# COMPARISON OF THE INCLUSIVE $\pi^{-}$DISTRIBUTIONS <br> FROM $\gamma \mathrm{p}, \mathrm{K}^{+} \mathrm{p}$, AND pp COLLISIONS* 

William P. Swanson<br>Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

Winston Ko, Richard L. Lander, and Clifford Risk<br>Department of Physics, University of California Davis, California $95616{ }^{\circ}$

Ronald R. Ross and Dennis B. Smith**<br>Lawrence Berkeley Laboratory<br>University of California<br>Berkeley, California 94720

ABSTRACT
The inclusive reactions $\gamma \mathrm{p} \rightarrow \pi^{-}+$anything, $\mathrm{K}^{+} \mathrm{p} \rightarrow \pi^{-}+$anything and $\mathrm{pp} \rightarrow \pi^{-}+$anything are compared for small $\pi^{-}$laboratory momenta. We discuss in detail their relative shapes and magnitudes and present a theoretical interpretation of these characteristics.
(Submitted to Phys. Letters.)

[^0]The concepts of limiting fragmentation ${ }^{1}$ and factorization ${ }^{2}$ have been proposed as characteristic properties of inclusive reactions. According to the first, the double differential cross section $\frac{\partial^{2} \sigma}{\partial \mathrm{P}_{\mathrm{L}} \partial \mathrm{P}_{\mathrm{T}}}$, evaluated in the laboratory system, should become independent of energy for small $P_{L}$. According to the second, if the Pomeronchuk trajectory dominates, then when this limit is attained, the differential cross section for a given target should be independent of the projectile particle, when divided by $\sigma_{\mathrm{T}}$ (the asymptotic total cross section).

In this letter, we present laboratory distributions $\frac{1}{\sigma_{\mathrm{T}}} \quad \frac{\partial^{2} \sigma}{\partial \mathrm{P}_{\mathrm{L}} \partial \mathrm{P}_{\mathrm{T}}}$ for low-momentum $\pi^{-}$from the reactions

$$
\begin{array}{rll}
\gamma \mathrm{p} \rightarrow \pi^{-}+\text {Anything } & \left(\overline{\mathrm{E}}_{\gamma}=10.4 \mathrm{GeV}\right) \\
\mathrm{K}^{+} \mathrm{p} \rightarrow \pi^{-}+\text {Anything } & \left(\mathrm{P}_{\mathrm{K}^{+}}=11.8 \mathrm{GeV} / \mathrm{c}\right) \\
\mathrm{pp} \rightarrow \pi^{-}+\text {Anything } & \left(P_{\mathrm{p}}=28.5 \mathrm{GeV} / \mathrm{c}\right) \tag{3}
\end{array}
$$

We compare the relative shapes and normalizations of these distributions. Previously, it has been shown ${ }^{3}$ that reaction (1) decreases by about $30 \%$ over the $\mathrm{E}_{\gamma}$ range from 5.5 to 15 GeV , and so has not reached a limiting distribution in the target-fragmentation region at these energies. ${ }^{4}$ An energy-dependent study of reaction (2) has not been made. The distribution for reaction (3) is approximately independent of energy over the range $13.5-28.5 \mathrm{GeV} / \mathrm{c}^{5}$ Thus the data at hand consist of two reactions, (1) and (2), at about the same incident energy, and a third, reaction (3), that is almost independent of energy.

The data of reaction (1) consist of 39,000 events ( $58,000 \pi^{-}$tracks) with $E_{\gamma}$ in the range 6-18 GeV studied in the SLAC 2-meter streamer chamber using an $18-\mathrm{GeV}$ bremsstrahlung beam. To obtain sufficient statistics for a detailed comparison, we have combined these data to obtain a single distribution at an effective $\bar{E}_{\gamma}=10.4 \mathrm{GeV} .{ }^{3}$ The data of reaction (2) consist of 280,000 events
( $360,000 \pi^{-}$tracks) produced by an $11.8 \mathrm{GeV} / \mathrm{c} \mathrm{K}^{+}$beam in the LRL-SLAC 82 -inch liquid hydrogen bubble chamber. ${ }^{6}$ The data of reaction (3) consist of 12,200 events ( $25,000 \pi^{-}$tracks) studied in the BNL hydrogen bubble chamber at incident momentum $28.5 \mathrm{GeV} / \mathrm{c} .{ }^{5}$ For all three reactions, the measured momenta of the negative tracks were used without kinematic fitting and were assumed to be $\pi^{-}$. The overall normalization errors are estimated to be $13 \%$, $5 \%$, and $5 \%$ for reactions (1), (2) and (3), respectively.

