical calculations, 

it would be in general convenient to separate out these disconnected contributions 

and deal only with connected contributions. These procedures would be exten- 

sively used in later sections. In Appendix A, some of these are illustrated by 

lower order calculations 0 

4. Properties 

Before concluding this section, we will brief1.y discuss the symmetry prop- 

erties of the integral equations (II. 17) - (II. 20). Since the chiral symmetry is 

built into the field equations (II. 3), (II. 4)) the solution of the integral equation 

should be chiral symmetric. One should have for example: 

- F+(P) = C,(P) (II. 21) 

Gr((&$c;) = Gr(;$$c,&) =$ Gr(‘&~,;~,~ (II. 22) 

These relations can be easily confirmed in lower order examples and are re- 

quired by the general rule of the chiral 

postponed until we treat the (T model in 

in general that 

r 

invariant e . The proof of these will be 

the next sections. There, we will see 

J. G (pl,P2,‘.~Pn,q~;42’93~**‘~) + G’(P,,P~, ..*Pnr42;41’q3”‘“4m) + l O’ 
_- -I- - _- ---- - 

-G 
r q,, p,) + G r (op2,~3, l **P,;ql>q2~ l l l (P,, p3, . - l P,+ q2s - l 0 4,, p,) +- - l 

_- --- -- _- --- -- 

= 0 . (II. 23) 

Equations (II. 21) and (II. 22) are a direct consequency of these identities. 

Note that in a BPH scheme, the symmetry condition (II. 21) and (II. 22) are 

constraints on the subtraction constants. If we do not impose this constraint on 
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the subtraction procedure, we will get a finite result but the symmetry would be 

completely lost in general. For our B-W approach, as soon as we have written 

down the equations and current definition in the form of (II. 3), (11.4), we are 

guaranteed to have chiral symmetry. This, as mentioned in the introduction of 

this section, is a significant advantage of our present approach. 
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III. THE o-MODEL 

A. Introduction 

In this chapter, we start to analyze the u model mathematically. In order 

to deduce a finite and meaningful consequence, we must renormalize the formal 

theory described by the Lagrangian (I. 1). Some orientation to this purpose was 

already made in the previous section, where we have considered the renormali- 

zation problem of the symmetric model. Now the Lagrangian for these two 

models (the symmetric and the o) differ only by an extremely simple term, i. e., 

by a source term. This fact leads one to expect that-the renormalization of the 

model can be carried out in such a way that much of the symmetry present in 

the symmetric model could be maintained. We shall see in this section that this 

is indeed the case. 

What do we mean by “maintain much of the symmetry” in a renormalized 

perturbation theory? In BPH scheme, the Lagrangian is only a formal device 

to get Feynman rules, and the symmetry present in the Lagrangian does not 

immediately guarantee the symmetry of the resulting theory. The underlying 

approximate symmetry must also be reflected on the BPH subtraction procedure 

which renders the theory finite. In such a situation, we must invoke some other 

principles which would supply us a definite and precise statement of a “partial 

symmetry. ” Such was the procedure taken by Symanzik (10). In order to deter- 

mine constraints upon various subtraction constants, he makes use of the 

P. C. A. C. relation (I, 3) (in renormalized form). By means of this, he derives 

Ward identities of the o model, which then determines the subtraction procedure 

uniquely. But the consistency of these identities with the Green’s functions thus 

obtained remained to be shown. 
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If one chooses the B-W procedure which was discussed in the previous 

section and which we shall employ throughout this work, however, one does not 

need any extra principles to proceed. The condition of approximate symmetry 

envisaged by the Lagrangian (I. 1) can be imposed directly on the B-W field 

equations themselves. 12 We shall see that the form of the field equations which 

“break the symmetry only by a source term” (a constant term in the field equa- 

tions) is unique. The form of the field equations thus determined, all of the 

Green’s functions are completely determined according to the general procedure 

of B-W. Furthermore, the B-W integral equations exhibit the relations between 

various Green’s functions in a clear and rigorous fashion. One can in fact 

establish the equivalence of our approach to the Symanzik’s one by showing that 

these Green’s functions satisfy the Ward identities. We shall discuss these 

matters in the later sections. 

We have actually generalized slightly the B-W procedure in the preceding 

paragraph. The statement “breaking symmetry only by a source term” was 

derived from the formal Lagrangian language. Whether we could use this state- 

ment to obtain the form of the field equation is not completely obvious because 

of the necessary procedure of renormalization. Therefore the correctness of 

our procedure will be proved in detail by showing that our theory is equivalent 

to a BPH theory of Lagrangian (I. 1). 

In B, we discuss%he BPH theory of the CT model. This will be proved to 

be useful for our later discussion of the consistency of the B-W field equation. 

