"PEPPO" - A DUAL DIGITAL DEIAY AND GATE GENERATOR*
Boris Bertorucci
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

Summary

A new high performance two-chanel gate generator in a triple NTM module using integrated cincuits is described. Its main characteristics are the digital design and the gencration of both delay and width of a signal, relative to a trigger pulse, in each channel.

Introcuction

This paper describes a new dual gate generator whose functions are similar to those of a conveational analog gate generator but the use of a digital cesign eliminates the dead time and combines adjustable delay and width in each ohomel.

The output width and delay vairies from 100 ns to 0.95 s , in six different rarges, with a resolution of 1 part per 1000. Outputs include logic L and $\bar{L}(-700 \mathrm{mV}$ on $50 \Omega)$ and gate G and $\bar{G}(+12$ volts on high impedance or +10 V on $50 \Omega)$.

The input sensitivity ior the NMi start pulse is less than 3 ns. An LED light indicates "on" time for cash channcl. Thumbwheel switches are used for presetting delay and width. A six position switch selects the operating frecuency of the clock (TIME BASE).

The module described oceupies a triplet NIM width and includes two channels which are independent except for the common time base. MECL integrated circuits and discrete transistors are used for IN/OUT signal intorfacing; TTL integrated circuits are used for the internal logic. This results in simplicity and increased reliability over the conventional analog circuits.

Principle of Operation

Suppose a gated clock oscillates at some selected frequency v. The nth pulse, after the clock gate has been opened by a start pulse at $t_{0}=0$, occurs at the time $t=n T$ $(T=1 / v)$. If the start pulse ($t_{0}=0$) sets a flip-fiop and the nth clock pulse resets it, we will have an output pulse whose width is $W=n T$, and which starts at $t_{0}=0$.

If we, instead, set the flip-flop with the mth pulse and reset it with the nth (where m and n are arbitrary numbers with $n>m$) we have a very versatile gate generator having an output starting at $t_{1}=m T$ and ending at $t_{2}=n T$ with a width $W=t_{2}-t_{1}=(n-m) T$ and a delay from the start pulse $\mathrm{D}=\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{0}=\mathrm{m} \mathrm{T}$.

The thumbwheel switches in the circuit described here select the delay (m) and the width ($n-m$); the six position selects the time base T.

A start pulse (block diagram, Fig. 1) at $t_{0}=0$ enables a clock to oscillate at 10 MHz . The time base T is generated by using the clock directly or divided in steps of factors of ten to 100 Hz in five ranges. Note that a single time base genevator is shared by the two channels. For each channel, thesc clock pulses are counted in sequence in two presectable scalers, one of which determines the gate delay m and the other the gate width (n-m).

A D-type clocked flip-flop, operating in conjunction with the two scalers, produces the signal which is converted to

[^0]logic (L, \bar{L}) at NMM standard levels and wate (G, \bar{G}) Julses, at 0 and $\div 12$ volt levels.

An automatic Reset/Strobe is intemally performed at the end of the cycle, which resets the freduency divicav scaler and presets the delay and width scalers so the unit is prepared for the next start pulse.

Circuit Description

The MECI integrated circuits A1, A2 and B1 (Tig. 2) convent the NIM stari puise to a TTL puise whose negativegoing edge triggers the "one shot" OSi, generating a pulse that sets the flip-flop C1-C2 which enables the clock (OS2, $\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3$) to oscillate at 10 MHz .

A five decade scalex di-55 divices the ciock frecuency from 10 NHz to. 100 Hz in fastors of ten. The switch SI (TIME BASE) in conjunction with the multiplexer (MPX) selecis the appropriate clock frequency $(\nu=1 / T)$ for the gate generator logic. In order to shoriten the IN/OUT delay the start pulse is ORed with the selected clock pulses and becomes the first clock pulse to be counted.

The variable resistor P1 adjusts the clock frequency to 10 MHz and P 2 adjusts the time interval between the start pulse and the first of the clock pulses to achieve uniform clock spacing, as illustrated in the diagram below.