On Fig. 1, we plot the laboratory distributions $\frac{1}{\sigma_{T}} \frac{\partial \sigma}{\partial \mathrm{P}_{\mathrm{L}}}$ for all three reactions as functions of $P_{L}$ (uppermost points). Beneath these data, we show $\frac{1}{\sigma_{\mathrm{T}}} \frac{\partial^{2} \sigma}{\partial \mathrm{P}_{\mathrm{L}} \partial \mathrm{P}_{\mathrm{T}}}$ for $0.1-\mathrm{GeV} / \mathrm{c}$ intervals of $\mathrm{P}_{\mathrm{T}}$. The values $\sigma_{\mathrm{T}}=0.1 \mathrm{mb}^{7}$, $17.5 \mathrm{mb}^{8}{ }^{\text {L }}$ and $39.8 \mathrm{mb}^{9}$ were assumed for the $\gamma \mathrm{p}, \mathrm{K}^{+} \mathrm{p}$, and pp asymptotic total cross sections, respectively. The errors shown in Fig. 1 are statistical and do not reflect uncertainties in overall normalization of the three experiments nor in the asymptotic cross sections used. ${ }^{10}$

From Fig. 1 we see that:
(a) The three reactions have similar shapes in $\frac{1}{\sigma_{\mathrm{T}}} \frac{\partial \sigma}{\partial \mathrm{P}_{\mathrm{L}}}$ and in $\frac{1}{\sigma_{\mathrm{T}}} \frac{\partial^{2} \sigma}{\partial \mathrm{P}_{\mathrm{L}} \partial \mathrm{P}_{\mathrm{T}}}$ for small laboratory momenta $(|\mathrm{P}|<0.5 \mathrm{GeV} / \mathrm{c}),{ }^{11}$
(b) Statistically significant differences in shape are present at larger $|\mathrm{P}|$; in particular, the $\gamma \mathrm{p}$ distribution is relatively larger at large $\mathrm{P}_{\mathrm{T}}$ and small $\mathrm{P}_{\mathrm{L}}{ }^{12}$
(c) Where differences are statistically significant, the $\gamma \mathrm{p}$ distribution is largest throughout the region shown, and the $\mathrm{K}^{+} \mathrm{p}$ distribution is smallest.

We can arrive at a simple quantitative statement about these observed differences in magnitude in the fragmentation region by integrating the distributions over all $P_{T}$ and negative $P_{L}$. This region of backward $\pi^{-}$is likely to be richer in target fragmentation than the entire range of Fig. 1. We find $0.031 \pm 0.004$, $0.0180 \pm 0.0008$, and $0.0132 \pm 0.0006$ for $\gamma \mathrm{p}, \mathrm{pp}$, and $\mathrm{K}^{+} \mathrm{p}$, respectively. Thus
these integrals are in the ratios $\gamma \mathrm{p}: \mathrm{pp}: \mathrm{K}^{+} \mathrm{p}=(2.4 \pm 0.3):(1.36 \pm 0.10): 1$. The two errors quoted reflect the overall normalization in the $\mathrm{K}^{+} \mathrm{p}$ experiment, combined with the error in the $\gamma \mathrm{p}$ and pp experiments, respectively. From their relative magnitudes we see that if factorization is to hold at high energies, at least two of the reactions have not reached their limiting values. ${ }^{13}$