In C, we discuss the B-W field equations and derived integral equations. The 

form of the current operators are first written down and the consistency is 

proved in the later parts of this section. Finally, the perturbation schemes 

(the way we expand amplitudes in perturbation series) are explained in D. 
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B. BPH Description 

From Lagrangian (I. 1), we can derive in the usual manner the Feynman 

rules, which are identical to those of the symmetric model except for the addi- 

tional vertex 

C (III. 1) 

In the following vertices of (III. 1) will be called the c vertex, and the vertices 

of Fig. 1 will be called g vertices. The renormalized BPH theory with vertices 

{Vi1 will be called a BPH {Vii theory. Thus the theory described in the previous 

section is equivalent to a BPH {g) theory, and we are going to describe a BPH 

( 5 g.c theory in this subsection. (Of course, it should be understood that the 

Feynman rule does not specify completely a BPH theory. In addition, one must 

also specify the subtraction conditions. ) 

In this section, scalar field will be named as u’ to distinguish it with the 

translated field o = o - F, <O’(T O> = 0. As remarked in II. B. 2, there is no 

difference between these two definitions if we consider only connected parts of 

a graph. Now in a BPH {g.c/ theory, a o’ line can disappear into the vacuum 

through a c-vertex. It will generally have self energy corrections before its 

disintegration. Such a line with all its radiative correction will be called a 4‘ 

line. l3 According to the BPH definition of the reducibility (12), every vertex 

that belongs to a 4 line is weakly connected 14 to the rest of the diagram. There- 
< 

fore, the renormalization of a 5 line can always be carried out separately from 

the rest of the diagram. We shall call the value of this renormalized 6 line, 

that is the vacuum expectation value of ol, as F. At this point, we can proceed 

in two different ways. 

a. First, sum over all such 4 line. Then the resulting theory is equiva- 

lent to a theory with modified propagators and additional 3 particle vertices as 
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shown in Fig. 2. ” Now we do not have any c vertex and the definition of irre- 

ducibility, given by BPH and the one given in Section II. C coincides. By usual 

counting rule, the class of 1PI superficially divergent (primitively divergent) 

diagrams is determined as shown in Fig. 3. This is the approach taken by 

Lee (7,8J and Symanzik &lo)% Lee proves, by means of the conventional re- 

normalization theory (20) that all of the infinities can be absorbed into g, c, p2. 

Symanzik, on the other hand, determines the constant on the BPH subtraction 

constants by means of the Ward identities and shows that these identities com- 

pletely specify the subtraction procedure. However,- the consistency of the 

resulting theory with the Ward identities themselves remained to be explicitly 

shown. 

b. There is another approach by means of which we shall see the equiva- 

lence of the BPH and the B-W procedure. This is as follows. As for the defini- 

tion of the irreducibility, neglect the 5 line as above. (The value of 5 line is, 

of course, assumed to be F.) Now in order to renormalize the diagram, we 

keep the points where the 4 line shot out and attach each of these points with an 

external o line with O-momentum. In this way, we have a correspondence be- 

tween a BPH (g . cl diagram and a BPH {g ) diagram. Then the renormalization 

of the latter diagram can be carried out symmetrically. 

The precise form of the above mentioned correspondence can be expressed 

diagramatically as follows. In the following we represent a Feynman diagram 

(not renormalized B-W diagram) of a BPH (Vi} theory by writing in the symbol 

{Vi1 inside the blobs of a diagram. The connectivity of the diagram is expressed 
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by the usual letter C, I?, X, CX, etc. Then 
r 

r 

(III. 2) 

Here the slash on the external legs means the amputation of the external 

lines with all its self energy corrections, is a 5 line, F. the unre- 

normalized value of a 4 line. r is the number of- 5 lines present in the diagram. 

The factor l/r’. is given by the combinatorics of the o model. Equation (III. 2) 

is actually a part of the theorem given by Lee and Gervais (8J. We renormalize 

(III. 2) in the fashion explained above to get 

c,c = 

Ja 

c 
r 

(III. 3) 

This is now the relation between a renormalized B-W function of c model and 

that of symmetric model. The letters c and S signigy the o model and the 

symmetric model resbectively. Equation (III. 3) will be the starting point of our 

discussion of the equivalence of the B-W and BPH approach in the next section. 

Before ending this subsection, one should note the following extremely 

important point. That is, procedures a and b are only a very limited class of 

possible choice of subtraction procedure. As a matter of fact, there need not 

be any constraint on the various subtraction constants in a. The reason why we 
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want the Ward identities to determine the constraints on the subtraction constants 

in a or the reason why we want the very particular procedure of b is, of course, 

to ensure the chiral symmetry: Even though the symmetry is broken by the 

source term, we want to maintain most of it in order to have a “partial” syrn- 

metry. The fact that the theory resulting from this particular renormalization 

process, the case b, indeed breaks the symmetry only partially will be proved 

in the next section. 

C. Field Equations and Their Correctness 

1. Field Equations 

From the fact that the chiral symmetry is broken only by a source term 

which is a constant in the formal field equation of o’, we guess that the correct 

form of the field equation from the general B-W procedure is 

tq2+p2) $09 = g j&x) 

(02+~2) u’(x) = g Jultx) + Y 
(III. 4) 

With the form of j+ and jut remaining the same as (II. 4). y is a constant related 

to the source strength c of the ‘7 field. Introducing u= u’ -F, we get 

t02+~2) W4 = g J+(x) 

(02+p2) u(x) = g J,(x) -/A~ F+y with <u>~ = 0 . 

