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1. INTRODUCTION 

Over the past four years, considerable efforts have been devoted to quantum 

electrodynamics at high energies D As a result of such intensive investigations, 

we have accumulated not only a wealth of knowledge on the interaction between 

electrons and photons at high energies, but also much basic understanding on the 

behavior of a high-energy particle in general. Today I would like to report on 

some of the most interesting developments here. 

The results I shall give are therefore of two distinct kinds: (i) those which 

are applicable to electrons and photons only; (ii) those which are applicable to 

hadrons as well. The first kind includes most of the computational results on 

asymptotic Feynman amplitudes e To give some examples, we have now in our 

possession the high-energy limit of the total and the differential cross sections 

for (1) the Delbrlick scattering process; (2) the photon-photon scattering process; 

(3) pair-creation process in electron-electron scattering or electron-positron 

scattering. Of these quantities, the pair-creation cross sections are already 

relevant to colliding beam experiments, as reported by Dr. Brodsky yesterday. 

The cross sections for Delbriick scattering are now being measured by the Lund- 

DESY group, while the cross sections for photon-photon scattering can probably be 

measured in the near future. * On the more technical side, we have developed a method 

(the method of impact diagrams) especially tailored to handle high-energy ampli- 

tudes, which can now be calculated very simply. The calculations we have per- 

formed are not always limited to lowest orders. One notable example is the 

amplitude for Delbriick scattering. In this scattering process, the charge Z of 

the nucleus can be so large that Za! is not small compared to unity. We must 

therefore calculate this amplitude to all orders of Za. This has now been done. 

* 
R. W. Brown, (private CommunicatiOn). 



Although such results are extremely interesting in themselves, much of the 

enthusiasm for high-energy QED was motivated by the hope that a study of the 

best field theory available may help us to understand high-energy scattering in 

general. For this purpose, we must not rely on the quantitative results of any 

particular Feynman diagram. Rather, we must extract the general features of 

all Feynman diagrams. 7 Such a study has been carried out, and it has led to many 

surprising realizations on the way particles behave at high energies. It suggests 

that a hadron at high energies acts like a black pancake with a radius increasing 

logarithmically with the energy. From a theoretical viewpoint, we have now a 

model which embraces the droplet model, the parton model and the Regge pole 

model, and is completely consistent. 

We shall give a systematic account of our results. We are interested only 

in scattering amplitudes in their high-energy limit. For the process a+b - c+d, 

this is defined to be the limit s -co, with t fixed; and for the process 

at-b -c+d+e+ O.., this is defined to be the limit s - co, with?;l 

all outgoing particles, where the z axis is chosen to be parallel to the 

of the incident particles (Fig. 1). 

2. LOWEST-ORDER CALCULATION 

fixed for 

momenta 

Our calculation begins with the case of two-body elastic scattering processes 

in quantum electrodynamics. For these processes in their lowest orders, 

the two cases of massless photon and massive photon are so very similar that they 

can be treated together. For electron-electron scattering, the simplest diagram 

involves the exchange of one photon (Fig. 2a). At high energies, this one-photon 

exchange amplitude is found to be proportional to s. This is to be expected, as 

the scattering amplitude for exchanging a particle of spin J is always proportional 

to sJ. The one-photon exchange amplitude is real, as the photon is a real particle. 
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To get the imaginary part of the scattering amplitude, we must go to the fourth- 

order diagrams where two photons are exchanged (Fig. 2b). At high energies, 

the sum of the two-photon exchange amplitudes is imaginary and is also propor- 

tional to s, in consistency with the empirical rule of s 
Jl+J2- 1 

for exchanging 

two particles of spin JI and J2, respectively. Thus, up to the fourth order, 

both lim da 
S-WTE 

and lim GP-. are finite and non-zero. 
S--W LULAL 

Consider next Compton scattering. Some of the diagrams for this process 

are shown in Fig. 3. In the first row and the first column, we show the lowest- 

order diagrams for Compton scattering; these diagrams are responsible for the 

Klein-Nishina formula. It is thus well known that the matrix element for these 

diagrams approaches a constant as s - 00. That is, at high energies the matrix 

20 element is of the order e s . Next we consider radiative corrections. Their 

contributions to the matrix element again fail to grow as s, and are of the order 

e4so (with some powers of Ins). It is therefore natural to raise the question 

whether, at high energies, da/ d t - 0 as s -2 for Compton scattering. A moment’s 

reflection indicates this is not possible. A photon is sometimes a virtual electron- 

positron pair; since do/d t is finite and non-zero for fourth-order e-e scattering, 

it must be finite and non-zero for sixth-order ye scattering. The diagrams of 

importance are accordingly the three shown in the first row and the second column 

of Fig. 3, and at high energies, the sum of their contributions to the matrix element 

is of the order e’s. 