We have no explanation for the relatively small deviations between the $\mathrm{K}^{+} \mathrm{p}$ and pp distributions (20-40\%), but we advance a tentative explanation for the rather large differences in magnitude and shape between the $\gamma \mathrm{p}$ reaction and the other two. This difference can be discussed in the framework of Mueller. ${ }^{2}$ The quantum numbers of the $\pi^{+} \mathrm{pK}^{+}$and $\pi^{+} \mathrm{pp}$ systems are exotic, ${ }^{14}$ and hence are character ized by Pomeron factorization. The $\pi^{+} p \gamma$ system, on the contrary, is nonexotic and hence the $\pi^{-}$distribution will also receive contributions from nonPomeron exchanges that do not limit at these energies. The distribution from such a nonexotic reaction has been conjectured ${ }^{2}$ to be of the form $f\left(P_{L}, P_{T}\right)$ $+g\left(P_{L}, P_{T}\right) / \sqrt{s}$. We can test this conjectured energy dependence ${ }^{15}$ using the $\gamma$ p cross sections at the energies of Ref. 3. In Ref. 3, the integrated distributions for reaction (1) for $P_{L}<0.0$ were evaluated at photon energies of $5.5,7.5,10.5$ and 15 GeV . A decreasing trend in the values was observed: $0.038 \pm 0.004,0.038 \pm 0.003,0.031 \pm 0.003,0.025 \pm 0.003$. In addition to these four values, we take the value found above for the $\mathrm{K}^{+} \mathrm{p}$ integrated distribution as a conjectured asymptotic value for the $\gamma p$ reaction. All five values are fit to a function of the form $A+B / \sqrt{s}$. We obtain $A=0.013 \pm 0.001$, and $\mathrm{B}=0.082 \pm 0.008 \mathrm{GeV}$ with a $\chi^{2}$ of 2.6 for 3 degrees of freedom. Hence the data are consistent with an interpretation in which the nonexotic $\gamma$ p reaction will fall with increasing energy to eventually limit at the distribution for the exotic $\mathrm{K}^{+} \mathrm{p}$ reaction (The $\gamma \mathrm{p}$ data are also consistent with the pp cross section as a limit.)

These differences in magnitude and also the relative differences in shape between the $\gamma \mathrm{p}$ reaction on the one hand and the $\mathrm{K}^{+} \mathrm{p}$ and pp reactions on the other hand can be formulated in terms of a specific dynamical model, the Reggeexchange model. ${ }^{2,16,17}$ In this model (see Fig. 2), the proton emits the $\pi^{-}$ and propagates as a Reggeized $\Delta^{++}$in the t-channel; this $\Delta^{++}$then scatters with the projectile particle. The cross section for this process is given by 16,17

$$
\begin{equation*}
d_{\sigma}^{3}=\frac{d^{3} p}{\pi E}\left(\frac{s}{M^{2}}\right)^{2 \alpha(t)-1} \beta^{2}(t) \sigma_{B}\left(M^{2}\right) \tag{4}
\end{equation*}
$$

where $\alpha(\mathrm{t}), \beta(\mathrm{t})$ are the trajectory and residue of the exchanged Reggeon, and $\sigma_{\mathrm{B}}$ is the total cross section for the $\Delta^{++}$- beam interaction. If the Pomeron dominates, $\sigma_{B}$ is a constant $b$; otherwise, $\sigma_{B}$ will also include a decreasing resonance term of the form $\mathrm{a} / \mathrm{M}$. In terms of the $\pi^{-}$momentum $P_{L}$ and energy $E$, and the target mass $m$, we have $M^{2} \approx s\left[1+\frac{P_{L}-E}{m}\right]$.