Current definitions n6w take the following form: 

J (x) = lim 2 2 PV 2 
cp h--+0 

++ )$-R@-R; aP$-R3 Qv$+(F +2Fu)+R4JG 1 
J,(x) = lim 

!% 
a,u-Rz” a 

PV 
u+~u~F+@~F+~uF~+F~-R~F-R~J,. 1 

(III. 6) 
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In the above, we omitted the obvious argument of the functions. For example; 

(I#I~+u~)u = [c#I(x-0 $(x-r]) +u(x-() u(x-~)]u(x), etc. 

As a matter of fact, the field equations (III.4) - (III. 6) are not a completely 

obvious result of the B-W prescription. The point is that since the symmetry 

is broken anyway, the subtraction functions can have many nonsymmetric con- 

tributions . For example, terms like B(t) $(x-t) u(x) cannot be excluded 

a priori from the current definition of (III. 5)) (III. 6). 

Nevertheless, only with the form (III. 5)) (III. 6) could one give the statement 

“breaks a symmetry by a source term only” a definite meaning. We shall ex- 

plicitly show the correctness and consistency of these equations in the later part 

of this section by establishing the equivalence of these equations with the BPH 

theory discussed in the previous section. But before doing this, let us first 

write the integral equations derived from the field equations (III. 4) - (III. 6). 

Again, the derivation will be along the same line as given by Brandt (15). 

We first have for the 1PI part of the propagators: 

c,(p) = 3ig F2+ ig 0 -{I+$c,cP) X 1 . (III. 8) 

Here we have introduced the simplifying notations. 

=;e + - +2F- 
+F 

e 
(III. 9) 

Other notations were introduced previously. 
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For the case of higher n-point functions, we have16 

* 

r =img 

for some integer m. 

E@ - 2 (%)I (111.10) 

There is one more equation resulting from the consistency condition 

<OlulO> = 0. Taking the vacuum expectation value of (III.4) we have 

+ F3-R,*F -R4 
g 1 (III. 11) 

All of the Green’s functions of our theory are determined from the set of the 

coupled integral equation (III. 7) - (III. 10). The vacuum expectation value of the 

u’ field is determined by (III. 11). They can be solved iteratively order by order 

in the perturbation theory. _ 

2. Proof of Consistency 

We now proceed to show the correctness of our field equations. We shall 

see explicitly that the set of the integral equations (III. 7) - (III. 11) is equivalent 

to the renormalized BPH theory defined in-the previous section. The basis of 

our argument will be the fact that the BPH {g\ theory, as explained in Section II, 

is completely equivalent to the B-W field equation (II. 3)) (II. 4) and therefore to 

the derived integral yuations (II. 17) - (II. 20). The proof of this fact is exactly 

analogous with the one given by Brandt for pseudoscalar coupling theory (15) 

and will not be given here. 
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For simplicity, we consider the 3-point function. In view of (III. 2) and 

(II. 20)) we have 

r-2 
+5? 

F’ ZZ igc y7 
r ’ 

r 

4? 

x,s 

\ 
\ 

R4 -- 
ig 

r 

(59 

+ 

r 
, 

% 

x,s 

(III. 12) 

We now separate out the disconnected parts from the type X diagram in the 

right-hand side of (III. 12). In the following, the diagrams are type X with 

respect to the external lines on the left side of the blobs. First we consider 

1 

c Fr 2 -7 r. r 
3 

r 
. 0.. 

82 

xs 

c 

r 
.**. 

c,x,s 

? 
r 
. . * . 

1 

+2 

XI 
cx,s 

3 

+ (2,3) + (I,3) 

(III. 13) 
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Use (III. 2) to reduce this in the following form 

(III. 13) : 

Therefore we have 

Next, we consider 

1 
+ r . 

2 

r-l l %y l l . 

% 

cxs + 

2 

r. 

3 

r-l 
.***. 

42 
cxs 

1 

+ 2 

3 

r 
. l .* 

% 

cxs (III. 15) 
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Again in view of (III.2) this is reduced to 

+F 

(III.15) = 

(III. 16) 

Therefore 

cg 
r 

r 
.-.. 

1 

c%! 

2 xs 

3 

c 

xc + 

R 

1 

F 
2 

2 

+F 

3 

XC 

32 
(III. 17) 
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by adding the disconnected parts together. After closing the lines 1, 2, 3 in 

(III. 16) and (III. 17), and from (III. 12)) we finally have 

c 
[ 

x,c 

72 

k4 
ig (III. 18) 

This is exactly the same as (III. 10). 

It is clear that a procedure similar to the above could be employed to obtain 
17 

all of (III. 7) - (III. 11). We shall not repeat the arguments here. 

D. Perturbation Scheme 

How should one expand the Green’s functions in perturbation series? For 

the symmetric model, no ambiguity arises, and we will expand the amplitude in 

the coupling constant g. For the cr model we must first decide how we should 

treat F in the series. One obvious possibility is to expand in g regarding F 

fixed. We call it “g-scheme.” Another very interesting procedure suggested 

by the experiences coming from the chiral dynamics (21) is to expand in g re- 

garding gF2 fixed. In BPH language, this corresponds to the procedure a of 

Section III. B and is to expand in the number of loops appearing in the diagram (7J 

The zeroth order diagrams are all trees, the first order one loop, etc. We 

call the latter the “loop scheme.” 