The lesson here is this: At high energies the importance of a diagram cannot 

be ascertained by merely counting its order, the asymptotic behavior of the matrix 

element being of great importance. We also notice that in all of the important 

diagrams, photons are exchanged between two groups of particles, which may be 

the incident particles themselves or the ones created by them. A further example 

of photon-photon scattering is shown in the second row of Fig. 3. 
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We have given’ the high-energy behavior of all the two-body elastic scatter- 

ing processes in quantum electrodynamics. The six processes studied are: 

(1) electron-electron scattering, (2) electron-positron scattering, (3) Coulomb 

scattering, (4) Delbriick scattering, (5) Compton scattering, and (6) photon-photon 

scattering. Some of the details of the calculations, which are extremely long, are 

published in the Physical Review. 2-5 We emphasize that the effect of .multiphoton 

exchange is already treated in references 1 and 2. 

3. IMPACT-FACTOR REPRESENTATION 

Even with the calculations limited to the lowest non-trivial order, the high- 

energy behaviors of the matrix elements for the~above processes are by no means 

simple when expressed in terms of Feynman parameters. It is therefore signif- 

icant that the high-energy results for the above six processes can all be summa- 

rized in the elegant form/of impact-factor representation (not to be confused with 

impact parameter 

are not included. ) 

representation). (The contributions due to one-photon exchange 

The simplest form of impact-factor representation is 

AWN - is(2n) 

for the process a+b -a+ b, where A is the photon mass, 2 IA+qandiA-qare 

the momenta of the two exchanged photons, respectively, and $a and sb are the 

impact factors for the particles a and b, respectively. A point to be emphasized 

is that Sa is independent of what particle b is, while $b is independent of what 

particle a is. To the lowest non-trivial order, the impact factors for electron, 

positron, and photon are given in references 1 and 2. Slight modifications are 

necessary if b is a static Coulomb field or if multiphoton exchanges are taken 

into account. 1,2 
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It is interesting to observe in (1) the following physical features: (i) The ex- 

changed photons can carry only transverse momentum. This is evidenced by the 

fact that the longitudinal components of q (96 and Q) do not appear in the photon 

propagators. (ii) As a consequence of (i), the four-momentum squared of any 

virtual particle remains finite as s - ao. In other words, none of the virtual 

particles is very far off the mass shell. (iii) The longitudinal momentum of the 

incident particle is always distributed in positive fractions by the particles created. 

For example, in the photon impact factor, we have 0 < P 5 1, where ,B and (1 -p) 

are, respectively, the fractional longitudinal momenta carried by the electron and 

the positron created by the incident photon. These three features are in fact the 
\ 

ones which form the basic working principles of the droplet model6 and the parton 

model. 7 For example, feature (iii) is equivalent to the hypothesis of limiting frag- 

mentation, 6 while feature.,(ii) is the core of Feynman’s explanation of scaling in 

inelastic electron scattering. 

From the above considerations, each of the two incident particles in a high- 

energy collision process can be visualized as a superposition of multi-particle 

virtual states. By the uncertainty principle, each virtual state can exist a finite 

length of time in its own center-of-mass system. By time dilation, such a virtual 

state can exist for a long time in any frame where it is extremely relativistic. 

On the other hand, in the frame of each of the incident particles, the other incident 

particle is Lorentz contracted into a thin slab. The particles in the two virtual 

states thus interact independently and simultaneously. After the interaction, the 

new multi-particle virtual states recombine to contribute to the scattered states. 

We call this physical picture the impact picture. 8 The impact picture is to be 

further discussed in Section 5. 

If we take this physical picture as our starting point, we may construct simple 

rules to calculate the asymptotic form of a scattering amplitude. These rules are 
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graphically represented by a new kind of diagram called the impact diagram. 9,lO 

. All of the lowest-order calculations can be reproduced almost trivially with these 

new rules. 9 

Since in the impact picture no special property of quantum electrodynamics 

is used, it is perhaps reasonable to apply the impact-factor representation to 

various hadronic processes. We have attempted this in the cases of inelastic 

. scattering at high energies, 11 polarization effects, 12 and others. 13 On the more 

theoretical side, we have studied the relation between impact factors and form 

factors 
9,13,14 

and also apply these considerations to production processes, l5 in- 

elastic processes, 16 and also scalar electrodynamics. 17 

Finally, we notice that the s dependence of the amplitude as given by (1) is 

linear. It is fun to speculate on what to expect when higher-order diagrams are 

taken into account. For one who is interested in the droplet model or the parton / 
model, it would be nice if none of the terms in the scattering amplitude grow faster 

than s. And for one who is interested in the Regge pole model, it would be nice if 

the amplitude Reggeizes into 

with 

o! (0) = 1 , 

as is postulated for the Pomeranchuk trajectory. 