In Ref. 17, detailed fits to $\pi^{-}$spectra from pp counter data at energies ranging from 12.4 to $30 \mathrm{GeV} / \mathrm{c}$ were obtained; expressions for $\alpha(\mathrm{t}), \beta^{2}(\mathrm{t})$ and $\sigma_{B}$ are given there. The prediction of Eq. (4), integrated over $P_{T}$ with these parameters, is shown in Fig. 1. We see that Eq. (4) describes the pp data for small $P_{L}\left(P_{L} \leq 0.1 \mathrm{GeV} / \mathrm{c}\right)$ reasonably well. ${ }^{18}$

For the $\gamma \mathrm{p}$ reaction, we have $\sigma_{\mathrm{B}}=\mathrm{b}+\mathrm{a} / \mathrm{M}$. We would then predict the ratio of the $\gamma \mathrm{p}$ and pp inclusive normalized distributions to be $1+\mathrm{C}\left[1+\frac{\mathrm{P}_{\mathrm{L}}-\mathrm{E}}{\mathrm{m}}\right]^{-1 / 2}$. The parameter $C$ is an average of ( $\mathrm{ab}^{-1} \mathrm{~s}^{-1 / 2}$ ) over the bremsstrahlung spectrum. To test this conjecture, we compare the ratios of the $\gamma \mathrm{p}$ and pp distributions of Fig. 1 to this prediction. An adequate fit to the data is obtained with $\mathrm{C}=1$. The experimental ratios and the predicted curves are shown in Fig. 3. ${ }^{10}$ We see that at small $\mathrm{P}_{\mathrm{T}}$ and large $\mathrm{P}_{\mathrm{L}}$ (corresponding to large M ) both experiment and theory give a ratio of 2. At large $P_{T}$ and small
$P_{L}$ (small M), the model predicts a ratio larger than 2 because of the low- M resonances in the $\Delta^{++} \gamma$ process. This feature qualitatively agrees with the experimental data, though the data suggest perhaps a sharper increase at small M than that provided by the term a/M. ${ }^{19}$

In summary, we conclude that in the target fragmentation region the $\mathrm{K}^{+} \mathrm{p}$ and pp distributions are similar in magnitude and shape to within $20-40 \%$, but that the $\gamma \mathrm{p}$ distribution: (1) has a magnitude over two times larger than the $\mathrm{K}^{+} \mathrm{p}$ and pp distributions and (2) falls with increasing energy, perhaps to eventually limit at the $\mathrm{K}^{+} \mathrm{p}$ distribution, and (3) at the energy studied has a different relative shape attributable to the nonexotic contributions.

## ACKNOWLED GMENT

We wish to thank R.F. Mozley and members of the SLAC Streamer-Chamber Group, M. Davier, I. Derado, D. C. Fries, F. F. Liu, A. C. Odian, J. Park, F. Villa and D.E. Yount, for the use of the photoproduction data. We are indebted to the following members of Group A at the Lawrence Berkeley Laboratory for generously allowing us to participate in the analysis of the $K^{+} p$ exposure: A. Barbaro-Galtieri, P.J. Davis, S. M. Flatté, J. H. Friedman, M. A. Garnjost, G. R. Lynch, M.J. Matison, J. M. Murray, M. S. Rabin, F. T. Solmitz, N. M. Uyeda, V. Waluch, and R. Windmolders and to J. Anderson, T. B. Day, J. Kirz, and R.J. Sprafka for help in obtaining the proton data. We have had helpful discussions with K. C. Moffeit of SLAC.