Both of the above schemes are completely legitimate, and we will see in the 

next chapter that the Ward identities hold to all orders in each of the above 

schemes. In the appendix A, we will explain these and other points of this chap- 

ter by means of some lower order calculation in both schemes. 
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IV. WARD IDENTITIES 

This section is devoted for the discussion and proof of the Ward identities 

of the cr model. We expect these identities to be true since we have partially 

conserved axial vector current. We first state the identities by using the argu- 

ment of Symanzik ($&lOJ and prove these identities in all orders of perturbation 

theory. Some proofs of diagrammatic theorems are relegated to the Appendix B. 

A. The Identities 

In this subsection, we assume the existence of the partially conserved 

(renormalized) axial vector current AP(x) . 

in order to guess the identities we want to establish in the next section. The 

arguments are due to Symanzik (9,10). We further assume that the current 

generates the chiral group, i. e., 

[Am y @(XI] ET = + i6(x) (T’(X) + S.T. 

ET = - is(x) G(x) -I- S.T. 

W2) 

(IV. 3) 

where S. T. ‘s are possible Schwinger terms which need not be specified here. 

Consider the following identities : 

/ *8p<OlTAp(x) ~(x,)~~..,~(x~)~‘(Y~),.~~,~‘~Y~)~O> =O 
c 

vJ.4) 
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The left-hand side can be expanded as follows: 

+c 
i f 

dx S(X’-x~) <OIT cAo(X), I] I, . l ’ , I, l D . , I 

x U’(Y,)* l . l ,(r’(Ym)IO> 

x u’tY,)Y 0 0 4 &‘(Yj,, 0 l * ,OY,)lO> (IV. 5) 

By means of (IV. 1) , (IV o 3) and (IV. 5)) and assuming that the fkhwinger terms 

do not contribute, we have then 

0 = -ffh<Ob WW(xl), 0.. , Q(X,)~‘(Y~)I.. l ,u’(Y~)~> 

-ic <ob-‘(xi)$(xl), . . l , @(xi>, . . . , Q(~,)~‘(Y~), . . o ,(r’(~,)‘o> 
i 

From the definition of the Green’s function in momentum space, it then follows 

t-i) fG(O, pl, p2, . . o, P2;q19 ,.+n) =~G(pl,.oo,pi,...,pn;piql,*o.,pm) 
i 

-CG(q.P ,o*.,Pn;ql, 
j 

J 1 

.c.., qj’**o’9m) l 

c 

From the definition of the connected parts, it then follows that 

-if Gc(O,p,,~,, -. . , ;ql, . l . , qm) =~GC(pl,~~.rP.,.n~,pn;P1,ql,~.~,~) 
i 1 

/- - c G’(q.p ,“*~~P,~~~~“‘l~j~n*~~~) * W-6) 
ii 3 1 

This is one of the desired identities. 
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We now state this and related identities in diagram notations. They will be 

proved rigorously in the next subsection, and for this purpose, the diagrammatic 

representation is very convenient. First we have 

I 0 

I? 

-*- 
Pl 91 

p2 92 
p3 q3 

which we shall denote concisely as 

+ r 

Pl 

?sP 

-t . . . 

91 

p2 42 
p3 43 

r 

4?? 

+ . . . 

Pl 91 

p2 92 
p3 43 

= =*-=e w- 7) 

When the left-hand side of (IV. 7) is a 3-point function, the following definitions 

are understood: 

C 

C,(P) = ; 



For a connected part, we have 

$&=+$+-++ (IV.8) 

Notice the difference between (IV. 7) and (IV. 8) 0 In (IV. 7)) all of the external 

lines are amputated, while we keep them in (IV. 8) except for the zero momentum 

line on the left-hand side. We call this particular line “O-line.” 

Finally, we have 

F* c 

+c 

c 

8 

cx 

&% 

x-- cx (IV. 9) 

Here the diagrams are type X with respect to the lines attached on the left side 

of the blobs. Notice that (IV. 8) is the same as (IV. 6) if we identify 

F = -f G&O) . 

We shall see in Section V that 

(IV. 10) 

FG-&O) = -y . (Iv. 11) 
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Therefore the identification (IV. 10) leads to 

f=y , (IV. 12) 

i.e., y is the symmetry breaking parameter as we expected. 

Note also that if we take y=O, F#O then we have the symmetric model, and 

in this case the identity (IV. 7) is the same as (II. 23) given in Section II. 

B. Proof of the Identities 

Now we want to prove (IV. 7) - (IV. 8) to all orders in the perturbation theory. 

The method of our proof will be inductive. We first need the following lemmas: 

Lemma 1: If (IV. 7) is true then (IV. 8) is true. 

Lemma 2: If (IV. 7) and (IV.8) are true then (IV.9) is true. 

The proof of the above lemmas involves elaborate and somewhat tedious 

analysis of diagrams. In order not to interrupt the flow of the argument, we 

will postpone this proof to Appendix B. 

