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ABSTRACT 

The three-body formalism for singular cores previously introduced by the 

author is considered in some detail. A new derivation is presented which clearly 

demonstrates the uniqueness of this formalism, and a detailed proof of three- 

particle unitarity is given for the amplitudes so defined. The kernel for the 

special case of BCM alone is explicitly evaluated, and the result is used to 

analyze some problems of solution common to these models. Applications of 

the formalism and its relation to other approaches are discussed, and a generali- 

zation of the BCM is introduced which leads to a potentially interesting and 

readily calculable three-body model. 
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I. INTRODUCTION 

In a recent Letter: the present author introduced a generalization of the 

Faddeev formalism to include two-body interactions whose extremely short-range 

behavior is characterized by a hard core, or by a boundary-condition on the wave- 

function (BCM). Using the special properties of the BCM t-matrix developed 
2 

earlier, it was shown that the usual Faddeev equations do not yield a unique 

solution for such interactions, but that a particular solution can be defined which 

yields the desired physical properties. In particular, the resultant three-body 

wave-function vanishes whenever any pair of particles are within their respective 

core radius, while its asymptotic behavior corresponds to a unitary three-particle 

t-matrix. In this paper we give detailed proofs of these assertions, present a 

new derivation of our equation which clearly demonstrates its uniqueness, and 

explicitly evaluate the kernel for the special case of BCM alone (no external 

potential). This provides the theoretical groundwork for subsequent articles in 

this series dealing with the actual solution of our equations for specific models. 

The principal motivation for this development is the versatility afforded by 

being able to utilize this additional class of interactions in the three-body problem. 

For example, calculations to-date in the three-nucleon system with realistic 

interactions have been restricted to soft core models and have generated some 

doubt as to the ability of such models to fit the experimental data.’ It is not 

unreasonable to expect the singular core models to produce qualitatively different 

behavior; functionally, the corresponding off-shell t-matrices are quite different 

from those of soft cores, exhibiting the typical oscillatory properties of entire 

functions. Whether or not singular cores can reduce the discrepancy with 
. 

experiment is of course speculation, but it seems important to explore this 

possibility. 
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Nuclear physics aside, the formalism also leads to a number of applications 

of interest to statistical and chemical physics. An example is the third virial 

coefficient for a (quantum-mechanical) system of hard spheres. This can be 

obtained knowing the wave-function for three particles interacting via hard cores, 
4 

a special case of our formalism. In fact, with no increase in difficulty, one 

could also perform such a calculation with hard cores plus weak attractive forces 

characterized by the BCM. Such computations would be facilitated by a fact 

pointed out in Bl; namely, that for the BCM (or hard core) alone, our equation 

can be reduced to integral equations in only one variable. Finally, one can take 

advantage of this property in introducing a generalization of the BCM which is 

readily amenable to three-body calculations; we shall return to this point in the 

final set tion. 

We begin in section II with a brief review of the development given in Bl. 

By observing a special property of the BCM t-matrix unnoticed in our earlier 

work, we are able to present a new derivation for our equation which emphasizes 

the fat t that it is unique. Section HI is devoted to explicit proofs of the three- 

particle unitarity relations for our amplitudes. At the same time, the algebraic 

notation introduced in Bl (and recapitulated in section II) is employed to construct 

particularly transparent derivations of unitarity for the usual Faddeev amplitudes. 

In section IV we introduce a “super-vectorY7 notation in order to simplify 

evaluation of the operator product IQ appearing in our kernel; this result is then 

employed in section V, where we explicitly evaluate the kernel for the special 

case of BCM alone. Here the separability of the kernel in one of its (vector) 

variables leads to a coupled set of integral equations in one vector variable; 

projection onto states of definite total angular momentum results in coupled one- 

dimensional equations. At the end of this section we take advantage of the relative 
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simplicity of this case to consider in some detail the relationship between our 

amplitudes and the three-body wave-function. 

Finally, section VI is devoted to a discussion of various aspects of the forma- 

lism, its relation to the work of other authors, and to problems involved in 

obtaining actual solutions. Here we also consider a potentially interesting 

generalization of the BCM and outline the calculational program now underway. 

In the Appendix we give a derivation of the operator Q which plays a crucial role 

in our development. 
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II. THREE-BODY FORMALISM FOR SINGULAR CORES 

In this section we briefly review the theoretical development given in Bl , 

recapitulating some useful notational conventions. We also present a new 

derivation of the integral equation introduced in Bl. This derivation supplements 

the previous (more physical) argument by clearly demonstrating the fact that our 

new equation is unique. As in Bl, we make the nonessential but simplifying as- 

sumption that our three particles are spinless. 

We denote the mass of particle a! by m, and the total three-body c. m. energy . 

by W. Three-particle states are described by the usual Jacobi variables To, To , 

with the corresponding reduced masses p,, Mo ; 

Pi’ 
-I =m + 
P 

M,’ 
-’ 

=m t o! 

and (spy) are cyclic permutations of 

-’ 
my ’ (1) 

-1 
(m+m$ 3 P 

(123). In the usual channel decomposition, 

the three-body state vector is 1 a> =c l$o>, where the I$,)- satisfy 
o! 

Here t, represents the two-body t-matrix as an operator in the three-body 

Hilbert space, $ 1 > is a plane-wave state, and Go = GO(W) is the free 

Green function. Equation (2) is one expression of the Faddeev equations.5 

It is convenient to introduce the states 1 a! F T > , where 

< f$ T’ I 
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We can then define the operators t, I such that 

if cz/3y are cyclic, 

- 
if pay are cyclic. 

Here tol ( 5’ , F; s ) is the off-shell two-body t-matrix for particles 0 and Y , 

energy s; the diagonal elements of I vanish. With the identification 

(5) 

and letting I$> = M I+>> we can rewrite Eq. (2) in the form 

M = 1 - Got + Got I M . (6) 

It is important to keep in mind that the operators in Eq. (6) act on the states 

of Eq. (3); in particular 

(7) 

One can easily verify that I and Go commute. 

The development up to this point is completely general, with the object of 

obtaining the operator equation for M, Eq. (6). Since Eq. (6) is exactly 

equivalent to the equations of Faddeev, one can immediately infer that it serves 
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to uniquely define M for a large class of two-body potentials. However, it was 

shown in Bl that this is not the case in the presence of singular cores. The proof 

is based on the fact that for such interactions, the two-body t-matrix has the 

special property that 

7 Got = t Go7 = v , (8) 

where v = v ?? corresponds to a square-well potential of unit strength and a 

range a&for the matrix element 

(9) 

That is, ya, (F) is the Fourier transform of the unit step-function 8 ( aa- r). 