The selected clock pulses are counted in a double three decade scaler (Fig. 3) whose outputs allow a D-type flip-flop to be set and reset by the appropriate clock pulses. This situation is illustrated in Fig. 4 which describes the operation of channel 1 where the delay is preset to 3 units ($\mathrm{D}_{1}=3 \mathrm{~T}$) and the width to 5 units ($\mathrm{W}_{1}=5 \mathrm{~T}$).

The gate K1 is open while K2 is kept closed by the high state of the T1** output. While the D input of M1 is low, no transition occurs on the output. The delay (R1) and width (R2) scalers are preset by three digital thumbwheels of a

[^1]nine's complement type; e.g., in the example described here, the delay scaler is preset at 996 and the width at 994.

The first three clock pulses, through the open gate K1, brings the count on the scaler RI to 999 so that the AND gate T1 changes its state to a low level enabling the D-type flipflop to change to the set state with the next clock pulse (positive going edge). The gate K1 is then closed and K2 is opened to the width counter R2. The next five clock puises through K 2 bring the scaler R2 to 999 . The gate T 2 then changes the level at the D input of the flip-flop enabling this to change to the reset state with the next ciock pulse. At the same time it closes the gate K2, keeps K1 closed and opens K3 allowing a reset pulse to pass through. The output pulse $\ell-1$ (and the complement $g-1$) is then 5 units wide starting 3 units after the start pulse (Fig. 4: Mi-Q). The reset pulse fiom the gate K3 passes through the OR gates LS and El (Fig. 2) and resets the flip-flop C1-C2. This disables the clock and also kecps: (a) the multiplexer (MPX) inhibited, (b) the frequency divider (J counters) reset, and (c) the Rn scalers (Fig. 3) strobed and preset until the next cycle starts.

When both chamels are operating the only change from the secuence described above (Fig. 4) is that the reset pulse occurs at the end of the longest cperating cycle.

The positive (0) ontput from the D-type flip-flop is converted (Fig. 5) from TTL to MECL (Nil, U1) and, by the MC1025 emitter-coupled pair (V1, V2), to NIM standard levels L and $\bar{L}(-700 \mathrm{mV}$ on 50Ω, with rise and fall time $\approx 2 \mathrm{~ns}$). The negative (g) output is amplified (2 N 2219) and converted to gate outputs G and \bar{G} (+12 V on high impedance or +10 V on 50Ω, with rise and fall time $\simeq 8 \mathrm{~ns}$) by a complementary pair emitter follower.

An LED for each channel is lit for the duration of each pulse or for $300 \mu \mathrm{~s}$ (OS3), whichever is longer.

Conclusion

The module is triggered by a negative goins coge (-700 mV so that modules may be cascaded using the \bar{T} output. In this spirit, PEPPO can be used as an oscillator if $\overline{\mathrm{L}}$ output of the channel with the largest sum of delay and wicith is fed back into the input with an appropriate delay.

A stop input can be used to terminate the cycle at any time.

The circuit is completely dc coupled.
Bridging Bich's are availabie at the stari input so the same start pulse can be used for other modules; if not used the second BNC must be terminated with 50Ω.

Acknowiedgements

The author is grateful for the assistance and cooperation provided by A. Odiar and F. Villa of Experimental Group D, D. Horelick, F. Rosche, and P. Arechiga of Eiectronics Instrumentation Group, and F. Generali of Electronics Shops.

Figure Captions

FIG. 1--"Peppo"-block diagram.
FIG. 2--Time base generator.
FIG. 3--Gate generator logic (a) logic circuit, (b) detail of the scalers.

FIG. 4--Timing diagram.
FIG. 5--Output level converters.
FIG. 6--Power converter.
FIG. 7--"Peppo"

Fig. 1

Fig. 2

Fig. 3

Fig. 4

CHANNEL 1

Fig. 5

Fig. 6

Fig. 7

[^0]: WWori supported by the U. S. Atomic Energy Commission. TDuc to the size of the thumbwheel switches.

[^1]: **In Fig. 3b, $n=1,2,3,4$ where 1 and 2 refer to channel 1 delay and width respectively; 3 and 4 to channel 2; so T1 refers to the Tn gate channel 1 delay counter; T2 channel 1 width counter. In the same spirit RI of Fig. 3a refers to the combination of the 3 counters R11, R12, R13 of Fig. 3b, and so on.