As the basis of our induction argument, we first note that (IV. 7) is true in 

the lowest order as is shown in the appendix. It is true in both of the pertur- 

bation schemes explained in the previous section. 

We will first show the proof for the g scheme. The proof for the other 

scheme will be obtained by the time we finish our proof for the first scheme. 

We then assume (IV. 7) and therefore, by Lemma 1 and 2, (IV. 8) and (IV. 9) 

are true to nth order .$n g. We want to show that they are true to n-t-lth order 

in g. 

Consider the left-hand side of (IV. 7). Let qq be the number of external 

q-lines except for the O-line and 7, be the number of external u lines. We 

are going to consider only the case 17 
@ 

L 2, and ho Z 1. The other simple 

cases can be treated separately using the method described below. We have, 
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from (III. lo), 

The notations (r]o) or (qq -1) represent the number of the terms belonging 

to the group of the diagrams the typical form of which was shown. For example, 

no terms 

c 

Note that (IV. 13), we divided the sum of the terms 

% ?Qi? 

r + r + 

CQF 

r + . . . 

in two groups: One with first term only, the rest of the terms composing the 

second group. 
- 40 - 



I 

Now if we could show the right-hand side of (IV. 13) vanishes in order n, 
18 

then we would have shown that (IV. 7) is true in order n+l. We now proceed to 

this end. To do this, we must separate out the disconnected contributions from 

the type X diagrams in order to be able to apply (IV. 9). The disconnected con- 

tribution of (IV. 13) is 
19 

3F e + F p3F(5-1) s 

1 I 



(In each of the above diagrams the level X, C is dropped.) 

For the diagrams which have 0 lines, we use (IV. 9) to get 
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putting this back into (IV. 14) we observe that the following cancellations occur. 

D+A+ E+E~=O F+c6=0 

B+ e2=0 y+H+c =0 9 

c+c5=0 1+ E4=0 

E+e3=0 J+c7=0 

6+G+c8=0 

So the only remaining terms are 

(IV.14) = 3F 
p+F w 

Next, consider the connected contribution of (IV. 13). Again by means of 

lemma 2, we have 

(Iv. 19) 

- 43 - 



-2F 

The blobs without any letters cancel the disconnected contribution (IV. 19) and 

also 

D+G+N=o 

c E+O=O 

F+R=O 

H+M=O 

I+P=O 

J-!-S=0 

K+Q=O 

L+T=O 
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So we have indeed shown that the right-hand side of (IV. 13) vanishes in nth 

order. With similar calculation for simpler cases for q$=l or qo=O, we have 

seen that (IV. 7) is true to all orders in g. 

If we examine our proof shown above, we find that terms of the form, 

C 72 -- 
and of the form 

C 58 

(IV. 21) 

(IV. 22) 

do not mix together and cancel among themselves .separately. Since the blobs 

contain only connected diagrams, terms of the form (IV. 21) will increase the 

number of loops by 2, (IV. 22) by 1. This means that (IV.7) and therefore (IV.8) 

and (IV. 9) are true in each order in the loop expansion. (For the case 77 
4 

=I 

or 7, =0, we come across a constant term, e.g., 2Fg. This corresponds to the 

tree term in the us?1 perturbation theory. In this case, those tree terms can- 

cel among themselves.) 
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V. THE GOLDSTONE THEOREM AND P.C.A.C. 

In this section, we discuss some consequences of Ward identities of previous 

sections 0 First we prove the Goldstone theorem to all orders of perturbation 

theory. This is achieved by means of Ward identities of the previous section 

together with the integral equation (III. 11). Next we study P. C . A. C . relations 

in our model. Adler consistency condition is easy to recognize and Weinberg’s 

relation is also simple consequence of Ward identities. 

A. The Goldstone Theorem 

In view of the expected relation 

$AP(xl = + Y Mx) 

we shall have the situation of spontaneously broken symmetry in the limit 

Y40 tv- 1) 
F#O 

Now the zero mass particle must have the quantum number of the axial vector 

current, i. e., that of the +-particle. So we may expect that the Cp mass vanishes 

in the limit (V. 1). Of course, the question whether this limit prevails must be 

settled. It may be that whenever y -+ 0 then F + 0. In such a circumstance, we 

do not have the Goldstone phenomena. This point was discussed by Lee and 

Basdevant (22) and heye we shall merely assume that we have the limit (V. 1). 

By combining (III. 7) and (III. 11) we get 

F (~&O)-i~2)+.iy = ig [ F’ . C e -~+$$&R4F’=‘;2’+iy] 

(V-2) 
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We shall now show that 

F (z@(O) -G2) = + iFG ;I (0) = -iy D iv* 3) 

This relation was remarked earlier in connection with the Ward identities. In 

order to prove (V. 3)) we note that they are true in lower orders as is clear from 

(V. 2). So we want to show 

The proof goes along the similar line as in Section IV. 
20 First separate out the 

disconnected and connected contribution to type X diagram. 

F e=F 

+30+0) 
The last two terms are the disconnected contributions. In view of (IV. 6)) one 

gets 

Therefore, we have seen the correctness of (V. 4). 
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Now for the case the limit (V. 1) holds, we have 

G;'(O) = 0 . 

This completes the proof of the Coldstone theorem. 

B. P.C.A.C. 

An obvious way to proceed would be to construct explicitly the axial vector 

current of the form 

A/&x) = ,lim e(x) apdx+O -u(x) $W+~) -4tf,x) $ 
6-O [ 1 

where q(x, 4) is the appropriate operator subtraction term explained in Section II. 

Then we can explicitly see whether the P. C . A D C. relation holds, 

and whether various commutation relations of Act(x) with itself and other fields 

agree with the rule of the algebra of the current. In view of Brandt’s analysis 

of quantum electrodynamics (13), this procedure is expected to be a very com- 

plicated and intricate one and we want to present a complete analysis of P. C .A. C. 

in a future paper. In order to analyze the soft pion theorems, however, it turns 

out that we do not need such a detailed preparation and the Ward identities stated 

and proved in Section IV are sufficient machineries. 

For example, by dividing out by propagators in (IV. 6) and putting particles 
c 

on the mass shell, one immediately recognizes Adler’s self-consistency condi- 

tion (23). 21 In the rest of this subsection, we shall see how the low energy 

theorem of Weinberg (24) works. 

First, we must generalize (IV. 6) for the present case where the pions are 

isotriplet. It is obvious that our generalization takes the following form (for 
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the four-point function) ; 

lim F* G(pIa, P2b, P3c’ p4d;) = aabGc(p3c, p4d;p2) + 6,GC(p2b, p4d;p3c) 
PI40 - 

+ 6adGc (P2b 5 P3c ;P,) W.5) 

In (V. 5)) we treated the special case for the TIT-R scattering, and we put isospin 

indices right next to the momentum level in the definition of the connected ampli- 

tude. 

The identities for a general configuration are also immediate. 

Now since the limit (V.5) is well defined, the.result should not depend upon 

the way in which the limit p1,p3 + 0 is taken. We will take the p1 * 0 limit 

first, and let 

p2=P+e 

Then we want to show, 

PJ = -P+e p3=-2c . w* 6) 

lim T ab cd(0,p-&12~,p-~) = ,‘l:, Gc(O& p (b), -ME, -p (d);) 
E-‘O ’ 

= To 6ac8bd * (tab8cd-8ad8bc) %f i . 
F 
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Now we will show that (V. 7) is a simple consequence of (V. 5) and the Bose sym- 

metry. We first rewrite (V. 5) as follows: 

lim FeYI 
E-O 

ab , cd(9,p+42~,p-e) = lim G;‘(-2~) G$p-E) G-&p-w) 
Ed0 

x Q,G+(-2~) G+(p+) G&-j Gc(-2e(c), -p-tE(d)Z’+E) 

-t sac G+(~+E) G+(-P+E) 9-W G’(p+E 03, -p+E (d) ;-2E) 

I- ~,,G@+E) G+(-2~) G,(+p-e) GC(p+E(b),-2e(c);p-e) 
1 

= 6ab G++E) G&+E) GC(-2~ (c), -p+c(d);+E) 

+ 6, G32e) Go G’&%(b), -p+e(d);-2e) 

+ 6,,G--$p-E) G,(p-E) G’(p++), -2e(c);p-E) tv* 8) 

Now, since 

$(ple) - (p*C)2-(1; = *2p” E + o(E2) (V.9) 

Therefore for first order calculation, we can replace E by zero for the first and 

the third term in (V. 8) except the G-l Q, factor for which we use (V. 9). 

For the middle term, we note that 

GO-W) = f,tE2) 
f 

G+(E) = fGF2) 

and 

GC(p+(b),-FE(d);-2E) = Sbdf((p+e)2,(p-E)2,p2-e2) -- 

= s,,ft@-E) 
2 

,@-) 
2 2 2 

%P -E ) D (V. 10) 

The first equality from the isospin conservation, and the second from the Bose 

symmetry of our theory. 
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From (V. 10) we see that, 

fm+~~21 (P-q2,(P2-cZ) = g(p2, E2, (E l Pj2) (V. 11) 

Therefore, the middle term of (V. 8) cannot contribute to the first order term in 

E, and we can replace E by 0. 

That is, to the first order in E , (V. 8) becomes 

= $42~0 E) G,(p) Gc@cJ, -p(d) ;E) 

+ a,, Gil(O) Gg(0)‘Gc(@J, -p(d);oJ 

+. ?ad(-2p* E) Gc,(p) GC(& 9 !&I ;E) 

Now from (IV. 6) (its generalized version) and the form 

Gc@@, -p(d);@) = +,&(p) 

We finklly get 

lim F~T(O,~+EI~E,~-E) = SacGbdc’(p) G;‘(O) Gc(0) 
EhO 

+ y it~ac6bd-6ad6bc) (V. 12) 

Therefore, we have seen that (V. 12) is true with 

To = c’(p) G;‘(O) G,(O) . 

c 
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APPENDIX A 

In this appendix, we show explicitly how the subtraction functions deter- 

mined from the symmetric model give finite results for the o model by consider- 

ing some lower order diagrams. We will carry out our calculation in both of the 

perturbation scheme defined at the end of Section IV. 

We first determine the subtraction function R’s from the symmetric theory. 

We write (II. 17) and (II. 18) in the following form. 

- Rl+ip R’- /..l 2 
R4 

- ig C@(P) 
I 

II=ig[6+9 A++3 &++ 

+ 

+ 

cx + R4 -ig (a) 
I 

(A-2) 

Note that in the above, each blob is a connected one. In order to determine 

subtraction functions R’(x), we need the following renormalization condition. 
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t 

and CI(O,O,O,O) =6ig= 

,+(#+TW$f’W = 6ig (A.43 

In zeroth order c (0) - (0) - 
+ 

- c, - all 1PI vertex parts = 0. We put these values 

to the right-hand side of (A. 1) and (A. 2) to get first order values, and compare 

this with (A. 3) and (A. 4) to obtain R’s. In this way, we obtain 

R(O) - l -4 0 =q$q& 

R(O) = R@& = 0 , 
21.1 

and 

(A-5) 

(A* 6) 

In deriving (A. 5) and (A. 6)) we have used the fact that for zeroth order, the 

following is true; 

k+ =k/w$c,iw= i . 
k2-p2 

(A.7) 

With the lowest orderealue of R’s thus determined, we now calculate some 

lower order value of the o model functions. We now write down the integral 

equations (II. 17) - (II. 19). 

C+(p) = ig F2 + ig 3 [ (j+&+2F& +@- 



k 

+ 

= 

C,(p) = 3 ig F2 + 

i2gF +igl 3-+2- 

+2F&+ & +& 

R4 
-ig 

(A. 10) 

We now consider each of two schemes separately. 

1. The g-scheme 

a. Lowest order 

It is immediately seen that c;)(p) = x:)(p) = All 1PI 

vertex parts to)=, . (A. 11) 

b. First order in g 

We substitute the result (A. 11) to the right-hand side of (A, 8) - (A. 10) 0 With 

(A.5) it is easily seen that 

C(l)(p) = ig F2 : 
e 

C(‘)(p) = 3ig F2, 
o- 

=i2gF , 

+E6ig* +++ =2ig, + =6ig (A-12) 
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Other 1PI vertex parts = 0. Notice that (A. 11) satisfies the Ward identities 

(IV. 7) trivially. For first order (A. 12)) these identities are easily seen to be 

correct. 

2. The loop-scheme 

a. Lowest order 

Calculating only those terms which do not involve loop integration, we get, 

C(‘)(p) = ig F2, 
+ 

C(‘)(p) = 3ig F2, u 
+& =2igF , 

others = 0 (A o 13) 

Note that the lowest value of this -scheme is equal to the first order value of the 

g scheme. They satisfy the Ward identities (IV. 7) 0 

b. First order 

We calculate only those terms which involve only one loop integral. We 

consider c 
+ 

(p) as example and show that it is finite to this order. 

For first order calculation, we can write 

C@(p) = ig F2+ig 

c 

-R -+ i I 
R4 

(4 1 
+ +2F prJ’s”Lttl (2igF) 

(A. 14) 

In view of (A. 13), we note, 

k 1 k . 
-= 1 

k2-,u2 + 3g F2 
=2 2 . 

k -/J +gF2 
(A. 15) 

- 55 - 



We also recall that RI and R4 have one loop contributions (A. 5) and (A. 6). Then 

we have 

4igF2 
+28 - 

k -p +3gF2 (k2-p2+3gF2((p-k)2-p2+gF2) 

/Ai-+ 10igF2 

k2-p2 1 (k2-p2)2 l 

Terms in (A. 16) can be easily seen to combine to give the finite result, 

C+,(P) = igF2 + 3 
3gF2 A&l 

(k2-p2)(k2-p2+g;2) - (k2-p2)2 ] 

+ 3gF2 3gF2 
(k2-p2) (k2-g2+3gF2) (k2-p2) 2 I 

(A. 16) 

- 4gF2 1 

1 1 1 

(k2-p2+3gF2) ((p-k) 2-p2+gF2) (k2-p2) 2 a I 
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APPENDIX B 

Here we prove two lemmas introduced in Section IV. 

Proof of lemma 1: 

We first consider the 3-point function. In this case I’=c and the result 

is obtained readily from the definition of the C’s.’ With this result, we now con- 

= i b+(p) - Gc(~)] (Be 1) 

sider the general case. For simplicity, let’s assume that all external lines are 

$ lines. A more general case can be treated in exactly the same manner. One 

can write the decomposition (II. 12) graphically as follows: 

0 

4 c Z2 c 
P 

(B. 2) 

One can classify the terms occurring in (B. 2) as follows: 
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Here 

IO 

II=~ r 

m 

C 

‘i 

‘i N' -{Qi ) 

III= 

0 

c 4 r - 
T 

T 

NS ’ N’-Ns 

1 

/ 
/ 

c 

VI = c 
III P 
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We will denote the number of the elements of a set A by w(A ). In (B. 3) T is 

the subset of N’ with w(T) 1 2. S is a cut (Schnitt) which divides N’ into Ns and 

N’-Ns. L’ is a subset of N’ with 1 < w(L’) < w(N’). P’* decomposes N’-L’ into 

22, j=l, -. ., , i and iprr L 2. P”’ divides N’ into 

22, j=l,...,iandip,,, 23. 