Moreover, one can construct an operator Q of the form Q = 1 + TB (I - 1) with 

the following properties : 

I QQ=& 

V(l-I)Q=(l-I)Qv =0, (10) 

(l-71) Q=l-“v , 

Qv = ?Qi?‘. 

(An explicit derivation of Q is given in the Appendix. )Using Eqs. (8) and (lo), 

one observes that 

(1-GotI) Go&v = 0, (11) 

and hence that ( 1 - Got I ) -’ does not exist. Therefore, one cannot use the 

ordinary Faddeev equations (Eq. (6)) to uniquely determine M in the presence 

of singular cores. 

To overcome this difficulty, a generalization of the Faddeev formalism was 

presented in Bl. We consider a new operator y chosen such that 

l-Got = (1-v) (l-GOT) . (12) 
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A particular solution M to Eq. (6) can then be defined as M = Q Me, where Me 

satisfies the new equation 

Me = l-GOT+ GorIQMe. (13) 

This new equation was motivated in Bl by imposing reasonable physical require- 

ments on the resultant three-body wave-function; namely, that it should vanish 

whenever any two particles are within their respective core radius, and must 

correspond to a unitary three-body t-matrix. 

We now consider a somewhat different derivation which employs another 

special relation concerning the two-body t-matrix: the fact that 7 can be chosen 

such that 

PV=o. (14) 

Postponing a proof of this assertion until the end of this section, we proceed by 

assuming that M is any solution of Eq. (6). Employing Eq. (8), it follows that 

v M = ?(l-Got + GotIM) , 

= VIM. 
(15) 

The form of Q then implies that Q M = M . Noting that with our choice of 

states (Eq. (3)) the relationship between M and the three-body state vector is 

givenby I@> = (1 -1) M 1 $), we have that 

(@>=(l-I)QMt+>. (16) 

We next observe that, as a consequence of Eq. (14) and the properties of Q, 

TIQV = TQv 

= i-TQa (17) 

= 0 . 
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Hence, substituting Eq. (12) into Eq. (6), we deduce that 

(18) 

(19) 

(20) 

YIQM = ~IQ(~-G~~+G~?IM). 

Defining 

X =YIQM=YIM, 

we obtain an integral equation for X ; 

x = YIQ(~-G~?) + TIQG~ x . 

Comparing this equation to Eq. (13), we infer that X = y I Q Me, i. e. , the 

two equations are totally equivalent. 

Moreover, we observe that X is all that is required to form 1 $f > , since 

Eqs. (6) and (12) imply that 

M = +I-G~?).(-I+IM)+I-G~Y+ coX . (21) 

Hence, due to Eq. (16)) we have 

ig > = (1 - I) Q (l-Go?+ GoX) 1 $> (22) 

=(1-I) &Me I+>. 

Finally, we note that although r is not uniquely defined by Eqs. (12) and (14)) 

any change in 7 must be of the form AT = Go -l- V A. If we suppose that Me 

is the solution of Eq. (13) under the replacement ?- ?I = 7 + A?, it follows 

from Eq. (17) that 

Me = M,+;A(-1+1&M;). (23) 

However, 1 a> is invariant under such a change. We thus conclude that our 

equation is to all intents unique. 

We conclude this section by considering the nature of Tand the proof of 

Eq. (14). To do so it is clearly adequate to drop subscripts and work in a 

two -body space. Denoting the core radius by a, we shall first deal with the 
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I 

case of the BCM alone (F = t NBC) ; the subsequent generalization to BCM plus 

external potential is trivial. We look foryrC , -BC the projection of t on partial- 

wave Q , in the form 

yBC 
Q (P’, P; s) = G1 (P’, s) tp”” (KY P; s) . (24) 

Here K =(2 M,s) m is the on-shell momentum value; t BC 
P is thus 

proportional to the half-on-shell BCM amplitude. We assert that Ga may be 

constructed in the form 

GQ(p,s) = 1 + (p2 -K2,c an ( K2 r j n-2 (ap 1 > 
n=0,2,... 

(Q even) , 

(Q odd) , 

with o. = ,8 1 z 0 , and the remaining on , p, chosen such that Gn (p, s) a pp 

as p--- 0. To prove the latter statement we note that the on (p, ) can be determined 

inductively, i.e. , suppose that the statement is true for a given B (say P is even 

for definiteness), then 

G&PA -7 
GjQ) (0 s) 7 Pe 7 

PdO P! 

with Gf) (0, s) completely determined by the on , n S B. Noting that 

Gp+2(~,s) - Ge (~3s) =(P2 - K 2, Q8+2(K2) j,(aP), (27) 

(26) 
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we can clearly satisfy the condition for L+2 by taking 

Q&K21 = ‘E”z’,” !! 
Gf’ (0,s) 

. 
1 . aQ . 

(28) 

Since the condition holds for 1 = 0 we are done (the proof for odd P follows 

similarly). Given Gj , we can now apply equation [39j of B2 to evaluate the 

-BC operator product ? Go t ; together with the explicit form for t BC given in 

equation [48] of B2, this immediately verifies Eq. (12) for the BCM alone. 

In order to generalize this result to the case-of BCM plus external 

potential, we remind the reader of equation [71- of B2, which states that 

t =tBC+ (1-tBCGo)Ve (1-s t) , (29) 

in which V, is the external potential. In view of the pure BCM result, we simply 

observe that the choice 

T =-;BC + (l-TBC Gd Ve (l-Got) 

satisfies Eq. (12). Given Eqs. (24) and (30) it is straight forward to verify that 

? satisfies the unitarity relation 

$@‘,p;s+ie) -?&p’,p;s-ie) = -i?r2Mr~$(p’,~;s+ie)?J(~ ,p;s-ie) . (31) 

In the subsequent sections we shall denote this symbolically by 

A? I y +-“t- zz -“t + AG,“t- 

=- ^t- AGO?+ , 

(32) 

AGO being the discontinuity of the free Green function. 

Finally, having established the form of y, we turn to the consideration 

of Eq. (14). It is clear from Eq. (30) that 7 is of the form y = A rBC+ B Ve. 

However, since V, = (1-v) Ve = Ve (l-v), we infer that t”v ccyBC 7; hence it 
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is only necessary to treat the case of BCM alone. From the formulas developed 

in B2 one can easily show that 

SQ @) 
t;‘(K,p;S) = D (Kj 2 

e 

with 

(33) 

g&p) = (a$4 j,(w) + w jQ+l WY 

D&K ) = i7rMr K (a$ - Q) ha (ax ) + aK hl+I (aK)] . (34) 

(With our convention $,j /$e = A1 at the core radius). Note that the verification - 

of the above is greatly aided by the alternative formula 

fQ(p,a,K) = iaK 
C 
aK $+$aK ) j, tap) - hp @K ) ap jQ+l (a@ 

3 
9 (35) 

for the quantity fe defined in B2. 

Consequently, the proof that y v = 0 rests on showing that 

co 

Ia = 0 / 
dpp2gp (P) v’ (P,P’) = 0 . (36) 

This, however, is somewhat delicate since In is ill-defined. To see this it is 

convenient to employ the representation 

Thus 

gJ(p) =Jd rr2 j&W SQ 03 , 
0 

Qr) = 
W$ +I) 

a2 
6 (r-a) -k w . 

OQ 

It = s drr2i&r) 0 (a-r) j, (rp’) , 
0 

= ~(Oh$@‘) - a 8(0)j,(apt) , 

(37) 

(38) 

and hence is dependent on the ambiguous quantities B (0), 6 (0). 
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In this circumstance we argue that I1 must be evaluated as a limit in 

which the radial parameter related to gQ is taken to be b > a, the integral is 

performed, and the limit b -a is taken at the end; this prescription clearly 

gives zero as a result. In order to justify this with respect to the alternative 

choice of limit (a>b), we first observe that the pure BCM is a model in which 

the wave-function vanishes in the core region and, its asymptotic behavior sets in 

immediately exterior to the core. However, the latter behavior is defined by 

the t-matrix, and it is thus reasonable to associate the parameters of the t-matrix 

with the external region (b> a). Moreover, if one re-examines relations such as 

Eqs. (11) and (15) in terms of such a limit, one finds that only the choice b 3 a 

is compatible. Finally, a more detailed analysis shows that the choice a> b 

leads to an exponentially divergent kernel in Eq. (13). 

I . 
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III. THREE-BODY UNITARITY 

In this section we give an explicit proof of the three-particle unitarity relations 

for our new formalism, Eq. (13). In doing so, it will be convenient to adopt a 

notation of the type illustrated in Eq. (32) in order to express the discontinuities 

of an amplitude across its cut. As is well known, the discontinuities of the off- 

shell three-body t-matrix T as a function of the total energy W arise from two 

sources : (1) scattering to states consisting of three free particles, with a threshold 

W=O, (2) elastic scattering of a single particle from a bound state of two others. 

In the latter case thresholds are found at W = v aj ’ where -’ rzj is the binding 

energy for the j-th bound state of particles ,8 and y. The cuts from both sources 

are taken to lie to the right of the corresponding threshold along the real W-axis. 

As an illustration, we first consider the relation for cut (1) in the ordinary 

Faddeev formalism. We note that-the relationship between M and T is given by 

1 - GOT = (1-I) M. 

By assumption, we have that in this case the operator 

(39) 

Z = (l-Got 1)-l 

exists . The unitarity condition for t is that At = -t-AGO tf; thus 

AZ = Z-(l-Go-t-) AG$+IZ+ . 

From Eq. (6) we have M = Z (l-Got); it follows that 

AM = AZ (1-Go+t+) - Z-(l-Go-t-) AGot+, 

= M-AGot+ (IZ+ [l-Go+t+ ] -1) , 

= M-AGot+ (IM+-1) . 

(40) 

(41) 

(42) 
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However, Eq. (6) implies that 

t(IM-1) = GO-1 (M-1) , (43) 

while AGO Go -1 A = 0 unless a corresponding factor of Go occurs in A (AGO puts 

operator to the right on-shell). Thus 

AM =MAGoGo -1 M+ . 

On the other hand, Eq. (39) says that 

T = -Go-’ [ (l-1) M-1 ] , * 

and hence 

AT = - Go-‘(1-I) AM. 

At this point we observe that the definition of I, Eq. (4), implies that 

Since 

we find that 

1-l 
_ = ; (l+I) ) 

(l-I)2 = 3 (1-I) ) 

(l-1) (2+1) = 0. 

M = Z (l-Got I + I - 1) 1-l , 

= 1-l f z (I-l) 1-l ) 

Thus 

(1-I) M =$ (1-I) M (1-I). 

AT = - ; Go-l (1-I) M- AGO Go-’ (1-I) M+ , 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

zz -- 3’ T- AGO T+ , 

c 
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where we have used the fact that I and Go commute. Note that the factor of l/3 

appearing in Eq. (50) arises from triple counting due to our choice of intermediate 

states; Eq. (50) is exactly equivalent to the usual statement of three-particle 

unitarity. 

We now turn to an analogous derivation based on Eq. (13). Defining 

Y = (l-GOT1 Q)-1 , (51) 

so Me = Y (l-Got) , 

we have 
AY = Y-(l-GO-?-) AGO T+ IQY:, 

where we have used Eq. (32). Thus 

AMe = Me- AGoT+ (IQMe+-1) , 

= Me-AGO Go-’ Me+ . 

Furthermore, Eq. (51) implies that 

M, = 1 + Y Go? (IQ-l) , 

and the form of Q implies that IQ-l 0: 1-I; 

thus 
(1-I) QM, = ; (1-I) Q M,(l-I) . (55) 

(52) 

(53) 

(54) 

Eqs. (45) and (46)) plus the relation M = Q Me , 

then give us the result 

AT = -+ GO-l (1-I) Q s-AGO GO-l (1-I) Me+ , 

= - ; T-AGO T+ , 

(56) 

having used AGO Go -’ Q = AGO GO-l . Equation (56) thus establishes that Eq. (13) 

leads to the proper statement of three-particle unitarity with regard to the cut 

of type (1). 
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We next consider cuts of type (2), recalling that 

t(.p, -E s) - g? PQ(O’. 8, 
g,j@‘)gQj (P) , 

s-v 
sev 

4 
04 

(57) 

I being the partial-wave in which the bound state occurs. It is helpful to define 

the operators r aj ’ Saj such that 

~~ 
6(j7-is) 6 (? -7) . (58) 

a! W -q2/2M;,- voj+ie 

The cut of t arising from the bound state pole v W 
then has the discontinuity 

At=r AS aj aj . (59) 

Clearly, ASo j a 6 (q-qoij) , where 

‘Zj = 2Mo(W-voj). 

For the usual Faddeev theory it follows that 

AM = AZ(l-Got+) - Z- %At , (61) 

= Z- sAt(IM+ - 1) ; 

(60) 

thus 

AT = - GO-l (1-I) Z- s At (IM+ -1). (62) 

On the other hand, we note that the effect of the operator AScrj Saj is 

to pick out the residue at the vo j pole of the operator it acts on; hence 

AS S 
-1 

aj crj t=AS r aj aj ’ (63) 
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for example, Therefore 

AS S 
-1 

aj oij T= -AS crj ‘olj 
-1 

Go ’ 
-1 M 

-AS -1 ZZ 
aj ‘afj GO-l (l-Got -I- Got IM) , 

ZZ -AS r aj aj W-l), 

= -At (In/r-l). 

Similarly, 

TS 
W 

-‘AS 
aj 

= - Go-‘(1-I) Z (l-Got) Soj-’ ASoj 
3 

= Go-‘(1-I) Z Go At . - 

We also note that r 2 = 
4 paj r c2j ’ where6 

W 

P = 
aj s 

dPP2g~j (P) . 
0 

Thus 

Defining 

we finally obtain 

AT = -GO-l (1-I) Z-Go p k At (IM+-1) , 
Qii 

= GO-l (1-I) Z-Go p ‘crj AS 
4 

oj Soj-l T+ , 

AS * 
= T-S 

-1 olJ 
W 

S -’ T+ 
W 

. 
pcij 

A =S -1 “crj 
Qj 04 

-1 , s 
P 4 W 

AT =T- Aaj T+ . 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

When Eq. (69) is inserted between the proper initial and final states one obtains the 

usual unitarity relations connecting the break-up, elastic scattering, and re- 

arrangement amplitudes. 
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Finally, considering the same cut for our singular core formalism, we have 

that 

thus 

AMe = Y- Go Ar(IQM + -1) , e (70) 

AT = - Go-‘(1-I) &Y-GOAT (I&Me+ -1). (71) 

Applying Eq. (12)) we deduce that 

Go At = (1-v) G,,A?. (72) 

Consequently, using the properties of Q given in Eq. (10) and Eq. (17), we find 

that - 

(1-I) Qfi = (1-I) Q 7 =. 0. (73) 

Thus 

(1-I) QY- GoA? = (1-I) QY-(1-v) %Ay , (74) 

= (1-I) QY-GO At. 

Similarly , we note that 

(1-I)QMe = (1-I) Q (l-7) Me, (75) 

= (1-I) Q [l-G,t+(G,t-?)IQsT ; 

this implies that 

AS S -’ T = -AS aj cij S -’ Go-+1-I) &Me aj aj (76) 

=-AS S cdj aj -‘t (I&Me -1) 

= -At (IQM, -1). 

Hence 

AT =-Go -‘(l-I) QY-GO raj p 
4 

At (IQM e -l), 

= G o-1 (1-I) QY-GO --+ Suj-’ T+ , 
cd 

(77) 

= T-A 
N 

T+, 

the last relation following similarly to the above. 
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In concluding this section, it must be pointed out that the above proofs rest 

on the existence of the operator Y defined in Eq. (51). At present the author 

has not been able to prove this rigorously; however, the existence of Y has been 

confirmed by the direct calculations to be described in the next paper of this 

series. We also note the ease of the above proofs for the usual Faddeev formalism 

as a result of the algebraic formulation introduced in Bl and summarized in 

Section II. 
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IV. EVALUATION OF IQ 

In order to apply our new formalism, Eq. (13), one must first evaluate the 

operator product IQ which appears in the kernel. This being a somewhat tedious 

process, we shall devote this section to an abbreviated derivation of the result. 

The procedure followed is greatly facilitated by introducing a tfsuper-vector’t 

notation to describe our operators. We shall thus find it convenient to represent 

the pair of three-vectors F, c by the ttsuper-vectortt 7, 

ij= T 

0 
T ’ * (78) 

represented as a two-component spinor, each component being a three-vector. 

We also note that Eq. (1) can be shown to imply the following relations 

_ between the reduced masses: 

1 1 - x2-- 
MO! m 01 

Defining the rotation matriCeS (C!#~#Y) 

RpcY = 

+o! 1 
m 02 

-% -% 
Mo! m CY 

- 21 - 



Eq. (79) implies that det R 
Pa 

= 1, 

RPa 
-1 = 

It is also easy to verify that 

-flp -1 

mY 

%J -I-10! 
MB - 

mY 

(81) 

In what follows we shall mean by RPa! -;i the “super-vector” 7’ , where 

-t = 
77 

-I-10! - c+z 
mY 

The above conventions allow us to make representations such as 

From the matrix elements of I given in Eq. (4) one can then show that 

(82) 

(83) 

(84) 

(85) 

where Q! p y are cyclic. Thus the operator I which connects the channels has the 

effect of a rotation on7j. 
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As shown in the Append&Q is of the form Q = 1 + 7 B (I-l), where 

We thus observe that the above matrix element of B can be represented in the form 

6 ap @,(r; Tl , T,) , with x, Tl, T2 the “super-vectors” 

(87) 

Note that .$??o (x; Tl, Tj2) only depends on a’ and the upper components of 

TIY 75 (T&, r2). We take advantage of the fact that B and ? commute to write 

Q = 1 f B? (I-l) ; Eq. (85) and the above representation then imply that 

<a G’T 1 IB 1 /3sc> = (88) 
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Comparing Eqs. (86) and (88), we can now make a key observation which 

greatly simplifies the subsequent analysis. That is, it is possible to represent 

IB in the form 

IB = I+C+vD. (89) 

Hence, since rv = 0, and we shall only need the product TI Q =y [I + IBv(I-l)] 

for our integral equation, e. g. , Eq. (20), we do not have to evaluate D. In fact, 

one never needs D at all since neither the three-body wave-function’i;lor the on- 

shell t-matrix require it (D does appear, however, in the off-shell three-body 

t-matrix). As an example of terms contributing to D, we note that BU of Eq. (88) 

contains the terms 

where 
Ir -P, - w P@ -c’ -, 
q1 = - ma q-p +my q-l? ’ (90) 

The important point here is that c2 is independent of 5’. Recalling Eq. (9) then 

leads to the above conclusion. We observe in particular that all the double 

products of 7 in B go into D, greatly simplifying our subsequent expressions. 

Collecting the terms which contribute to C, it is straight forward to show 

that 

(91) 

02~‘~ cyclic. 
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The delta-functions in C make the product C ? trivial to evaluate, and if we 

adopt the further notation ‘2$(T) = Ta! (s’> , the result is conveniently expressed 

as 
(SG 

If we now write . 

IQ =I+n,+sZ, +?D’ , 

where 

a1 = CF (I-l) , 

a2 = 1% (1-A) ) 

(93) 

Eqs. (85) and (92) imply that 

pp 7 cyclic. 
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In order to evaluate R2 we proceed similarly, letting 

Equation (85) implies that 

CYCT’E cyclic. Again applying Eq. (85), we obtain 

(96) 

R7,-;i, +%V 
P RPP PP, 

-+t, R-l? 

pp7. cyclic. Finally, using the definition of d%& given in- Eq. (95), we arrive at 

the result 

<PTm~21GG) = (97) 

With Eq. (93) and the above explicit formulas we can now proceed with the evaluation 

of our kernel. 
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I 

V. KERNEL EVALUATION FOR THE PURE BCM 

The simplest example of our formalism is realized when the pair interactions 

are specified by the BCM alone (pure BCM). In this section we shall consider the 

explicit evaluation of our kernel for this special case, Aside from not having to 

specify a particular external potential, this choice is motivated by several con- 

siderations. In the first place, this model in itself is not totally uninteresting. 

For example, it contains as a special case the proper quantum - mechanical 

formulation for a system of three hard spheres. Moreover, as a consequence of 

Eq. (24), the kernel is separable in each partial-wave, and hence the problem is 

particularly easy to solve. It is thus quite practical to explore the consequences 

of this model ( and a generalization to be discussed in the next section) as a first 

approximation to the interactions in three-body systems of more direct physical 

interest, such as the triton system. 

Aside from these areas of immediate application, however, the expressions 

which we shall obtain for the pure BCM play a special role in the more general 

problem of BCM plus external potential. This is due to the fact that if we write 
-BC our general Y = t + A? as suggested by Eq. (30), the most singular part of 

the kernel arises fromTBC. In fact, as we shall see, the pure BCM contribution 

to the kernel is sufficiently singular as to require special treatment. 

In what follows we will use the separability of y BC to obtain a coupled set 

of integral equations in one vector variable, the kernel of which we shall determine 

in some detail. Coupled one-dimensional equations can be derived from this set 

by projecting onto states of total angular momentum; since this is totally analogous 
. 

to the reduction of the usual Faddeev equations with separable t-matrices8we 

shall only sketch this step. In concluding this section we shall take advantage of 

the simplicity of the pure BCM to investigate the relationship between our cal- 

culated amplitudes and the corresponding three-body wave-function. 
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It will be advantageous to define the states J crJ!rnT) and (CrPrn~ 1 such that 

(98) 

Here 

S a = W - q2/2 M a’ 

l/2; (99) 
Ka! = (2/5&J 

- 

while GF , gr , DF are the quantities defined in Eqs. (24) and (33) with a particle 

index a! added. It then follows that ? BC may be represented in the form 

BC 
y = 

cs 
dG 1 CrSmq) (,Qm; 1 . (100) 

am 

Defining the amplitudes 

in which we suppress the parameters characterizing the plane-wave state I $ ) , 

Eq. (13) and the above imply that Xa”, (c) satisfies the coupled equations 

with 

K”+ Qm.Qlm’ (C s’ = 3 <aQmG 1 IQGO I pQTrn’cf > . (102 ) 

Employing the results of the preceding section as to the form of IQ, we now 

proceed to evaluate explicitly the matrix elements of this kernel. Introducing 

the cyclic set ocr E , we begin with the diagonal element (p=o!). Recalling 
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Eq. (93), we observe that there are contributions to this element from S2, 

and $2,) so that 

Equation (94) implies that the contribution of $2, to the above double integral is 

where we have made the change of variable p’I = TV +T and introduced z = ?jl - c. 

We now substitute for ve and & their Fourier transforms, e. g. , 

S 
dzeij;-. 6 

0 (y- x), 

while VU (6) involves the coordinate? and range au. 

Making the subsequent change of variables 

Eq. (104) becomes 

(105) 

(107) 
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Here we have made use of the representation 

e ST = 4n c ik j, @q) ye,61 YQL (4) 
Qm 

(108) 

and the properties of Gr, (p,sQ) which follow from Eq. (25) to deduce that 

Ly 
2 2 Qtm,& G; @>Sa) eiEsh = 2T2iQ’+ ‘“a h,,(uQ YQ& , (109) 

J P -Ka! 

while Eq. (37) and the relation 

Q) 

s 0 
dw2 j,(w) jQ (rp) = ; 

imply that 

6(u - r) 
2 r 

s 

dg YQL (~$1) gr(p’) emi’:’ = 2n2 i-” &f(u) Ylrn(t ) . 

(110) 

(111) 

We now introduce a partial-wave expansion for the product of two theta- 

functions , 

hence 

S 
1 

eT(u,v) = 27~ dz P,(z) 8 (a,- IT- 
Al o- 

z=ci.G. (113) 
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Defining 

ZZ 

2 -&---- uv 
E 

, 

(114) 

a2 _ v2 - !f.& i2 
E 

ZL = u 

%I! 
-’ 

-2 m uv 
u 

it is easy to see that 

/ 

zM 

e”L (u,v) = 27r dz P,(Z) , 

- zL 
(115) 

zM = min (1, 2,) , ZL = max (-1, “z,), 

where the integral is taken to vanish if ZM < -1, ZL> 1, or ZL > ZM . 

Adopting the notation 

(116) 
= (2 Q’+l) (2 L+l) 1 m C (LQ’Q; Mm’m) C (LQ’Q;OOO), 

4n(ZQ+l) 
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9 
for the integral of three spherical harmonics, and employing the expression for 

i:(u) given in Eq. (37), Eq. (107) becomes 

i L+Q’-Q $LQ’Q 
Mm’m ‘LM 

LM 
* (A) fivv2jL(vA) J~,e(VyKQ) , 

where (117) 

(v,yJ = - 1’ hp,(“&) + aaKahQl+l(aaKa) 1 

We next note that the contribution of a2 to the double integral in Eq. (103) 

is given by 

Making use of the relation 
i-Q 

‘Qz 6’) jQ@p’) = 7 S d? YQm (G) eizc’, 

we observe that 

(119) 

dy: yQ,m’ cf;) YQm($‘)gr(p’) = 4~rz iL+Q’-QS~Jlm YLM (6) x 
LM 

(120) co 

X S 0 
drr2~~(r)jL(rQ)jQl(rP) 

for3 =T f G , where we have used Eqs. (37) and (116). Employing this 
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relation in Eq. (118), and performing the dp-integration as in Eq. (log), we 

find that the a2 contribution becomes 

iK 

47io c 
.~if.~-Q LB’1 
1 'aMm'm ';M 6, [(aa';- -et) hQ,tacyKa)+aaK cuhp+ltaaK,)] ' 

LM 

x eL t&acr) - a,hpltaayJ flL’tA+J 
I 

, 

(121) 

where 

N; tA,v) 

m-J3 
= vc(A)(-lr j, (vPe A) + ve(A)j, (vP$ A) . 

E u 

In adding the two contributions exhibited in Eqs. (117) and (121), it is helpful 

to represent them in somewhat similar form. It is clear that if we write 

w 
NE tA,u) = j- 

0 
dvv’ j,(vA) pt (u,v), (122) 

we can express Eq. (121) in the form of Eq. (117) with an integral ?,l,p(~,~(y) 

defined as in the second part of Eq. (117), but with 0: replaced by pt . To 

determine the latter we apply Eq. (110) to obtain 

W 

p(yL(u,v) = $ S o dss2jLtw) Nt tw+ (123) 

Given the explicit form of #L , the integral can be evaluated with the aid of the 

expression 

jQtvs)j,(u 9) = + S 
1 

-1 
dz p,(z) joW T (124) 

2 2 m 
r=(v +U -~QTZ) , 
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invoking a standard property of the spherical Bessel functions, as well as the 

formula 

Ql) = -+- S 
O” 2 
~XX jo(xq) 8 (aa-% (125 ) 

27r 0 

which follows from Eq. (105). We thus obtain 

S 
1 

py)u,v) = 27r 
IJ 

dz P,(z) 
-1 

e(au- It+ g iI])+ 8 (a,- I-6 - m 
E 

(126) 
If we now compare this expression to the definition of 0: given in 

Eq. (113) it is clear that 

P; (u,v) 
zM 

S 
1 

27r = -1 dzPL(z) f 
s 

dz P,(z) , (127) 
Z- 

with zM , zL defined as in Eq. (115). Defining 

f (UA = p; (u,v) - 0: ~u,v), 
L 

(128 ) 

it follows that 
N 

f(uyv) ‘4n8Loe(ZM-ZL) + etzLsZM) p: (u9v)p 
L 

= 4aijL0 e(zM-zL) + 2~ aLo 8 (zL- zM ) [e pzM) + ’ tiezL)] 

+ 
2~ e (zL-zM) 

2L+l [ 
pL+l (z) - PL-1 (z) ] ZBI * (129) 

zL 
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Here one takes Pel = 1 and, as above, P,(Z) is taken to vanish if I z I > 1. 

Recalling Eq. (114), it is straightforward to show that 

with 

\ e tzL- ‘111) = 6 (v - v; (u) ] ) 

meat+m a 2 

” (u) = I u E -I-$! u2 

I 

J/2 

. 
m +m E CT 

(130) 

Similarly, the conditions I z I 5 1 restricts v to being less than a finite upper 

bound depending on the mass ratios and core radii, i. e. , v < vUx . 

To complete our evaluation of the diagonal element we introduce the definite - 

integral 
%LAX 

R; (A,u) = 
1 

-qyy- 
/ 

dvv2 j L(vA) xo (u , v). (131) 
0 L 

Recalling Eqs. (34) and (103) we obtain 

K CYO! 
Qm;Q,ml (2,;) = $ ) iL”‘-Q~&!~,m YL*M (A) RfYL (baa!) 

LM 

h 
+ 2p ia K 

Q’taaKa) - 
ao!o! z 

D; tKG) LM 
t$-$h R~tA,aJ 

- R$La,) . (132) 

Here we note that RE’ means the derivative with respect to u; Eq. (131) is to be 

evaluated with u regarded as infinitesimally close to aa! (these integrals are in 

fact elementary). For a given Q and Q’ , due to the Clebsch-Gordan coefficients 

contained in #$Qm@,, , the diagonal element of the kernel is a finite sum of 

functions which can be expressed in closed form. 
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Turning now to the off-diagonal elements, we first note that 

(133) 

a! g E cyclic, where we have used Eqs. (4) and (79). We will also need the integral 

/ 

dF il 

p2 - K,” 
‘,,tP) G; (P,su) “(p’- G) 

(13 

‘Qm (6, 
= 

Q2 - ?f 
[q” CQy"d - fQtQ,au7 Ku) ] > 

where we have used the partial-wave expansion 

'Q" @, Q) ‘Qm d, ‘Q; ($), 

Qm 
(135) 

and Eq. [39] of B2. Given the above, it is straightforward to show that 

_ 

= 

a! E)g;tp’aE)YQ’m’ tfbE)fQ’(puE,au,K,, 
P2 -lc2 CJ’E u 
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with-$ =z -5. Here we have introduced the quantities 
m 

(137) 

where the upper (lower) sign pertains if crp is cyclic (anticyclic). By employing 

methods similar to those discussed above in the evaluation of the diagonal element, 

the integral term in Eq. (136) can be expressed as 

4?r 
c 

iL”-L-Q2’LL’ &LL” 
* mfMM1 mMM” YL1fM1l (&& YL'M' (SUE) F;~?LLI~I,(~~~ &&). 

LL’L” 
MM’M” (138) 

Here we have defined 
W 

/ 

2 
F;:LL~L,, tP,A,K) = % f~~(P,a~K) v;, b?>p) MQiL,, (P,A), 

0 P -K 

(139) 
where 

M;LL” (P, A) = (a$$! - L - L”) j, (a,@ jLl, @,A) 

+ “&P jL+l a! (a P) jL,, taoA) + aoLA j,(aop) jLl,+l (a,N . 

We note that the summation over L in Eq. (138) is over all integers, while for 

fixed L the other indices have a finite range. In practice, the FIFLLIL,, integral 

falls off rapidly as L increases and the sum may be safely truncated; this integral 

is complicated but can be performed analytically. The Koeelement can be 

obtained from the above expressions for Koaby simply exchanging (T and E. 
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We have thus obtained explicit expressions for the kernel of Eq. (102), 

involving at most one infinite (and rapidly converging) sum of elementary functions. 

We note that, as anticipated in section II. , our kernel does not contain any ref- 

erence to the ambiguous quantity GQo (p, s), i. e. , the kernel is invariant with 

respect to allowed changes in?. It is also worth noting that although rQp (p’ ,p;sp) 

blows up exponentially like e 
-iapK P 

asq-+w, the effect of integrating y with 

IQ Go is to explicitly cancel this divergence. Thus, the divergent quantity 

[ D;ttKp)] -’ only occurs in the above expressions multiplied by either 

fat (p ,ap, K $ or hQ,(apK p), which contain the explicit factor e iaP KP . 

In order to reduce Eq. (102) to a set of coupled one-dimensional equations 

one proceeds in the usual way, defining the functions 

xriJM (q) =c C(QLT;m~M) d6 YG (4) qrn (5 2 
I 

(140) 
w - J 

which satisfy W 
X~;JM 

Qh tci) = ‘Qh 
a;JM (q) +x 

I 
d q’ 9” 5;fQ:;?b 3 9’) x;$M (q’). (141) 

@Q’h’ 0 

Here the driving term is given by Eq. (140) with X replaced by Z; the kernel is 

%;Q’A’ ap’JM (q,q’) =c C(QW;m~m) C(Q’A’J;m’~ 

mp 
rn’p ’ (14-v 

By employing standard tricks with rotation functions, the double integral in Eq. 

(142) can be reduced to a single integration over 4. a’. 
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In concluding this section, we consider the relation of our amplitudes 

qrn T;I> to the three-body wave-function. Recalling that 

it is straightforward 

+ 

+ 

a p y cyclic. 

Is> = (l-I)Q7VI, 14 > 3 

to show that 

(143) 

<p 
I-1, - %! 

, ----&-- x+7,-- z-sy 7 I &Me I +> (144) 
Y p”lp 

As we have discussed previously, the effect of Q is to guarantee that the wave- 

function vanishes when any pair of particles are within their respective core 

radius, i. e. , (cv??~( 4) is zero except in the exterior region defined by 
10 

X > acy, 

I 

42 - 
- x-7 > ap 

mY 
9 (145) 

%! -E 
mp 

-7 > ay. 
I 

Given the form of Q = 1 + g B (I-l), Eq. (144) then implies that the wave-function 

in this exterior region is given by 

aext (x’; 7) = <a;y’ \ (1-I) Me 1 @> . (146) 
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Defining the exterior channel wave-functions 

(147) 

and substituting Eq. (13) for Me, it is easy to show that 

(148) 

c 
ia+ 

yQmt’, 

/ 

dce @a3 
K a! hQ tKaX) xfmtF) ’ 

Qm 

We note that the first term in this equation is simply the product of a plane-wave 

for particle (Y and the usual BCM wave-function for particles p and y. 

Finally, using the relations 

2 eiF .z 2 Vy -=-qe i7.q 
> 

‘Qm t% hp(KX) > 
2 

= -K YQm@) hQ(/cx), 

Eq. (148) implies that 

or 

‘Ho - W) @z” (Kjq = 0 . 

Since I and Ho commute this explicitly verifies that 

tHO 
_ W) lpext (x', 7) = 0 * 

(149) 

(I501 

(151) 

Thus, as the nature of the model requires, !& ext is a superposition of eigen- 

functions of the kinetic energy operator, the superposition being taken to impose 

the boundary conditions at the core radii and the unitarity relation asymptotically. 
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VI. DISCUSSION 

In the preceding sections we have considered in some detail a specific pre- 

scription for introducing singular cores into the three-body problem. It is 

important to note that we have made the explicit assumption that our three-body 

wave-function must vanish whenever any pair of particles are within their core 

radius. This is equivalent to assuming that the BCM is present in each two-body 

partial-wave, i. e. , that there is some minimum radius r. within which all two- 

body partial-waves vanish. However, it is quite possible to introduce models in 

which the hard core or BCM appears in only a finite number of partial-waves. 

Our proof that the usual Faddeev formalism does not yield a unique solution does 

not apply to this case; on the other hand, the Faddeev kernel is not square-inte- 

grable , and hence one cannot prove the existence of solutions. Of course, this 

does not mean that such solutions do not exist, and numerical solutions have in 

fact been obtained for the case of hard core plus square-well (two-body s-waves 
11 

only) by Kim and Tubis. Due to the centrifugal barrier, it does not appear likely 

that one will be able to distinguish between these two possibilities from the ex- 

perimental information contained in higher partial-waves; their relative useful- 

ness will hinge on the nature of the three-body predictions generated and the ease 

of calculation they afford. From the latter point of view, our approach has the 

advantage that the pure BCM part of the interaction reduces to an equation in only 

a single vector variable, a simplification analogous to that occuring in the usual 

Faddeev formalism for separable interactions. 

As we have stated previously, our formalism shares the lack of square-inte- 

grability noted above. To see this one need only observe that the first term of 

Eq. (132) involves only the difference c -5’. Thus, if we were to Fourier- 

transform the equation the kernel would contain a piece proportional to 6 (z - ?), 
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proving the assertion. This property is reflected in our integral equation by a 

slow rate of convergence at infinity, a consequence of which is that Gaussian 

quadrature is ruled out as a method of solution. It was thus necessary to develop 

special numerical techniques which we shall describe in subsequent papers. It 

should be emphasized that this is true only for the pure BCM part of the kernel 
12 for “normal” external potentials. To solve Eq. (13) for the general case, one 

would substitute r = ? BC + A, 

and solve the equation 

luI, = (1 - GOrBC I Q) -’ R , 

R = 1 -C$ + GO AI& (1 - GOcBCIQ) 
-1 

R 

(152) 

(153) 

for R. Here one could solve Eq. (153) by standard Gaussian methods, computing 

(1 - G OTB%&) 
-1 

by the special technique as in the case of BCM alone. 

In order to solve our equations, e. g. , Eq. (102), in practice, it is necessary 

to truncate the sum over Q by restricting the number of partial-waves in the two- 

body channels. It is important to keep in mind the difference between this procedure 

and the alternate approach discussed above. In our case this is merely a numerical 

approximation, good to some degree of accuracy. At each stage of approximation 

(number of partial-waves kept) the basic conditions on the wave-function (vanishing 

in the interior, unitarity) are satisfied, and the limit as we take more partial- 

waves should exist. If, on the other hand, one assumes from the start that only 

a finite number of partial-waves contribute and employs the usual Faddeev 

formalism, one is committed to this viewpoint. Our proof indicates that the solu- 

tions obtained in this fashion should diverge as more and more partial-waves are 

retained . 

Calculations are now underway which exploit the relative simplicity of the 

equations for BCM alone. Aside from direct applications such as the third virial 
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computation described above, these calculations should provide some insight into 

the type of solutions one can obtain from this new class of possibilities. Further- 

more, it is this part of the more general interaction that presents the major dif- 

ficulties in computation and which will be input into the general problem as out- 

lined above. Once having established the required techniques for this special 

case the full range of models will be calculable. 

Finally, one additional possibility is being explored which is of potential 

interest. The key observation is that by putting a particular type of energy- 

dependence into the logarithmic parameters X1, one can maintain two- and three- 

particle unitarity while putting in “exact” two-body phase-shifts. That is, by 

taking AI (K~) to be a meromorphic function of K 
2 

, chosen to fit the experimental 

phase-shift in partial-wave 1, all of the above formalism goes through. This may 

be regarded as a kind of “asymptotic model” in the sense that the two-body 

asymptotic behavior sets in immediately exterior to the core. The effect of this 

model would be to generate a three-body wave-function based on interactions 

which are physically correct at both very short and long range. In turn, this 

would be a useful tool with which to probe the sensitivity of various characteristics 

of the “physical” wave-function to the dynamical region in which the particles are 

fairly close together. This program is quite practical in two important aspects : 

(1) it is not difficult to convince oneself that rather excellent fits to the nucleon- 

nucleon phase shifts can be obtained in this way; (2) this model possesses the same 

computational advantages as the ordinary pure BCM. 
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APPENDIX: CONSTRUCTION OF Q 

In this appendix we derive an explicit form for the operator Q employed in 

the text. We want Q to be of the form 

Q =l +vB(I-1) , (Al) 

where v and B commute, and Q satisfies the properties summarized in Eq. (10). 

We first observe that it is sufficient that B satisfies 

?(l-I)gB(l-I) = 7(1-I) , 642) 

and is diagonal in the coordinate representation. Since 7 is also diagonal the 

commutivity follows trivially, while 

v (1-1)Q = ? (1-I) [l-q B(l-I) ] = 0; (AS) 

hence 

(1-vI)Q = (l-v)& = 1-T;. 

Also, it is easy to verify that IT = I; thus, taking the transpose of Eq. (A2), 

(l-I)v = (1-I)?B (1-I) “v. (Ad) 

This implies that 

(1-I) Q? = (l-I)? [l-B(l-I)?] = 0, (A5) 

while the remaining properties of Eq. (10) follow trivially. 

Therefore, it is only necessary to find a diagonal operator B such that 

Eq. (A2) is satisfied. To do so it is convenient to make the double Fourier 

transformation-l? +Y, - q +T and to consider Eq. (A2) in coordinate space. It 

is also convenient to utilize the “supervec tar” notation introduced in set tion IV, 

such that 

.-L- 
= 6 @P 

e-1X’ p e-i Fz . 
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One can then easily verify that 

(CGy’I II pI;F> = 0 , o! =p; 

= -F (R 
Pa 

F, ?j), ozp cyclic; 

(-w 

= -F(Ri>F, T), pa! cyclic. 

Similarly, representing 

<azr 1 B 1 Pz’5;‘) = Qp a(%?) 6 (F-7’) B$) , 

it follows that 

(A8 1 

= 0 (aa- ) < aL?F 1 (1-I) 1 @?y‘!> 8 (a@-x’) BP(T) . 

Using Eqs. (A7) and (A9), one can easily show that 

@;;y’I fi (1-I) ?B(l-I) i Yl%> (AlO) 

with a! V‘E cyclic. 

Comparing this result to Eq. (A2), it is clear that our purpose can be achieved 

if we choose Be(F) such that the bracket in Eq. (All) is unity for x < a CY’ To do so, 

we consider in turn four separate domains. 

Suppose first that 

a 
CT ’ 

a 
E ; 

(All) 



let us call this region I, . In this region the last two theta-functions in the bracket 

vanish and we may obviously choose 

Ba(S;) =I,? E Ia. 

We next consider region IIo , defined by 

(Al? 

b!! - 
-iii- x+7 > I a 

E l 

CT 

For this case the first two terms in the bracket contribute, but we must be careful 

in handling B d Raa! F) since its argument lies in a different domain. Letting 

-1 P =R,F, we have that 

% 
m x’-T’ = a! I I 

&-J - * 
m~+y 

o- I 
> a, E 

for FE IIo. Hence, defining region mc, to be the domain 

W4) 

G415) 

it is straightforward to verify that for FE II,!, Ro,F E III,. Similarly, one 

finds that for p‘ E IIIo , Rze F E IIe. Therefore, we can satisfy our requirement 
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in the regions IIo and IRa by taking 

Finally, we consider region No, defined by 

x <a CY’ 

(A171 

Here all three terms in the bracket contribute, but one can show that for F E rVor, 

RoorF E No and Rile p’ E IVe . Thus all of the B-functions are in the same 

relative domain and we may simply take 

Bo$-) =;, Fe IV o!’ (A181 

The above requirements on Bo may be summarized in the explicit formula 

W9) 

(Since B only occurs multiplied by v one need not put in the explicit factor 

Va,!- W 

We have thus demonstrated the existence of our Q operator by actual con- 

s true tion. Given Eq. (A19), it is straightforward to perform the Fourier transform 

to derive Eq. (86) of the text. 
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