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ABSTRACT 

Solutions are presented for subtracted dispersion relations, written for the 

s and p-wave inverse ~7r scattering amplitudes with poles inserted into both s-waves. 

These solutions predict the existence of a broad I = 0 s-wave resonance (a) ac- 

companied by a small, negative I = 2 phase shift, in the absence of any s-wave 

experimental input. While p-wave subtraction parameters are adjusted to fit a 

755 MeV p resonance with width 120 MeV, the s-wave parameters are determined 

by crossing symmetry through derivative conditions to third order. The coupling 

constant, h , is a free parameter, and resonant solutions are obtained for 

- .033 P h 5 .040 with (T masses ranging from 550 to 900 MeV. In no case does 

6: rise to 135’ by 1 BeV. Both s-wave amplitudes exhibit zeros between the cuts 

for -. 01~ h < .02, andforh=-. 008 the zeros coincide with those predicted by 

the Adler condition applied on the mass shell. Solutions with h s - . 01 satisfy 

crossing conditions for 7r07ro amplitudes. The failure of the other solutions to 

satisfy them may be related to approximations made in applying crossing symmetry. 

A method of improving the solutions is suggested. 



I. INTRODUCTION 

In this paper calculations of subtracted dispersion relations written for the 

s and p-wave inverse 7rn scattering amplitudes are presented. Elastic unitarity 

is used in the evaluation of right cut integrals, and approximate crossing sym- 

metry in the evaluation of left cut integrals. s-wave parameters are evaluated 

using derivative conditions from approximate crossing symmetry, and the two 

p-wave subtraction constants are fixed by requiring a p-wave resonance of 

mass 755 MeV and width 120 MeV, the p. The Chew-Mandelstam coupling 

constant, A , is treated as a free parameter, and orders the solutions. 

Pole terms are inserted into the s-wave inverse amplitudes, and allow the 

possibility of zeros in both s-wave partial wave amplitudes. While such zeros 

have been predicted from PCAC considerations, 1 no conditions from current 

algebra are imposed in these calculations. In fact, since crossing symmetry 

requires the first derivatives of the s-wave inverse amplitudes to be propor- 
-2 tional to h , it is clear that for small lhl this condition cannot be satisfied 

by dispersion integrals unless further structure is built in. Thus the motiva- 

tion for the introduction of the pole terms into the inverse amplitudes is con- 

tained within this formalism. Nevertheless, for solutions obtained the positions 

of the zeros of the I = 0 and 2 s-wave amplitudes, plotted one against the other, 

lie on a straight line passing through the point predicted by PCAC. 

Solutions are presented for the range -. 03 < A < . 10. Within the range 

-.03 <x < .04 these solutions exhibit an I = 0 s-wave resonance, the o, with 

mass increasing from 550 MeV for A = - .033 to 900 MeV for h = .04. The 

expected weakening of the interaction with increasing A is seen in the behavior 

of the resonance mass, and in a transition solution (6: small and negative below 

700 MeV, small and positive above) for A = . 100 linking the resonant solutions 
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to repulsive s-wave dominant solutions previously reported for large positive 

A. 2-4 While solutions could not be obtained for h < - .033, projecting an 

increasing attraction with decreasing X indicates the probable establishment of 

a bound state for larger negative A which has already been reported in results 

which failed to exhibit resonant behavior. 334 Thus, these solutions provide an 

understanding of the interaction as a function of h which explains earlier results 

whose interpretation was previously unclear. 

A series of calculations leading to the results noted above is presented 

here. With A fixed a priori, five conditions are necessary to evaluate the six 

s-wave parameters introduced by subtractions and pole terms. To second 

derivatives in the s-waves, approximate crossing symmetry yields four condi- 

tions, and a single third derivative condition has been previously derived by 

the author5 (Ref. 5 will henceforth be referred to as I). Since the third deriva- 

tive condition is difficult to apply to the inverse amplitudes, initially it was not 

used to evaluate parameters in the calculations reported here. Instead, first, 

a o resonance of mass 745 MeV was required. In the solutions thus obtained, 

the s-wave I = 2 phase shift at the mass of the p resonance varied (as a function 
2 of A ) over the range -43’ I 6 o 5 - 13’. The third derivative equation was 

2 satisfied by a solution with 6 o = -19’. 

Next, the cr condition was removed and the value of 6 “0 at the p mass 

was fixed. Solutions were obtained for 8: values of -20°, -15’and -10’. In 

those solutions exhibiting an I F 0 s-wave resonance, the mass of the u was 

2 found to depend on both the value of A and the value at which 6 o was fixed. 
2 However, for each choice of 6 o, the third derivative condition was satisfied 

by only one solution. Examination of the three solutions satisfying this condi- 

tion revealed the already described correlation of resonance mass with h . 
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This demonstration that the imposition of the third derivative crossing condition 

allowed the selection of solutions with I = 0 s-waves having a sensible depend- 

ence on A (including one in excellent agreement with experiment), provided 

sufficient motivation to impose it in place of any condition from experiment. 

When this was done the iterations converged, yielding the resonant solutions 

varying appropriately with h which have already been described. 

. 
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II; FORMALISM 

In terms of the variable v = s/4 - 1, where s is the center of mass energy 

squared (natural units, rnr = 1 ), the unitarity condition for elastic scattering is 

A;(v) = [(v+l)/ v] 1'2(cot SI-i)-l 
e ' (1) 

where v > 0 and the phase shifts, 6 tp are real. This relation is assumed 

valid within the energy range of these calculations. The once subtracted dis- 

persion relations for the s-wave inverse amplitudes FI(v ) = AIO(v )-l, with 

pole terms inserted, are 

q-0, ,w = aI + PI/ P-Y IV) + f(v) + $W- isI W (2) 

and the twice subtracted p-wave dispersion relation, written for F1 (v ) = 

VA: (v)-l is 

FIW= al + plV f vf(v) + L1(v) - ivegl(v) . (3) 

(F1 (v ) lacks the threshold pole of Ai (v)-1 . ) The integral over the right hand 

cut discontinuity (given by unitarity) is 

V’/(V’fl), 31/2 

v’ (“1-V) dv’ 

=- 5 ($F2 ( an Jlv+ll + JI vl 
) 

forv>Oorv<-1 

=-- ; (,;I: p/2 tan -1 zp2 

i ) 

for-l <v< 0. 

The integral over the left hand cut discontinuity is 
-1 ImA: (vf)dvl 

--cc v’(v’-v) lA;(v’)12 ’ 

(4) 

(5) 
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and the imaginary parts of the inverse amplitudes are 

0 P) + 
Im AI(v) 

I 1 A;@‘) 
8 (-v-l) . (6) 

Using approximate crossing symmetry, the left hand cut discontinuity is ex- 

pressed in terms of the right hand cut discontinuity in the crossed channels; 
-v-l 

ImA: = 5 
c 

dv’ Pp (1 +2+) 

, 

X c X 
I’ II’ d Q’ 

(2L’+l)P e, (1 + 2F)Im Ai: (v’) 

(7) 

where X is the usual crossing matrix 

and the partial wave expansion is truncated after p-waves. On the right hand 

cut Im A’ (v ) may be written using the unitarity condition as soon as e 

Re [A: (v ) -l] is known. Hence iteration proceeds by neglecting LI (v ) and 

evaluating parameters, then computing II (v ), recomputing parameters, etc. , 

until all parameters change by less than one per cent in the last iterative loop. 

The eight parameters introduced by pole terms and subtractions are 

evaluated by a combination of conditions from crossing symmetry and experi- 

ment. The p-wave subtraction constants are fixed by the mass and width of 

the p resonance by requiring 

i ) V 3 l/2 1 - 
U+1 Cot s1 vP = O 

(9) 
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and 

1 cotSlv 
I 

(19) 
P 

with v 
P 

= 6.25 and y = 1.15, corresponding to a resonance of mass 755 MeV 

and width 120 MeV. Thus, at the p resonance the p wave has the same slope 

as if it were given by the Breit-Wigner form 

Y 
VP-v-iy ’ (11) 

Crossing symmetry, applied at the symmetry point of the Mandelstam 

triangle, provides derivative conditions which may be used to evaluate para- 

meters. Although an infinite number of conditions are available, higher partial 

waves become more important in higher derivative conditions. (This is 

because the argument of the Legendre polynomials used in the partial wave 

expansion contains the variable v ; the point is more completely discussed in 

I. ) Under the assumption that d and higher partial waves are small at the 

symmetry point, they may be neglected in the zeroth and first derivative equat- 

ions with little effect. The resulting approximate crossing conditions, to be 

avaluated at the symmetry point v = - 2 are: 
sP 

3 

2A; = 5A; 

du 
= -9A; , 

(12) 

(13) 

dA20 gA1 
dv =;z 1 
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To derive a second derivative condition of corresponding accuracy, Chew and 

Mandelstam 6 reduced the d-wave effects by approximating each d-wave by 

a one parameter fit at threshold. They then combined the three independent 

second derivative equations to eliminate the d-waves, obtaining the following 

approximate crossing condition for application at the symmetry point 

d2Ao d2A2 1 
05 0 1 dA1 - -- - = dv 2 ‘2 dv 2 27A1+ 18 dv . (15) 

Proceeding in this spirit, in I a single approximate third derivative equation 

was derived by approximating each d-wave by a two parameter threshold fit, 

the f-wave by a one parameter threshold fit, and removing the five parameters 

by combining equations. This approximate crossing condition, to be evaluated 

at the symmetry point, is 

675 1 dA1 d2A1 
zz8Al + ?$?-&q+. 

dv 
(16) 

Further details and discussion are to be found in I. Due to the attention devoted 

to removing the effects of higher partial waves from higher derivative conditions, 

it is assumed that the errors incurred in applying Eqs. (15) and (16) are no 

greater than those in Eqs. (12) thru (14)) so that their detailed application is 

indeed meaningful. Anaposteriori discussion of errors is to be found in Section IV 

of this paper. 

Before discussing the application of these conditions it is perhaps in order 

to comment upon their usefulness. In Ref. 7, Tryon comments that when d-waves 

are kept, the solutions of partial wave dispersion relations satisfy second and all 

higher derivative conditions identically; thus they are not useful to him in 
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determining parameters. Within the formalism used here, unless the pole term 

parameters are chosen to satisfy a given condition there is clearly no reason 

to expect it to be satisfied. Thus, for instance, the solutions here reported 

which were obtained without enforcing the third derivative condition failed, in 

general to satisfy it. Since the second and third derivative conditions enable 

the determination of parameters necessary for calculation they are useful 

within this formalism. 

Although it may not be immediately obvious, the application of the derivative 

equations to determine parameters is straightforward. First the conditions 

are expressed in terms of the inverse functions F I. With A specified a priori, -- 

the zeroth and first order equations provide four conditions, each linear in only 

one of the s-wave functions F 
092 

(recall that the p-wave is completely known from 

the p mass and width): 

A = -(5FO) -1 
(17) 

= -(2F,)-1 

-1 

While differentiation of the numerically evaluated left cut integrals is difficult 

after integration, Eq. (5) may be differentiated any number of time prior to the 

integration. Since the resulting integrals converge even more rapidly, no 

accuracy is lost by this procedure. 

The second and third derivative conditions are slightly more complicated 

to apply because they involve both s-waves. Nevertheless, when a condition 
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from experiment is applied to either one of the s-waves, that condition plus 

two of the conditions (Eq. (17) - (20)) allow the evaluation of the three parameters 

of that partial wave via linear equations. With one s-wave known, the second 

derivative condition (incorporating Eqs. (17) - (20)), 

d2F0 2 d2F2 ----= 
dv 2 5 dv 2 

may be linearly combined with the other two equations above, specifying all 

parameters unambiguously. The third derivative equation (expressed in- 

corporating Eqs. (17) - (20)), 

= 3(AFl) -2[(; ?!r$..- + (2)” 

(21) 

(22) 

may then be evaluated straightforwardly. 

When Eq. (22) is used in solving for parameters, a quadratic equation 

results for the ratio yI /PI for one of the s-waves. Consequently, two sets of 

parameters are produced. In general, initially choosing the set with cyo< 0, 

then minimizing the change in y. resulted in solutions, while the opposite initial 

choice led to imaginary roots. However, for A < -. 008 the initial roots were 

imaginary. This difficulty was overcome by assuming intial values for the LI(v) 
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and their derivatives at the symmetry point taken from solutions obtained for 

the same h values when the resonance was required. Even this technique failed 

for h < -. 033, when after a few iterations the roots became imaginary. 
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III. RESULTS 

Calculations were carried out for three cases. In the first, 8: was re- 

quired to resonate at 745 MeV; in the second, 6 0” was fixed within its ex- 

perimentally determined range near the p mass; in the third case the third 

derivative condition was imposed. In all cases h was fixed a priori as a free 

parameter, and solutions were obtained over as wide a range of h as possible. 

Crossing conditions through the second derivative were enforced in all cases. 

A. Resonance Required 

The s-wave phase shifts of typical solutions obtained when a (T of 745 MeV’ 

was required are shown in Fig. 1, and the related scattering lengths in Fig. 2. 

For -. 05 < h < .05, the scattering lengths agree within 5% with the “Universal 

Curve” of Morgan and Shaw’ for a c of 765 MeV. Thus, the general agreement 

found between their phase shifts and those of Fig. 1 is expected. Since the 

solutions presented here cover a wider range of h, it is to be expected that as 

A increases to 0 100 the sign change of 6: occurs at higher energy, and that as 

h decreases to -. 080, 6 8 increases more rapidly near threshold, than occurred 

in their limiting cases. Although they published no turnover 80” solutions, it 

may be assumed that they obtained them, since they obtained positive I=2 

scattering lengths for A< -. 03. A notable difference, however, is seen when 

the 8: curves of Fig. 1 are compared with those of Morgan and Shaw near the 

(T resonance. Their solutions, obtained by treating the width of thecras an input 

parameter, exhibit a wide range of widths, while the formalism used here 

predicts only very broad, asymmetric resonances. This result is in agreement 
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with their conclusion that solutions with broad C’S are preferable. 

The third derivative condition, Eq. (16), is plotted in Fig. 3. In order to 

display the results for a wide range of h, the vertical scale has been compressed, 

minimizing the visual impact of the intersection of these curves. Nevertheless, 

the curves clearly intersect, predicting lTbestTT solutions with h values of .03 

and .lO. In Fig. 1, for a solution with A=. 03, the value of 80” near the p mass 

would be about -19’, in acceptable agreement with recent estimates. (The other 

solution is discounted since its large negative a! 0 and its 6 0 
0 turnover above 

500 MeV are contrary to experimental indications. ) 

Having demonstrated that the inverse amplitude formalism used here leads to 

sensible solutions when the u is put in, it is hard to avoid asking whether or not 

other input can lead to solutions predicting a C. A logical way to find out is to 

replace the condition fixing 8: with one fixing 8:. The next section documents the 

results of such calculations. 

B. 6: Fixed Near the p 

Figs. 4-7 show the s-wave phase shifts of typical solutions obtained when the 

value of 6: at 745 MeV’ was fixed in its experimentally determined range. The 

reproducibility of results within this formalism may be seen as follows: from 

Fig. 1, a c~near the p mass is predicted for 1~. 04 when 8: = -20’; it is seen 

in Fig. 4 for A = -. 038. A similar c may be expected for h ~0 when 60” = -15’, 

and is seen in Fig. 5 for h = -. 002. The incompatibility, seen in Fig. 1, of a 

c near the p mass and 80” = -10’ is evident in the lack of such a solution in Fig. 6. 

Finally, for 60” = -20’ aanear the p mass is predicted for hz -. 06 from Fig. 1. 

Although such a result was not obtained, a solution for h=-. 057, resonant at 

1 BeV, is seen in Fig. 7. Thus the formalism is satisfactorily self-consistent. 

- 13 - 



The most obvious feature of Figs. 4-6, the decrease of the mass and width 

of the (T with increasing h, turns out to be a misleading consequence of the 

2 constraint of 6,. The decrease would seem to-imply an attractive interaction, 

increasing in strength with A. However, the solution for A=. 057 of Fig. 5 shows 

that instead of a bound state being formed for large h (i. e. the resonance approaching, 

then going below threshold with increasing A) the interaction becomes repulsive. 

(Since intermediate solutions of this type most often failed to converge upon 

iteration, this conclustion was first reached by noting that the scattering lengths 

of Fig. 8 did not exhibit the discontinuity which would have corresponded to the 

establishment of a bound state.) The pertinant feature of these solutions is instead, 

the advance with increasing A, of the pole of Fi (zero of 6:) toward v= CO and its 

reappearance at large negative values of v . 

The true increase of attraction occurs with negative A, culminating in the 

formation of the bound state seen in Fig. 7 for A=-. 67. However, only extremely 

heavy, broad C’S are produced here, with the lightest occurring at 1 BeV for 

A=-. 057. The close similarity of the solutions with h < -. 13 to the negative h 

solutions obtained in I is probably due to the constraint of the I=2 s-wave imposed 

in I by the insertion of a pole term into only the I=0 s-wave. 

In Fig. 8 the s-wave scattering lengths are plotted one against the other. 

The curves are from Morgan and Shaw, with the upper, middle and lower curves 

representing CT’S of 900, 765 and 600 MeV respectively. The curve of Fig. 2, 

drawn for a u of 745 MeV, would lie just slightly below the middle curve, as is 

expected. The progression of the points across the curves as the (IT is established 

and moves toward threshold is in accordance with the ordering of the curves. 

Order was introduced into this confusing welter of solutions by the third 

derivative condition. Eq. (16) applied to the various solutions, is shown in Fig. 9. 

- 14 - 



2 It clearly selects a single solution from each set computed for a given So value. 

For 6: values of -loo, -15’ and -20’ the preferred solutions have h values of 

-. 017, .007 and .038, and exhibit cr resonances with masses of 600, 660, and 

750 MeV. Thus, with increasing h the (T moves away from threshold, indicating 

a weakening attraction. The connection of these selected solutions with the 

repulsive solutions found in I for large positive h is seen by the onset of repulsion 

indicated by the emergence of the pole of F:(v) (zero of 6:) above threshold in 

the solution for 80” =-20’ with A=. 038 (Fig. 4). 

Thus, while restricting 6: allowed the prediction of u resonances of various 

masses, a clear interpretation of the results required the additional imposition 

of the third derivative condition from approximate crossing symmetry. With its 

usefulness thus proven, the next logical step was to see if it could be used in 

the determination of parameters during iteration. The results of such calculations 

are presented in the next section. 

C. Third Derivative Condition Imposed 

The s-wave phase shifts for typical solutions obtained when all s-wave 

parameters were fixed by conditions from crossing symmetry are shown in 

Fig. 10. The attraction causing the resonant 8:‘s clearly weakens with in- 

creasing A, and the solution with A=. 10 indicates the transition to the repulsive 

solutions previously obtained for h > . 1. The scattering lengths for these 

solutions agree closely with those computed when the resonance was required, 

and are plotted in Fig, 11. Imaginary roots obtained in solving for parameters 

prevented solutions with h < -. 033 or h >. 1. Thus imposition of the third 

derivative condition frees the formalism from the need of s-wave input from 

experiment, and leads to solutions having a sensible dependence on A. 
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The locations of the zeros of the s-wave amplitudes are plotted one against 

the other in Fig. 12. For the resonant solutions, they lie on a straight line 

passing through the point predicted from PCAC considerations, which coincides 

with the solution with A=-. 008. Since the resonant solutions obtained for the 

other cases exhibited zeros lying on this same line, it was felt that this must 

be due to some invariant feature of the formulation. The most obvious pos- 

sibility was a combination of the lowest order crossing conditions. Parametrizing 

the s-waves by 

d(v) = aI+bIv , 

and applying only Eqs. (12) to (14) yielded the prediction 

v2 = -.8vo - 1.2 

(23) 

(24) 

for comparison with the line of Fig. 12, 

“2=’ 740vo - 1.17 (25) 

Since the calculated amplitudes are not linear, this is quite satisfactory agreement. 

The difference in slopes is mainly due to a systematic decrease, with increasing 

A, of the second derivative of Ai at the symmetry point. 

In achieving the above prediction, it was seen that in addition, the scattering 

lengths would be related by 

2a0 - 5a2 = lS/F:(sp) (26) 

(still assuming linear s-waves). The Breit-Wigner p used to fix the p-wave 
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in Eqs. (9) and (10) corresponds to F:(sp) = 31.9, so the scattering lengths would 

lie on the line 

- 

“2= - 4a0 - .113 . (27) 

Now in the actual calculations, the p-wave differs from a B-W resonance due to 

the cut integrals. Examination of the solutions shows that F:(sp) increases with 

h, and agrees with the B-W value for A=. 0. For each solution it is straightforward 

to predict a line similar to Eq. (27) and (using the value of h also) the point on 

the line expected if the s-wave amplitudes were linear. These predictions are 

shown in Fig. 11. From the surprising accuracy of these crude predictions it is 

clear that the scattering length curve is determined primarily by the lowest order 

crossing conditions and the p-wave at the symmetry point. 

An indication of self consistency is provided by comparing Im Ai for v< 0 

as calculated from the crossing integral of Eq. (7) and from Im. F I. These 

quantities are plotted in Fig. 13 for the solution with A=-. 008, and the agreement 

is seen to be excellent out to v=-6.5. Beyond this point the curves diverge to- 

ward the different asymptotic behaviors discussed in Ref. 3. Examination of 

Fig. 12 shows that for h< -. 01 the pole of F. has moved onto the left cut and for 

h >. 02 the pole of F2 has done likewise, causing the left cut discontinuity predicted 

from Im Fi to disagree with crossing. However, within the range -. Ol< h < .02 

left cut agreement is the same as that shown in Fig. 13. 

The asymmetry of the 6: curves plus the fact that none of them rise above 

135’ by 1 BeV, makes it difficult, if not meaningless, to assign widths to the 

u’s indicated by the various curves. A common approximation is to quote the 

width of a Breit-Wigner resonance, the real part of whose inverse amplitude 

at the resonance position has the same slope, For the solutions with 
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A=-. 033, .007 and .040, above the resonance the square of such an amplitude 

falls to half of its maximum value at 710, 1050 and 2350 MeV. However, the 

corresponding point below the resonance lies kZlow threshold for all solutions 

except that for h=-. 033, for which it lies at 310 MeV. 

Resonance width is also often related to the position of an unphysical sheet 

pole of the scattering amplitude. When the variable v of Eq. (2) is allowed to 

become complex, a zero of FI(v) indicates a pole of A;. The sheet structure of - 
. 

Ah is such that continuation above the real axis is onto the nearby physical sheet, 

while continuation below the real axis is onto the unphysical sheet. In searching 

for complex zeros of FI(v) various fits to the functions were made on the real 

axis to facilitate continuation. For h=. 007 a zero corresponding to a pole of 

Ai was found variously from v=l. 6-l. 6i to v=2.4-3.5i. No attempt was made 

to iterate or refine the pole position because it is clearly far from the physical 

sheet and narrow resonance formulae are no longer applicable. It is worth noting, 

however, that neither Ai or Ai were found to have poles on the nearby physical 

sheet by this procedure. 
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IV. DISCUSSION 

It is seen that all solutions having zeros of both s-wave amplitudes between 

the cuts (-. Ol< A < .02) exhibit broadly resonant I=0 s-waves, with 6: in no case 

rising to 135’ by 1 BeV. Since Re F. falls from +a~ between the cuts through 

zero at the resonance position a more rapid increase of 6 0 
0 above the resonance 

mass is clearly possible within the present formalism. However, a further rise 
- 

through 180’ as used by -10 Bizzari in fitting experimental data is precluded by 

the present formalism (an additional pole term would be required in F. to allow 

8: to reach 180’ for finite v). While the present calculations therefore yield 

no information on the existence of such structure in F. above the p mass, it is 

noted that the inclusion of such effects would have little effect on results at lower 

energies. 11 

While Tryon has raised the possibility that the Ai (v) contain infinitely many 

complex zeros at infinity, he also claims that these functions can be approximated 

by dispersion relations at low energies. 12 A simplistic view of this problem 

would note that poles of FI at Iv = m would only affect the magnitudes of F I in the 

low energy region; adjusting their magnitudes at the symmetry point to satisfy 

approximate crossing symmetry via subtraction constants thus removes the 

difficulty. For a more complete discussion see Ref. 12. The lack of poles of 

A:(v) on the nearby physical sheet associated with the absence of complex zeros 

in the analytic continuation of FI(v ) above the real axis has already been noted. 

The determination of parameters through derivative conditions from approximate 

crossing symmetry introduces errors caused by the truncation of partial wave 

series in the derivation of Eqs. (12) - (16). While waves higher than p were 

neglected in writing Eqs. (12) - (14), the effects of higher waves upon the second 
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and third derivative conditions were minimized by including parametrized 

threshold fits which were then removed by combining equations. It is possible 

to show a posteriori that the d and f-waves are small, even with respect to the - 

small s-waves associated with small values of I A I (recall Ai = -51). The 

equations which were combined to remove the effects of those waves in deriving 

Eqs. (15) and (16) have been used to calculate their values at the symmetry 

point from the s and p-wave solutions presented in Section III C. 13 Even though 
- 

the s-wave amplitudes vanish with h, for each isospin state the magnitude of 

the d-wave amplitude is less than 4%of the magnitude of the s-wave amplitude 

for all of the solutions of Fig. 10, and this decreases to l%for solutions with 

larger values of I h I . More important, however, is how this affects the value 

of Ao” as calculated from h = - 5 Ai (evaluation at the symmetry point is implied 

throughout this discussion). When d and f-waves are included in Eq. (12) the 

value of A: is changed by 

A(A,“)=- (A;-;A;) . (28) 

The change for each of the solutions of Fig. 10 is listed in Table I, and in no 

case exceeds 2%. 

For each of the solutions of Fig. 10 the f-wave amplitude is less than $ % 

of the p-wave amplitude (at the symmetry point). Although it does not affect 

Eq. (28), it does affect the derivitive conditions for the s-waves, which also 

involve the slopes of the d-waves. For each isospin state, the slope of the 

d-wave amplitude ranges from 2 i % to 1% of the slope of the s-wave amplitude 

(at the symmetry point) for the solutions of Fig, 10. When d and f-waves are 
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- 

included in Eqs. (13) and (14) the symmetry point slopes of the s-waves are 

changed by 

and 

2 
63 1 5 dA2 

A3 ‘2 dv ’ (30) 

[The large factor multiplying the f-wave contirbutions in these equations is 

misleading - - note the p-wave multiplier in Eqs. (13) and (14).] These changes 

are also listed in Table I for the solutions of Fig. 10. The contributions to 

Eq. (30) tend to cancel yielding a maximum change of 2% for the I=2 s-wave 

slope, while the contributions to Eq. (29) tend to add. The percent change of the 

I=0 s-wave slope decreases from 7 i % for the solutions with h = -. 033 to 3 $ % 

for the solution with h = .040. 

Although higher partial waves have been removed in the derivations of 

Eqs. (15) and (16) the restricted nature of the parametrization may also introduce 

errors. For instance, while in deriving Eq. (16) the f-wave is written as 

A;(v) = cv3 (31) 

one may ask how the satisfaction of Eq. (16) would be affected if the f-wave were 

given by 

A:(v)’ = av3 + bv4 (32) 

with the same magnitude at the symmetry point and a/b = 3. When Eq. (16) is 

rederived keeping f-waves in general, and then the form of Eq. (32) is sub- 

stituted in with parameters evaluated in terms of the calculated value of Ai 
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at the symmetry point the result is 

LHS=RHS+6 (33) 

where 
6 = 675 A1 

4 3 (34) 

The results calculated from the solutions of Fig. 10 are presented in Table II 

where the p-wave side of Eq. ($6) is seen to be shifted by about 10%. If 

a/b = -3 the 6 has the opposite sign and is about half as large. 

While it should be possible to remove the errors in the magnitudes and 

slopes of the s-waves by incorporating d-wave effects into Eqs. (12) - (14) in 

an iterative manner, refinement of the second and third derivative conditions 

will require better knowledge of the d and f-waves, perhaps through iterated 

dispersion relations utilizing present s and p-wave solutions in the calculation 

of left cut integrals. The success of the present formalism in achieving sensible 

solutions makes it desirable to pursue such calculations. Consequently the 

possible effects of f-wave behavior on solutions selected by the third derivative 

condition are now discussed. As seen in Eqs. (33) and (34) the effect of un- 

anticipated structure in the f-wave is to introduce a correction to the right hand 

(p-wave) sid e of Eq. (16) which is proportional to the symmetry point value of the 

f-wave amplitude. Inspection of Table II yields the fact that the correction is 

essentially a constant percentage of the p-wave side of Eq. (16). The effect of 

including such a correction in the formalism may be seen by shifting the p-wave 

curves of Fig. 9 appropriately, then identifying the solutions of Figs. 4, 5 and 6 

which correspond to the h values for which the curves of Fig. 9 intersect. Roughly, 

a 10% lowering of the p-wave curves of Fig, 9 (corresponding to the ratio a/b=3) 
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results in a 10% decrease in the mass of the predicted u resonance for I A I < .02. 

A 30% lowering (a/b=l. 4) causes 20% decrease in (T masses. A 10% raising of 

the p-wave curves (a/b=-1.7) results in a 10% increase in the u masses for 

Ihl< .02. 

From the uncertainties documented above it is clear that an accurate application 

of derivative crossing conditions requires considerable care. This, of course, 

accounts for the popularity of the crossing conditions of Martin 14 which are 

less sensitive to truncation of the partial wave series. It is therefore of some 

interest to compare the solutions presented here with the results of independent 

calculations, also based on inverse amplitude dispersion relations, which use 

the Martin conditions in evaluating parameters. 15 In those calculations the 

s-waves were represented by functions similar to the FI(v) of this paper. The 

six s-wave parameters were fixed by matching the FI(v) 
-1 below threshold to 

solutions for A:(V) obtained from quadratic polynomial approximations to the 

amplitudes. The assumption that the Adler condition holds on the mass shell 

caused zeros of the s-wave amplitudes to coincide in all cases with those of the 

solution for A = -. 008 presented here. The solutions of Ref. 15 are ordered 

by a free parameter X; constraining X to positive values caused the polynomial 

amplitudes to satisfy eight conditions placed on the r”7ro scattering amplitudes. 

Solutions with .7<_X 5.5 were preferred on the basis of agreement with experiment; 

the solution with X = . 7 is in good agreement with the solution here presented for 

h = -. 008. Since the s-waves of both solutions are similarly parametrized and 

have sub-threshold zeros at coincident points one might expect that the crossing 

conditions used in Ref. 15 were satisfied by the h = -. 008 solution. Of the eight 

conditions, 16 only the sixth and seventh were unsatified, by 20 and 10 percent 

respectively. All conditions were satisfied by the solution with A = -. 020, while 

the solutions with A = .007 was less satisfactory. One may speculate that 
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a more careful treatment of higher waves might induce changes in the solutions 

presented here which were somehow related to the lack of satisfaction of the 

Martin conditions. If so, the greatest changes would be expected in solutions 

with h > 0, perhaps even yielding non-resonant solutions for realistically small 

values of A. The significance of this possibility lies in the existance of such 

solutions in the literature. 7 While it is impossible to prove uniqueness in an 

iterated calculation, it seems reasonable that differences in the behavior of 

various solutions near the p mass may be mainly due to differences in the 

details of application of approximate conditions near and below threshold. 

In summary, the solutions presented in Fig. 10 are known to contain errors 

due to approximations made in the derivation of derivative conditions from crossing 

symmetry which are used in the evaluation of s-wave parameters. However, 

solutions with h 5 - . 01 satisfy a set of crossing conditions derived so as to be 

insensitive to higher partial waves, and the solutions with h = -. 008 is in good 

agreement with independent results obtained without using derivative conditions. 

Thus the solutions with lower mass o resonances may change little under im- 

provement of the formalism. The imposition of derivative conditions to third 

degree from crossing symmetry is seen to provide a formalism which produces 

s-wave solutions above threshold with a sensible behavior as a function of A, 

which also indicate a connection to earlier non-resonant solutions. In addition 

zeros of both s-wave amplitudes are found. The positions of the zeros are linearly 

related, and one solution has zeros which coincide with those obtained when the 

(off mass shell) Adler condition for PCAC is assumed to hold on the mass shell. 

The zeros appear naturally from the imposition of the crossing conditions, in 

the absence of any input from PCAC-- - in fact the only input to the calculation is 
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the requirement that the p-wave exhibit a resonance of mass 755 MeV and width 

120 MeV, which is used to fix the p-wave subtraction constants. 

In order to improve the accuracy of the predictions of this model the following 

future modifications are proposed. First, the d and f-wave modifications to the 

zeroth and first derivative equations indicated in Eqs. (29) - (31) should be in- 

corporated in the determination of parameters in an iterative way. Second, more 

accurate estimates of the d and f-waves at the symmetry point should be obtained 

using dispersion relations incorporating the s and p-wave results. These results 

should then be incorporated into the application of all derivative conditions used in 

the determination of s-wave parameters in an iterative way. Efforts are being 

initiated towards the accomplishment of these objectives. 
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TABLE I 

Symmetry point values of s-wave amplitudes and their derivatives for the 

solutions of Fig. 10 (method C). Also, the changes in these quantities computed 

a-posteriori due to inclusion of d and f-wave contributions (A: is related to h, and - 

hence does not change). 

a 0 
A0 / 

2 
-Ao 

A($ 

-. 033 .167 .0667 .0003 . 200 -. 015 -. 1000 -. 0036 

-. 020 .lOO .0400 .OOOl .196 -. 013 -. 0978 -. 0036 

-. 008 .040 .0160 .OOOl . 191 -. 011 -. 0956 -. 0036 

.007 -. 033 -. 0133 -. 0002 . 184 -. 010 -. 0922 -. 0023 

. 020 -. 100 -. 0400 -. 0008 .177 -. 008 -. 0887 -. 0003 

.040 -. 200 -. 0800 -. 0006 . 169 -. 006 -. 0843 -. 0025 
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TABLE II 

Changes of the right hand (p-wave) side of Eq. (16) when the f-wave parametrization 

is changed,(a/b = 3) as discussed in the text. 

Eq. (16) 104A1 3 

.040 .008 .05 . 0008 10 

.020 -. 025 -. 11 -. 0019 8 

.007 -. 061 -. 34 -. 0057 9 

-. 008 -. 110 -. 59 -. 0100 9 

-. 020 -. 147 -. 86 -. 0145 10 

-. 033 -. 193 -1.1 -. 0186 10 
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FIGURE CAPTIONS 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

s-wave phase shifts, labeled by h, for typical solutions obtained when a (T 

of 745 MeV was required (method A). 

s-wave scattering lengths, with h values indicated, obtained when a u of 

745 MeV was required (method A). 

Right and left hand sides of Eq. (16) as a function of h for solutions 

obtained when au of 745 MeV was required (method A). The solid curve 

is the left (s-wave) side and the dashed curve is the right (p-wave) side. 

Typical s-wave phase shifts for positive h, obtained when $, = -20’ at 

745 MeV was required (method B). The solid curves show 6 i and the 

dashed curves show 6 0”. Since the 80” curves interpolate smoothly between 

bounding solutions, some have been left out for clarity. All phase shifts 

are modulo 7r. 

Typical s-wave phase shifts, labeled by A, obtained when 60” = -15’ at 

745 MeV was required (method B). Solid and dashed curves are as in Fig. 4. 

Typical s-wave phase shifts, labeled by A, obtained when 6: = -10’ at 

745 MeV was required (method B). Solid and dashed curves are as in Fig. 4. 

Typical s-wave phase shifts for negative h obtained when 80” = -20’ at 

745 MeV was required (method B). Solid and dashed curves are as in Fig. 4. 

s-wave scattering lengths of the solutions of Figs. 4-7 (method B). Values 

of 6: for solutions indicated by circles, triangles and squares are -20°, 

-15’ and -10’ respectively, The curves are from Ref. 2, a required crof 

900, 765 and 600 MeV yielding the upper, middle and lower curves respectively. 

Right and left hand sides of Eq. (16) as a function of h for solutions obtained 

when 8: was fixed at 745 MeV (method B). 
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10. Typical s-wave phase shifts, labeled by h, obtained when Eq. (16) was 

imposed (method C) . 

11. The s-wave scattering lengths of the solutions of Fig. 10 (method C) are 

indicated by crosses, and labeled by h values. Scattering lengths predicted 

by a linear extrapolation from the symmetry point of the s-wave amplitudes 

of these solutions are indicated by the vertical marks crossing the ap- 

propriately labeled dashed lines. These latter aspects of the figure are 

explained in the discussion after Eq. (30). 

12. Zeros of the s-wave amplitudes of the solutions of Fig. 10 (method C) labeled 

by A values. Weinberg’s prediction is labeled PCAC and coincides with the 

solution for h = -. 008. The straight line is seen to pass through the points. 

13. Imaginary parity of the s-wave amplitudes for v < 0. The solid curves 

are from crossing and the dashed curves are from the inverse amplitudes. 
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