We now apply (IV. 7) and (B. 1) to each of (B. 3) to get, 

Iv = A4+B4 

N' -{Qi) 

II = A2+B2 m = A3+B3 

v = A5+B 5 VI = A6 . 

N’ -{Qi ) 

Aq= ct-1) s $pq$34=<p~ 

NS N’-Ns NS 
N' -Ns 
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. 

A5= ccc 
L’ Q P” 

L 
B5 = 

L’ j P” 

N; 

\ \ 
T N!’ 

lP 

A6 =CC(-S 
ttt P j 

- 60 - 

‘I 



Here 

Similarly for 

reads “amputate o propagator and multiply by c$ propagator. I’ 

We first note that A2 is the desired result, so the rest of the terms should cancel 

among themselves. Let’s see how this cancellation comes about. It is easy to 

see that 

AI+B2+B3+A5=0. - P- 4) 

This follows from the decomposition of I 
A - C 

into the form (B .2). 

Next consider the rest of the terms. First note that A 1 + B, can be written 

as follows: 

A4 + B4 = 

c 

where T is defined similarly as above. Now decompose the blob external lines 

T into the form (B. 2). Then we get precisely -A3-B5-A6. Therefore the proof 

of the lemma 1 is now complete. 
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Proof of lemma 2: 

Again we consider the special case were all external lines are $ lines. 

According to (II. 15)) we have the following decomposition 

M N = 

+ 

M 
2% 

C N 

t 
0 

-~M-$~+<T-TM*-~S (B.5) 

N-S 

Here T is a subset of N with w(T) > 2 and S with w(S) 1 1. We shall prove the 

lemma by induction on o(N). First when w(N) =0, C.X=C and (B. 5) is just 

(IV. 8). Next when w(N) = 1, we have 

ZZ c 

- M 

B+ + M-w 
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which is of the form (IV. 9). Now we assume that (IV. 9) is true for all 

w(N) 5 n-l. Consider an N such that w(N) =n. Then (B. 5) w(N-T) < n-2 so we 

can apply (IV. 9) to the second term of (B. 5). The last term of (B. 5) can be 

further decomposed as 

0 

c M 

?R+ 

cx - c c M 
! 0 

Q. 
1 

S i 
w(s) 11 S 

N-p{Qit 

. I 0 

N-T’ 

Therefore, using (IV. 8) and (IV. 9)) we have 

c 
+ c M 

i N-iQi t 

- 63 - 



N-T N-(“i I 

We see easily see that 

IS+D+F+H=O, E+I=O 

and 

A+C+G 

is the desired result. 
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FOOTNOTES 

1. Since there are no nucleons in our model, the terms pseudoscalar and 

scalar are not really meaningful. But we shall stick to these names be- 

cause the generalization of the model to the more realistic case is 

straightforward. 

2. This terminology is derived from Schwinger. One might prefer to call it 

the “tadpole” term. But throughout this work, we shall refer a linear term 

in Lagrangian (and therefore constant term in field equation) a llsource 

term”. 

3. See, for example, the review article by G. S. Guralnik, C. R. Hajen, 

T. W. B. Kibble, Ref. 4. 

4. Recently the smallness of the symmetry breaking parameter E was ques- 

tioned by R. A. Brandt and G. Preparata, Ref. 5. 

5. B. P. H. refers to Bogoliubov, Parasiuk, and Hepp. See Section II. 

6. Their theory will be called B-W theory throughout this work. See Section II. 

7. R. A. Brandt (Ref. 13) discussed in detail a model in which a pseudoscalar 

meson G(x) and a fermion J/(x) are coupled through the interaction 

Lagrangian q(x) e(x) G(x). 

8. See also Zimmermann, Ref. 16. 

9. ETCR’s thus calc(ulated usually involve infinities and operator Schwinger 

terms. SeeR. A. Brandt, Ref. 17. 

10. This notation was first introduced by Symanzik, Ref. 9. 

11. For symmetric model, the 3 point functions actually vanish by the symmetry 

requirement . 

12. These and other points of this paragraph will be made exact in subsection C 

of this section. 
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13. This is $J line defined by B. W. Lee, Ref. 7. 

14. fYWeakly connected” means “1PR and connected”. 

15. This is @’ language of B. W. Lee, Ref. 7. 

16. We also have r 
RX 

-Yg- 
1 

The consistancy of this with (III. 10) can be easily established. 

17. Equation (III. 11) comes from the vacuum expectation value of CT. We write 

this in a more suggestive form 

The first term is zeroth order term in g, i. e., 

C ic = - 
P2 

therefore we have C--y. 

18. Not considering the g factor. 

19. Because of the loop integration, (IV. 14) is divergent. But it is obvious that 

all of the following identities are true before the loop integration is done. 

20. See footnote 18. 
q 

21. This was first noticed by K. Symanzik, Refs. 9 and 10. 
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FIGURE CAPTIONS 

1. Feynman rules for the symmetric model. 

2. Feynman rules for the ZI model ($ language). 

3. Primitive divergences for the C model. v is degree of primitive 

divergence. 
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