It turns out that neither happens. What happens in quantum electrodynamics 

is something much more natural and satisfying than people imagined, as will ,be 

explained in the rest of this talk. Unless specified otherwise, we shall direct our- 

selves to the case of massive photons exclusively, since we shall be interested 

only in QED’s possible application to hadron physics. 
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4. HIGHER-ORDER DIAGRAMS 

A. Pionizat ion 

We shall first answer the question: Are there terms which grow faster 

thans as s-00 ? 

It is necessary to restate this question somewhat more precisely. Let us 

return to the three diagrams shown in the first row and second column of Fig. 3. 

For massless photons, the contributions to the Compton matrix element from these 

diagrams individually are of the order s (in s)~ or s(Bns)3 in the Feynman gauge. 

These factors of Ins greatly complicate our original calculation but are completely 

cancelled for t # 0. Thus, a more precise statement of the above question is as 

follows: Are there uncancelled terms that grow faster than s as s-co ? 

This question can be restated in terms of impact diagrams. 9,lO The results 

of calculation with impact diagrams are of the form s multiplied by integrals which 

depend on t but not on s. To the lowest non-trivial orders, the integrals lead to 

the impact factor representation given in (1). How do the integrals behave in higher 

orders ? If they are well-defined to all orders, we can claim a satisfactory under- 

standing of high-energy processes. However, it turns out that the.above-mentioned 

integrals diverge logarithmically when the orders of perturbation are those related 

to two-electron intermediate states in the t-channel, and the simplest example is 

shown in Fig. 4a. These one-loop diagrams give an uncanceled s Bns term. 

This appearance of logarithmic divergence is not a pecularity of electrodynamics, 

and the existence of Bns has a natural physical interpretation. Let us call the sum 

of the longitudinal momenta of the electron-positron pair created (represented by the 

loop) as p w, where w is the C. M. momentum of one of the incident particles. Then 

the divergence occurs because there is a factor 1 o y in the scattering amplitude. 

The divergence is caused by small P, and we must cut off the lower limit of integration 

-7- 



-1 atw . This is because when /SW is not large, the impact diagram method does 

not apply. Thus the divergence is due to the production of relatively low-energy 

particles in the center-of-mass system and gives in essence a factor Ins. 

In cosmic-ray experiments, an excess of such low-energy pions has been ob- 

served, and is referred to as pionization. 18 Making use of this connection between 

Qns and pionization, we are able to predict, on general grounds, the longitudinal 

momentum distribution of pionization products as follows. 19 Consider for definite- 

ness proton-proton scattering at very high energies and let 

P (px, pyy pz) dpx dpy dpZ 

be the distribution of low-energy pions in the center-of-mass system, where both \ 

of the incoming particles move in the z-direction, then 

ptpx y SP ,P z) = E-lf(px, py) , (2) 
/ 

where E = 
( 
pz+pi+pi + m 2 1’2, ) a~f(pxdy) is independent of p, but depends 

on px and p . 
Y 

We emphasize that this result (2) holds when . 

E << (m/M) o , (3) 

where w is the energy of the incoming protons in the center-of-mass system, m is 

the pion mass, and M is the proton mass. 

This result can be immediately generalized to multi-particle distributions. 

For example, for two pions 

p iPlx’ Ply’ p1z; PZX’ P2y’ p2z) 

= E;’ “2’ f (El E2 - pIz PZz; Plx’ Ply; Pzx9 p2y) 9 (4) 

provided that both EI and E2 satisfy (3). The variable El E2 - plz p2z shows 

the presence of correlation between pions. 
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The simplest diagrams that can be used to verify (2) and (4) are those shown 

in Fig. 4b. It is observed that these diagrams are intimately related to %alP of 

the diagrams of Fig. 4a. This relation is not accidental and may be seen as fol- 

lows. By the optical theorem, the imaginary part of the matrix element due to 

the diagrams of Fig. 4a can be found by integrating the one-particle distribution 

p (?x, Py’ z) p from the diagrams of Fig. 4b. In particular, by (2) and (3)) there 

is a contribution 
_’ 

8f(px, py) N Qntahn) dpxdpyf(px, py) =o(Qns)$ (5) 

where E is a fixed small number less than m/M. Therefore, the appearance of 

the factors Qns is intimately related to pionization. We thus conclude that the 

appearance of Ins is not a pecularity of electrodynamics, and may be expected also 

for hadron physics. 

It is interesting to compare the results (2) and (4) with the parton distribution 

of Feynman. 7 In both cases, the invariant phase space factor E-I d3 Tappears. 

The similarity, however, ends there. First, Feynman’s formula is directed 

towards the off-shell parton distribution in an isolated hadron, while our result 

refers to the on-shell pion distribution in hadron scattering. Secondly, we re- 

member from Eq. (4) that the two-particle distribution depends on EIE2 -plzpzz. 

The field-theoretic calculation from the Feynman diagram of Fig. 4b verifies this 

dependence, but such correlation is supposed to be absent for partons. Thirdly, 

an even better understanding of the difference can be obtained by comparing the 

diagram of Fig. 4b with the bremsstrahlung diagrams. If the analysis of the 

diagram of Fig. 4b is applied to the bremsstrahlung diagrams, we find the presence 

of low-energy particles in the C. M. system only when the mass of the emitted 

vector meson is zero. When this mass is not zero, p approaches zero rapidly for 



high incident energies and hence there is no pionization. Thus pionization is 

entirely distinct from bremsstrahlung, and Feynman’s results and ours refer to 

different processes. 

B. One-Tower Diagrams 

Next we shall answer the question: Does the amplitude Reggeize after the 

logarithmic factors are summed ? 

The lowest-order diagrams that give a contribution of the order s (Qns)n are 

those with n closed loops joined sequentially by a pair of massive photons (Fig. 5). 

We shall refer to these diagrams as one-tower diagrams. Therefore, for n = 1, 

2, 3, . . . , the coefficient of s (Qns)” is a power series in the fine-structure con- 

stant (Y, where the leading term, due to the one-tower diagrams just mentioned, 

is proportional to Q! 2(n+1). (The situation is the same for massless photons, 

except that there are extra factors of Ens in the exactly forward direction, as is 
L 

well known. ) These one-tower diagrams are the counterparts of the ladder diagrams 

in e3 -theory. 

In the case of electron-electron scattering, these leading terms have been 

explicitly found 20 for all n, and are all imaginary, representing absorption. Ex- 

plicitly, the sum of the n-loop tower diagrams is equal to 

dd ) 
n - is @$- <Je, xn J”> , 

. 

where K is an operator. Summing over n, we get the amplitude 

i < Je, sl+K J”> a 
sl+a 

(Qn s)2 
(6) 

where 

a=5a2n/32 
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for scalar electrodynamics, 17 and 

a = 11 (r2 n/32 

for quantum electrodynamics. 20,21 Note that a is independent of t. This means 

that the tower diagrams give a fixed Regge branch point located at J = 1 + a > l! 

5. LIMITING BEHAVIOR OF CROSS SECTION 

A. Theoret ical Considerations 

By the optical theorem, the sum of one-tower amplitudes gives a total cross 

section of the order of sa (Qns) -2 , in violation of the Froissart bound. 
22 For a 

while, this was to us the most puzzling paradox, but we believe that our under- 

standing is by now fairly complete. 23 

The fact that the cross section is larger than any power of Qns cannot be 

blamed on the process of summing only the leading terms from the one-tower 
,’ 

diagrams. This is because the cross section for n-pair production is always 

positive. By choosing n sufficiently large, the .corresponding n-pair production 

cross section is already larger than any given power of Qn s. Thus the sum must 

also be larger than any power of In s. 

This large result sa/(Qn s)~ is, however , @ to be interpreted as a violation 

of the -Froissart bound. 22 Rather, it ought to be regarded as a realization of the 

strongly absorptive “potential” with a coupling constant increasing with energy, 

as conceived in Froissart’s original paper. 
22 Thus, in a two-particle scattering 

process, if the interaction takes place at a sufficiently close transverse distance 

from the center of the target, the incident particle creates slow particles in the 

C. M. system and is lost to the beam. If the transverse distance involved is large, 

the incident particle does not necessarily create pionization products and may 

survive. Mathematically, this can be achieved by including not only the one-tower 
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diagram but also all of the multi-tower diagrams illustrated in Fig. 6. Summing 

over the leading terms from all of these diagrams, we obtain the fertnion-fermion 

elastic scattering amplitude as 24 

1 -2 -im s6 2 12 $,, I dzl e i”-zl(l _ ,-A) . 
(7) 

In (7), m is the mass of the fermion, 6, 2 and a,,,, are the Kronecker delta of 

the spins, h’ is the momentum transfer, and A is related to the Fourier transform 

of the asymptotic amplitude due to the sum of one-tower diagrams. Specifically, 

( -A) if we expand 1 - e in (7) into a Taylor series in A, the term in (7) proportional 

to A is the high-energy amplitude due to the sum of the one-tower diagrams. In 

fact, the AN term in (7) is the high-energy amplitude for the sum of the N-tower 

diagrams. 

In the limit s --co and I I ?jL = O(Qns), we have 23 

A - bsae -‘I’11(Qns)-2 , (8) 

where b and /J are real constants. In fact, /J < 2 h, where A is the mass of the 

vector meson. With (7) and (8)) the Froissart bound is saturated but not violated. 

The inclusion of multi-tower diagrams may appear somewhat arbitrary. Further- 

n-ore, we know that the exponentiation form (7)) with A related to the one-tower , 

diagrams, is valid in the leading order of CY but not in the next leading order. 24 

Physically, the exponentiation form (7) is valid only if the incident particle is 

treated as a point particle with no structure or internal degrees of freedom. 25 -28 

Fortunately, for the purpose of obtaining the asymptotic form of the scattering 

amplitude, the validity of (7) is not crucial. 
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Let us, instead of (7)) express the scattering amplitude in the impact-distance 

representation 

&(s,t) N $im -2 s dZ*e 
/ 

ia*ZL 

s( s,q , 

where Jtt(s,t) includes the contribution of all diagrams in the world. Then the 

function S (s, xi) is the opacity at 

By a Fourier transform, we get 

S(s,ZJ = -2is-1 

the distance and energy at which it is evaluated. 

m2 
/ 

& 

(22 

e-iz*-, d{ (s, -A2) . (9) 

We shall consider the equation above in the limit Z1 - 00. 
I I 

It is important to realize that, if we replace&(s, -A21 by (t - h2) 
-1 

in the 

equation above, S (s ,‘??I) would be asymptotically proportional to e 
-?+ 

I I . Because 

of this exponential decrease, the diagrams with higher thresholds in the t-channel 

are expected to contribute less to S (s,?-l) for large lZL1 . Thus the important 

diagrams are those with two-vector meson cuts in the t-channel. The one-tower 

diagrams are the leading diagrams of this kind, and the inclusion of other diagrams 

of this kind merely modifies the kernel K  in Eq. (6). We therefore conclude that 

S(s) ‘iT,) is given by the one-tower diagrams, or the right side of (8)) when 1 Z1 1 is 

sufficiently large, although the constants a, b, and ~1 should be modified if the 

coupling is strong. If we now fix I“1 and increase s, the right side of (8) in- 

creases. This means that the interaction extends into larger and larger trans- 

verse distances as the energy increases. When the energy is sufficiently high or 

the transverse distance is not large enough, the right side of (8) becomes appre- 

ciable, and we may no longer approximate S(s ,T1) by the one-tower diagrams. 
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This merely says that when scattering is appreciable, we must take rescattering 

into account, and multi-tower diagrams, as well as others, must be included. 

This happens when the right side of (8 ) becomes of the order of unity or 

I I sL 1. R= ROBns , 

where 

RO = a/p . (11) 

From the above considerations, we conclude that, at extremely high energies, 

a particle acts like a Lorentz contracted pancake which can be roughly separated 

into two regions: (i) A black core with a radius R given in (10) which expands 

logarithmically with the energy. In this core, the right side of (8) is much larger 

than one and the absorption is almost complete. (ii) A gray fringe with a width 

O(1). In the gray fringe, the right side of (8) is of the order of one and the ab- 

sorption is partial. This is schematically illustrated in Fig. ‘7 and, together 

with the physical picture discussed in Section 3, forms a complete description 

of the impact picture. 

B. Experimental Predictions of Elastic Scattering 

Many experimental predictions of hadron-hadron scattering follow directly 

from the impact picture. These predictions mark a drastic departure from cur- 

rent concepts. It will be interesting to see if they will pass the test of experi- 

ments which will be performed at the National Accelerator Laboratory or at the 

Intersecting Storage Ring at CERN. 

Let us derive the asymptotic form of the elastic scattering amplitude. In 

the first approximation, we may put 

S(s,x ) = 
1, jT1 CR, I I 

0, TL >R. I I 

-14- 
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In other words, we shall include the contribution of the black core only. 

we have 

-2 =i?rm sA -lRJl (AR) . 

At the forward direct ion A = 0, (13) is equal to 

;iTrn -2 2 
R. s (I~s)~ . 

And if AR >> 1, (13) becomes 

-2 im s 
s 

,*R cis (AR 
A3 -” 

%r 
-4 

1 

1. -2s iARo -iAR, 
= - 31” (l+i)s 1 +(l-i)s . 

From (14) and the optical theorem, we have 

‘TOTAL = 27rR2, (1ns)2 + O(R) , 

which rises indefinitely with energy. From (13), we get 

d %LASTIC ‘IT R: 
dt y2- (1ns)2 5: (ARORgns) 

Then 

(13) 

(14) 

(15) 

(16) 

(17) 

Thus the usual diffraction peak is expected for the elastic scattering amplitude 

around the forward direction. Furthermore, let r be the value of -t at which 
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the first dip occurs, then 

r”TOTAL =21r3/3; + O(R-l), 

where P, = 1.2197 is the first zero of Jl (p n). Numerically 

21r3p2 1 = 35.92 mb (BeV/c)2 . 

Weals0 have 

and hence 

‘ELASTIC = 1 

uTOTAL 
z + 0 (R-l). 

(18) 

(19) 

(21) 

Experimental Predictions of Inelastic Scattering C. 

The impact picture has direct experimental consequences on diffractive in- 

elastic processes also. 29 By a diffractive process, we mean one in which the 

exchange has the quantum numbers of a vacuum trajectory (“Pomeron”). Thus 

our considerations apply, for example, to the spin-flip amplitude for p +p - p +p 

and the amplitudes for ~+p --+p* (1470), p+p -p+p+n++r- and y + p-p+p. 

Consider a scattering problem with N channels which are coupled through 

diffractive processes. For example, we may imagine that we are dealing with 

the problem p + p - p+p with the channels representing the various helicity states 

of the protons. Let the scattering matrix be written in the impact distance 

representation 

(22) 
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where a(ZI) is an Nx N matrix which may .be dependent on energy as well as 

other kinematic variables and I is the unit matrix. 

It is important to recognize that, since all diffractive processes are mediated 

by the same Pomeron, the effective “potential” involved has the same range and 

the same energy dependence. In other words, a diffractive inelastic process is 

motivated by the same exchanges as those in an elastic process. The matrix a(zL) 

describes the scattering mediated by such exchanges (with its diagonal matrix 

elements representing elastic processes). Thus all of the matrix ’ 

elements of a(ZI), diagonal or off-diagonal, must be of the same order of mag- 

nitude. Since the very words “black core” mean that the diagonal matrix elements 

of a(ZI) are small there, the off-diagonal matrix elements of a( gl) must also be 

small there. Thus we conclude that 

i, j = 1,2, . . . . . N, (23) 

inside the black core. 

Outside of the black core, there is a gray fringe of thickness 0( 1). The area 

of this gray fringe is therefore of the order of Pns. By definition, the diagonal 

matrix elements of a @I) in the gray fringe are O(1). Thus all matrix elements 

of a(ZL) are O(1) there. We therefore have, inside the gray fringe, 

aij(ZL) = O(1) , i, j = 1,2, . . . . . N. (24) 

From (22), (23), and (24)) we see that, while the dominant contribution to an 

elastic process comes from the black core, the dominant contribution to a dif- 

fractive inelastic process comes from the gray fringe. (Remember that the unit 

matrix I is diagonal. ) Furthermore, since a ( ZL) is’ of the order of unity in the 

gray fringe, the integrated cross section for a diffractive inelastic process is 

of the order of the area of the gray fringe, and hence is of the order of Ilns. Thus 
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for hadron-hadron scattering, the total cross section for an inelastic diffractive 

process is asymptotically 

udiff = CR+O(l) , (25) 

where C is a constant that is independent of energy but dependent on the diffractive 

process under consideration; if neither spin nor parity is exchanged, the scatter- 

ing amplitude is proportional to 

RJO(RA) - (26) 

near the forward direction, where A is the momentum transfer; and in particular 

it follows from (26) that 

r’ Otot 
= 14.15 mb (GeV/c)2 + O(R-‘) , 

where r ’ is the value of -t = A2 at which the first dip occurs. 

The considerations are slightly different for a photoproduction process. 

This is because, to a bare photon, the proton is not black but transparent as far 

as strong interaction is concerned. A real photon is a superposition of a bare 

photon state and hadron states. Thus the proton looks like an expanding gray 

disk to the real photon. Since the core is not black, a diffractive inelastic process 

can occur inside this disk. This means that the cross section for photo p produc- 

tion is of the order of (1ns)2. In a diffractive photoproduction process, then, 

the total cross section is asymptotically 

uphot = Cl&R2 f O(R) , (28) 

where C’ is a constant just like C, and Q is the fine-structure constant; and if 

neither spin nor parity is exchanged, the scattering amplitude is proportional to 

R A-l Jl (RA) , (29) 

identical to that for ‘elastic hadron-hadron processes. 
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It is extremely interesting to ponder as to whether the considerations above 

in fact hold for hadron-hadron scattering as well-that is, whether a hadron at 

high energies behaves like a gray disk rather than like a black disk with gray 

fringe. 

We conclude the study on inelastic scattering with a few remarks. 

1. The discussions above can be extended to processes involving Regge ex- 

change with quantum numbers. We first observe that the exchange of a Regge 

pole is difficult to occur in the black core. This is because, if the incident 

particles are separated by a transverse distance less than the radius of the 

black core, it is almost impossible to have an exclusive exchange process (i.e., 

without the additional production of particles). As a result, a Regge exchange 

process is limited to the region that is not very black. Mathematically, the 

amplitude for the exchange process is given by 

(30) 

where B is the Fourier transform of the Regge-pole term for the exchange. Since 

B(s,ZI) vanishes exponentially as I’“11 - co, the conventional Regge pole term 

must be modified to a reduced value as the black core expands. 

2. The considerations can also be applied to pionization processes. For 

example, the integrated cross section for the process e-+e--e-+e-+e++e- , 

with the created pair having energies O(1) in the center-of-mass system, is of 

the order of (ins) -3/2 , which decreases with energy. 29 

Field theoretic models in support of the conclusions in this section can be 

found elsewhere 29 and we shall not elaborate on them here. 

-19- 



D. The Generalized Impact Factor Representation 

Finally, we collect some formulae here for the amusement of those theorists 

who are interested in multi-tower exchanges. 

For elastic e -e scattering, the sum of the leading terms of all multi-tower 

amplitudes is given by (7). 

For elastic e -y scattering, the sum of the leading terms of all multi-tower 

amplitudes is given by 

2 
In (3% I’( Z FJ is the photon impact factor in the position space, 1: 2 = $ 6, 2 , 

andA(s,zL 31) 
30 

is a gauge-invariant function given explicitly elsewhere. 

For elastic y -y scattering, the sum of the leading terms of all multi-tower 

’ amplitudes is given by 

(32) 

whereA ~,~~,~~,y~ ( 
- ’ is a gauge invariant function also given in reference 30. ) 
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6. SUMMARY 

Quantum electrodynamics has successfully explained the interaction of photons 

and electrons. It is the only relativistic field theory which produced for us both 

theoretical and experimental triumphs in the past. Today, seeking the answer to 

the mystery of high-energy scattering, we once again look into quantum electro- 

dynamics, and it has once again responded. It has shown us a most natural way 

to realize the near constancy of the total cross section, and it has taught us the 

ways a particle with high energies behaves. The solution it provides satisfies all 

honored physical principles such as unitarity, dispersion relation, and crossing 

symmetry. We ask: Is this solution relevant to hadron-hadron scattering? 

The test will and must come from experiments. It is, nevertheless, 

worthwhile to make a critical appraisal here of what we have done. 

We have shown that, in quantum electrodynamics with massive photons, the 

Froissart bound is almost saturated (the cross section is, more precisely, 

Sa [ 1 
2 

ill 2 W-4 
). A summary of the arguments leading to this conclusion is: 

(i) one-tower diagrams give a cross section increasing as a power of s; (ii) this 

implies that the interaction extends into logarithmically large transverse dis- 

tances; (iii) the cross section therefore rises logarithmically. 

As we have explained in Section 5A, (i) is certainly correct. The correct- 

ness of (ii) depends on whether there are diagrams (in addition to the one-tower 

diagrams) which also contribute significantly at large transverse distances and 

cancel the contribution from the one-tower diagrams. These diagrams, if they 

exist, must have two-photon cuts in the t-channel, and they may add up to give 

an amplitude of the order of s l+b . However, b is, at most, of the order of 01~) 

and, at least for sufficiently small Q, should be small compared to a, as ‘given 

in the equations below (5). Thus (ii) is most likely to be true in quantum electro- 

dynamics. 
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If (ii) is true, then (iii) automatically follows unless the absorption at fixed 

transverse distances decreases as the energy increases. Since we expect more 

channels to open up at higher energies, it is difficult to visualize how such a 

phenomenon can occur. It is therefore likely that (iii) is true also. The proof 

for the near-saturation of the Froissart bound in QED with massive photons is 

therefore reasonable, if not entirely mathematically rigorous. 

Is the near-saturation of the Froissart bound a peculiarity of QED? To 

answer this question, we observe that, of (i), (ii), and (iii), only (i) is a special 

result of QED. To see how (i) should be modified in other field theories, let us, 

to be definite, consider G3-theory, where the counterparts of one-tower diagrams 

are ladder diagrams. It is well known that ladder diagrams give the amplitude 

p (t) 2 (? We then have three possibilities: (a) a(O) > 1; (b) o(O) < I; 

(c) a(O) = 1. If (a) is true, then we would have the equivalent of (i) and the near- 

saturation of Froissart bound is also realized in $3-theory. If (b) is true, then 

a(O) of the Pomeranchuk trajectory must be very close to one, and the near 

constancy of the total cross section must be explained as an accident. For lack of 

dynamical reasons, (c) can be true only by a miracle. ( On the other hand, it 

can be shown that, as long as the coupling is strong enough, (a) is always true. 31 ) 

The arguments above can, of course, be extended to other field theories. 

They are probably even independent of the validity of any field theories. The nec- 

essary requirement for the realization of near-saturation of the Froissart bound 

is that the sum of all amplitudes from ladder-like diagrams (or, more generally, the 

part of the scatteringamplitude with the lowest t-cut) gives an amplitude P(t)s 02 (t+ms )W) 

with o(O) > 1. This is perhaps likely to happen for sufficiently strong coupling. 

If Q (0) > 1, then the Pomeron identified with c11( t ) is a singularity 

(either a pole or a branch point) in the J-plane located at J > 1 when t = 0. In 
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this case, the amplitude for one-Pomeron exchange, being proportional to 

scrfo) at t = 0, violates the Froissart bound. The amplitude for n-Pomeron ex- 

change, being proportional to s na(0) -n+l at t = 0, is even larger. However, 

these terms cancel themselves and the sum is given by (13) or (15). We see 

from (15) that regardless of whether the Pomeron is a branch point or a pole, 

the leadinT singularities of the scattering amplitude in the J-plane are always 

two moving branch points; for t < 0, these branch points form complex con- 

jugate pairs on the line Re J = 1; at t = 0, both reach the point J = 1;. at t > 0, 

they move on the real J-axis -one to the right and the other to the left. This is 

schematically plotted in Fig. 8. 

In closing, we recall that, in 1959, Regge first showed that the scattering 

amplitude in potential scattering is asymptotically of the form /3 (t) so!@) as 

s -oc.32 This form was immediately assumed to hold for the scattering am- 

plitude in relativistic processes. 33 -36 Such an assumption is entirely arbitrary, 

and it is probably time to make a re-examination of this assumption. 

In potential scattering, the amplitude in the high-energy limit is dominated 

by Regge poles, which are related to the resonances and bound states of the 

crossed channel. In relativistic scattering, the amplitude for ladder-like dia- 

grams is also dominated by Regge poles, and these Regge poles are also respon- 

sible for the resonances and bound states of the crossed channel. This suggests 

that the analogue of the potential theory results holds for the amplitude of ladder- 

like diagrams alone, not the entire scattering amplitude itself. In fact, the Born 

series of the scattering amplitude in potential scattering is identical to the ampli- 

tudes of ladder diagrams in e3-theory, if one of the masses of the particles is 

set to infinity in the latter case. 
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The amplitude for potential scattering is not required to satisfy the unitarity 

condition in the s-channel, and there is no restriction on o!(O). By the same 

token, the amplitude for the ladder-like diagrams is not required to satisfy the 

unitarity condition in the s-channel, and it is unnatural to set the restriction 

CY( 0) < 1. In the relativistic case, unitarity in the s-channel for the complete 

scattering amplitude is always insured by the existence of diagrams such as the 

multi-Reggeon exchange diagrams, which have no meaning in the potential case. 

The restriction a!(O) 5 1 is therefore also unnecessary. 

If a)(O) 5 1, it makes no difference whether we adopt the old or the new 

analogue. Then, of course, o!(O) must be either equal to, or very close to, unity. 

One may wonder why it is so, and as of now there is no dynamical explanation. 

Perhaps, however, the coupling constants in hadron-hadron scattering are so 

strong that a(O) > 1. Then, no matter what value o!(O) takes, the total cross 

section is very nearly a constant. Perhaps this is the way nature works. We 

must wait for the verdict of future experiments. 
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Figure Captions 

Fig. 1. Definition of the high-energy limit. 

Fig. 2. (a) Diagram of one-photon exchange in electron-electron scattering. 

(b) Diagrams of two-photon exchange in electron-electron scattering, 

Fig. 3. