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ABSTRACT 

We extend a class of parton models to a fully gauge invariant theory 

for the full Compton amplitude. The existence of local electromagnetic 

interactions is shown to always give rise to a constant real part in the 

high energy behavior of the amplitude TI(v ,q’). In the language of 

Reggeisation this is interpreted as a fixed pole at J = 0 in Tl and v T2, 

with residue polynomial in the photon mass squared. 
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Recent inelastic electroproduction experiments (which essentially measure 

the imaginary part of the forward off-shell Compton amplitude) hint at a composite 

nature for the nucleon. This has been represented by parton models involving 

point-like (possibly field theoretic) constituents, but up to the present time these 

concepts have only been applied to the scaling, incoherent impulse approximation, 

region. Gauge invariance and the low energy theorem place further restrictions 

upon such theories, and in this letter we report the extension of parton-field 

theoretic ideas to a discussion of the full Compton amplitude. In particular we 

shall see that such models always give rise to a real part at high energies ad- 

ditional to that expected from the Regge behavior of the imaginary part. This 

extra real part should be identified with the “fixed pole”’ of conventional Regge 

analysis. Evidence for such a fixed pole for on-shell photons has been found 

phenomenologically from dispersion relations. 2 In addition we find that the “fixed 
n 

pole” appears as a constant real part, C , in Tl independent of q’ , and appears 

in v T2 in the form -Cq2/y. 3 

If the proton were as simple as the nucleus, then the high energy behavior of 

the Compton amplitude would follow directly from the coherent impulse approxi- 

mation. At v = 0 the Compton amplitude on a nucleus is given by the Thomson 

limit4 fl(0) = - (Z2 o/M nucleus) whereas at energies high compared to the binding 

energy, but below threshold for photoproduction of mesons, the forward amplitude 
Z 

is given by the coherent sum of the individual nucleon amplitudes, fl( v ) = -c $ 
i=l 1 

(0. 1 
= mi). In fact, for the case of a composite proton the analogous high energy 

behavior would be given by the coherent sum of t’seagullt’ terms for the individual 

proton constituents (quarks, bare hadrons) and the formulae (7), (11) we give later 

correspond to this picture. 

Field theory gives us the clearest example of a fully covariant , gauge invariant, 

Compton amplitude which can also incorporate the composite nature of the nucleon. 
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As an example, consider a G3 field theory in which a scalar “proton” interacts 

with neutral scalar particles. We calculate the form factor F,(q’) using old 

fashioned perturbation theory in an infinite momentum frame5by evaluating the 

matrix element of the electromagnetic current through second order from the 

time ordered contributions of the Feynman diagrams la-lc. 

At q2 = 0 we obtain 

FI(O)= JI f(x) dx 
0 

(1) 

where f(x) is the probability for the charged constituent to be in the one or two 

body state and to have fractional longitudinal momentum x (defined in the infinite 
5 

momentum frame). It is given by 
2 * 

f(x) = z2 6(1-x) + L3 
(23 J 

d2kl x+ 
D 

with D = ky+xp2 + (l-x) 2M! where M(p) . 1s the mass of the charged (uncharged) 

constituent and Z2 z (1-B) -1 - 
= IL + Btz) 

+ O(g4), the familiar wave function re- 

normalization constant. From Figs. lb, c one finds that 

Bt2) = -L(2) 
x(1-x) 

D2 

and so FI(0) = 1 (a consequence of the Ward identity). One can similarly sum the 

contributions to Compton scattering (Id - lh) and obtain 

(2) 

where Df = D(k’f) with GI =‘;; - (l-x)?$ ; ki is the component of kl in the direction 

orthogonal to both $and TL . After integrating by parts on dk: and taking the 

limit v-+ 0, (for q2 (= -qy ) = 0), one recovers the Thomson limit, 
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lim Born T+v ,0) = -2 G T1 . On the other hand, at large energies only the 
U-r0 
seagull terms (Figs. Id, e, f) survive and 

lim T1(v ,q2) = -2 
v “Q) 

~2i-$-~kL~1=$+,]=T~rn~1$ f(x) 

We can also compute T2 to the same order in perturbation theory and we find the 

following results 

0) lim 

I 

s &Q- ImvT2(v ,q2) 
v+m 

(-2Mv/q2) 
- 

= u = fixed (4) 

(ii) (5) 

L 

and the gauge invariance condition - 
,“z 

T2 + T1 = O(q2) is satisfied as q2-+ 0. 

Equations (1,3,4,5)in terms of f(x) hold also for the case of spin l/2 constituents 

interacting either by pseudoscalar or vector exchange, but the precise form of f(x) 

is different for each case. 
6 

These results can be generalized to all orders in perturbation theory as 

follows. We calculate the form factor (using the infinite momentum frame of 

footnote 5) by evaluating the matrix element of the j, current from the time ordered 

contributions of all Feynman graphs, through arbitrary order. The contributions 

can be classified according to the number of intermediate constituents present at 

the time the current acts (Fig. 2a) and the type of constituent, a, with charge 

lel Aa’ upon which it acts. At q2 = 0 we obtain7 

F&O) =I =lkc ^,x$ c (x)&~ h, f,(x) 

a n a 
(6) 
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where Nz is the multiplicity of parton type a in the n constituent state. Provided 

Z2# 0, f:(x) retains its interpretation as the probability for parton type a to have 

fractional longitudinal momentum x and to be in the n body state. The index a 

runs over both the partons and antipartons present. If Z2 = 0 then t:(x) may lose 

its interpretation as a probability ;c/$ (x) dx can be infinite. The generalized 
n 

seagull, or Z graph, contribution (Fig. 2b) yields a constant term in Tl at high 

energy 

FP 
T1 (7) 

analogous to the nuclear physics result. In the scaling limit we can identify 

VW,(X) = x 
c 

A; f,(x) 3 xf(x) (Fig. 2c) . (8) 
a 

The question of convergence of Eq. (7) is very important and must be con- 

sidered carefully. On the one hand it is possible that f(x) is well behaved and 

vanishes as x--e 0. In this case Regge behavior in the structure function vW2 

cannot result from the parton distribution. Eq. (7) then gives the exact parton 

contribution to the constant term in TlandT(v2/q2) T2. On the other hand, the 

parton distribution for small x (i. e. wee partons) may give rise to leading Regge 

behavior as discussed in references (8) and (9). In such a case f(x)-c 
a>0 

x -“y, 

for x - 0 and the integral in Eq. (7) diverges. (The integral for F1(0) does not 

diverge because of the cancellation of the Pomeranchon a! = 1 contribution, and in 

general all C = + exchanges, of a given parton with the analogous contribution of 

its anti-parton. ) One can see from Eq. (2) that the non-seagull terms play an 

important role in removing the apparent divergence at x = 0. In fact, despite 

the presence of Regge terms, the fixed pole - constant real part - survives in 

a slightly altered form. To see this we now turn to the covariant, non-perturbative, 
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parton model developed in reference (9) which allows one to incorporate leading 

Regge behavior in a natural way. 

We restrict ourselves to spinless partons for which the required distribution 

function is 

/ ds d2K Im T; (s&z) (9) 

$= _ XJS;K2) +xM2 +K2, where K is spacelike, two dimensional and orthogonal 

to p and q; and p3s is the invariant four momentum squared of the interacting parton. 

The integral over s is over the right hand cut of the forward parton-proton scattering 

amplitude, Im Ti (s , p2), (Fig. 3a) (which includes the propagators of the partons and 

is assumed to vanish as p2-+ 00 ). That f(x) is related to the forward parton-proton 

scattering amplitude is already apparent in the perturbation theory approach. 10 One 

notices that for small x (~1 = -z +K2) 

d2Kza@(-z + K2) = x-oya 
a if Im T:(S) p2) ,- s”$~(V2). 

One can calculate in a similar fashion the contribution for the anti-pa&on amplitude. 

Note the assumption that the parton-nucleon amplitude has normal Regge behavior. 