## REFERENCES

1. (a) J. Benecke, T. T. Chou, C. N. Yang and E. Yen, Phys. Rev. 188, 2159 (1969); T. T. Chou and C. N. Yang, Phys. Rev. Letters 25, 1072 (1970). (b) R.P. Feynman, in Proceedings of the Third International ConferenceHigh Energy Collisions, Stony Brook, 1969, edited by C. N. Yang et al., (Gordon and Breach, New York, 1969); Phys. Rev. Letters 23, 1415 (1969).
2. See, for example, (a) A. H. Mueller, Phys. Rev. D2, 2963 (1970); (b) C. E. DeTar, C. E. Jones, F. E. Low, J.H. Weis, J. E. Young and C. -I. Tan, Phys. Rev. Letters 26, 675 (1971); (c) H. -M. Chan, C.S. Hsue, C. Quigg, and J. -M. Wang, Phys. Rev. Letters 26, 672 (1971).
3. W. P. Swanson, M. Davier, I. Derado, D. C. Fries, F. F. Liu, R. F. Mozley, A. C. Odian, J. Park, F. Villa and D. E. Yount, Submitted to Phys. Rev. Letters. The experimental arrangement is similar to that described in: M. Davier, I. Derado, D. Drickey, D. Fries, R. Mozley, A. Odian, F. Villa and D. Yount, Phys. Rev. D1, 790 (1970).
4. A similar study has been made at photon energies $\mathrm{E}_{\gamma}=2.8,4.7$ and 9.3 GeV by the SLAC - Berkeley - Tufts collaboration: J. Ballam, G. B. Chadwick, M. Della-Negra, R. Gearhart, K. C. Moffeit, J. J. Murray, P. Seyboth, C. K. Sinclair, I. O. Skillicorn, H. Spitzer, G. Wolf, H. H. Bingham, W. B. Fretter, W. J. Podolsky, M. S. Rabin, A. H. Rosenfeld and R. Windmolders, contribution to the International Symposium on Electron and Photon Interactions at High Energies, Ithaca, New York, 1971, and private communication.
5. D. B. Smith, R.J. Sprafka and J. A. Anderson, Phys. Rev. Letters 23, 1064 (1969); D. B. Smith, Ph. D. Thesis, UCRL - 20632, March 1971 (unpublished).
6. Winston Ko and Richard L. Lander, Phys. Rev. Letters 26, 1064 (1971).
7. D. O. Caldwell, V.B. Elings, W. P. Hesse, R.J. Morrison, F. V. Murphy, B. W. Worster and D. E. Yount, Phys. Rev. Letters 25, 609 (1970), and D. O. Caldwell, private communication (1971). The $\sigma_{\text {tot }}(\gamma \mathrm{p})$, extrapolated to $\mathrm{E}_{\gamma}=\infty$ is $98.7 \pm 3.6 \mu \mathrm{~b}$, as compared to the nominal value $120 \mu \mathrm{~b}$ for $\mathrm{E}_{\gamma}=10.4 \mathrm{GeV}$.
8. L. R. Price, N. Barash-Schmidt, O. Benary, R.W. Bland, A.H. Rosenfeld and C. G. Wohl (Particle Data Group), A Compilation of $\mathrm{K}^{+} \mathrm{N}$ Reactions, UCRL - $20000 \mathrm{~K}^{+} \mathrm{N}$ (1969).
9. M. -S. Chen, R.R. Kinsey, T. W. Morris, R.S. Panvini, L. -L. Wang, T. F. Wong, S. L. Stone, T. Ferbel, P. Slattery, B. Werner, J. W. Elbert and A. R. Erwin, Phys. Rev. Letters 26, 1585 (1971). We adopt the same value for $\alpha_{\mathrm{N}}$ used in this work for the pp asymptotic cross section.
10. We point out that data of Reaction (1) may contain some $\mathrm{e}^{-}$contamination of tracks arising from $\mathrm{e}^{+} \mathrm{e}^{-}$production. Such contamination would be present only in the $0.0<\mathrm{P}_{\mathrm{T}}<0.1 \mathrm{GeV} / \mathrm{c}$ interval. and only for $\mathrm{P}_{\mathrm{L}}>0.0$. The other $\mathrm{P}_{\mathrm{T}}$ intervals would be unaffected.
11. We also remark that the double distributions do not factorize into separate functions of $P_{L}$ and $P_{T}$.
12. Moreover, significant differences can be seen at large $P_{L}$; this corresponds to $\mathrm{x}>0$ in the $\mathrm{c} . \mathrm{m}$. and is beyond the proton fragmentation region. The c. $m$. variable $x$ is defined in Ref. $1(b)$ as $x \equiv 2 \cdot P_{L}(c . m.) / \sqrt{s}$.
13. We also have evaluated the distributions, integrated over all $P_{T}$ and over $\mathrm{P}_{\mathrm{L}}<0.5 \mathrm{GeV} / \mathrm{c}$. We find these quantities to be $0.43 \pm 0.01,0.174 \pm 0.009$ and $0.204 \pm 0.010$, respectively. The latter two values may be compared with the values found in Ref. 9: $0.20 \pm 0.02$, and $0.22 \pm 0.02$, respectively.