The resulting expressions for F1(0), fixed pole and vW2 are formally the same as 

Eqs. (1,3,4). Note that no leading Regge exchanges in the parton-proton scattering 

amplitude survive in FI(0) after projection onto the J = 1, C = - quantum numbers 

of the photon channel. The seagull contribution (Fig. 3b) diverges as x -rO from 

a! > 0 contributions but there is a compensating divergence in the real parts from 

Figs. (3~). The compensating terms can be written (for all q2 and v ) 

where pa(m2) is the spectral function for the propagator of parton a. 
(10) 

As in the 
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second order perturbation theory case, a partial integration identity on Im Ti 

must be obeyed (in order that the low energy theorem be satisfied). One then finds 

that for large v the sum of these terms and the seagull gives a constant real part 

to TI of the form 

x TBorn 
1 (11) 

where the ya are defined by Fa(x) = f”(x) -c y,“x-“, The remaining contribu- 
cY>o 

tions from the above diagrams, and also the total contribution of diagram 3d, yield 

conventional leading Regge behavior with the expected phases. As before we also 

find a corresponding real part in v T2 = -q2/v FP Tl . Thus a fixed pole’ arises in 

the Compton amplitude due to local photon interactions even though the parton- 

proton amplitude has no such term. 

The q2 independent value of the fixed pole in Eq. (11) is precisely the finite 

energy sum rule result which one obtains in the scaling limit. Explicitly the 

FESR (in the scaling limit) is 

1 00 (FESR) 2 
F2(w)dw = -$ T;’ 

0 o!>o w 

which is precisely the result we obtain for all q2, v + 00. 11 

Thus we find that fixed pole - real part contributions - are always associated 

with the existence of seagull or corresponding Z graph couplings to the charged 

constituents of the target. Apart from the term c -k ya! which results from the 
a! 

conventional Reggeization procedure, only F(x), that part of the distribution 

-7- 



function which does not contain the leading (i. e. divergent) x behavior c xBaycr, 
a! 

contributes. The remaining part is absorbed into the normal leading Regge 

behavior of the full Compton amplitude. The distribution function y(x), which 

vanishes as x + 0, may be associated with short range terms in the space-time 

structure of the current correlation function, as shown by suri and Yennie. 6 

We note that the seagull (or corresponding Z graph) contribution to the real part 

of the general Compton amplitude T Jade q;> s , t) is independent of the photon 

masses and depends only upon t = (ql- q2)2 in the form 

gPV x2 
c / 

l fa(W 
a -dx 

X 
a 0 

and has dependence on t similar to that of the elastic form factor. 12 

J-ha l 
/ 

fa (x, t) dx = Fl(t). 

a 0 
As before leading Regge terms must be subtracted from the seagull contribution to 

obtain the fixed pole. This form can be tested in both non-forward (elastic, or 

inelastic) Compton scattering and photoproduction of lepton pairs, since the leading 

Regge contributions are expected to disappear much more rapidly than the fixed 

pole contribution as t grows. Our results also have interesting implications for 

the processes y + y + X which are accessible in ee + eeX measurements. 

In the case of a simple three quark model of the nucleon with the same dis- 
FP tribution function for p and n quarks, then T1 (n) = i T:‘(p). 13 In general a 

composite theory of the neutron with charged constituents leads to a non-zero fixed 

pole contribution; accordingly, direct measurements of the real part of the nucleon 

Compton amplitude from Bethe -Heitler interference experiments for both proton 

and deuteron targets will be very interesting. 

We thank our colleagues at SLAC for interesting and helpful discusssions. 
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FIGURE CAPTIONS 

(a,b,c) The vertex Feynman diagrams. 

(d, e , f, g, h) The Feynman diagrams contributing to TI. 

Generalized time ‘ordered diagram for the (a) form factor; (b) ~tseagull~~; 

@I vw2* The matrix elements are proportional to c ha Na, Chf/xa Na , 

c h”, Na xa 6(xa-Q2/2Mv ), respectively. 
a 

Na is the number operator 

for parton a. 

(a) The parton proton scattering amplitude. (b) The generalized seagull 

contribution. (c) The freely propagating parton graphs. (The self energy 

modifications included in pa(m2), Eq. (ll), are not drawn. ) (d) The fully 

connected diagram. 
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