The corresponding ratios based on the present experiment are $\gamma \mathrm{p}: \mathrm{K}^{+} \mathrm{p}: \mathrm{pp}=(2.6 \pm 0.3):(1.20 \pm 0.08): 1$ for this more extended range in $P_{L}$. However, note that this region of $P_{L}$ includes contributions from $\mathrm{x}>0$ (see Fig. 1).
14. By exotic we mean that no resonances are known to decay into these particles (see Ref. 2).
15. A similar analysis has been performed for the reaction $\pi^{-} p \rightarrow \pi^{-}+$anything, by W. D. Shephard, J. T. Powers, N. N. Biswas, N. M. Cason, V. P. Kenney, R.R. Riley, D.W. Thomas, J.W. Elbert and A. R. Erwin, Notre DameWisconsin preprint (unpublished).
16. R. Peccei and A. Pignotti, Phys. Rev. Letters 26, 1076 (1971); L. Caneschi and A. Pignotti, Phys. Rev. Letters 22, 1219 (1969).
17. Clifford Risk, UCRL - 20841, June, 1971 (submitted to Physical Review). The intercept $\alpha(0)$ and its relation to the $\pi^{-} p$ backward elastic cross section in the intermediate energy range ( $s=3-8 \mathrm{GeV}^{2}$ ) is discussed in this work.
18. The curve of Fig. 1 represents the contribution to the total $\pi^{-}$distribution that comes from the single $\pi^{-}$produced by the baryon exchange mechanism of Fig. 2. This process is related through duality to the backward decay of the various $N^{*}$ resonances of the proton. In this picture, the remaining portion of the spectrum in Fig. 1 then arises from the $\pi^{-}$produced by other mechanisms.
19. Thus the model of Fig. 3 could lead one to use the ratio of the inclusive distributions to study the nature of the $\gamma \Delta^{++}$total cross section. Here, we have taken this cross section to be of the form $b+a / M$.

## FIGURE CAPTIONS

1. Differential cross sections $\frac{1}{\sigma_{\mathrm{T}}} \frac{\partial^{2}}{\partial \mathrm{P}_{\mathrm{L}}} \frac{\sigma}{\partial \mathrm{P}_{\mathrm{T}}}$ for $\gamma \mathrm{p} \rightarrow \pi^{-}+$anything (open circles), $\mathrm{K}^{+} \mathrm{p} \rightarrow \pi^{-}+$anything (closed circles), and $\mathrm{pp} \rightarrow \pi^{-}+$anything (squares) as a function of $\mathrm{P}_{\mathrm{L}}$ for a range of intervals in $\mathrm{P}_{\mathrm{T}}$. Also shown is ( $\mathrm{d}_{\sigma} / \mathrm{dP}_{\mathrm{L}}$ )/ $\sigma_{\mathrm{T}}$ (uppermost points). The curve is the theoretical prediction of Eq. (4) for the pp reaction (see text). The diagonal lines at the left are intended to distinguish the $\mathrm{P}_{\mathrm{T}}$ selections at small $\mathrm{P}_{\mathrm{L}}$. The approximatelyvertical broken lines show the value of $P_{L}$ corresponding to $x=-0.5$ and $x=0.0$, respectively, where $x \equiv 2 \cdot P_{L}(c . m.) / \sqrt{s}$.
2. Regge model for proton fragmentation in proton- and photon-induced inclusive reactions.
3. The ratio $\Omega_{\gamma p}$ of the normalized distributions. The curve indicates the prediction of Eq. (4) over the entire $P_{L}, P_{T}$ region with $C=1$ (see text); solid portion indicates the $P_{L}, P_{T}$ region for which Eq. (4) adequately accounts for the $\pi^{-}$distribution in the pp reaction; dashed portion indicates the prediction of Eq. (4) over the rest of data.


Fig. 1


Fig. 2


Fig. 3


[^0]:    Supported by the U.S. Atomic Energy Commission.
    ** Now at Institut de Physique Nucléaire, 91-Orsay, France.

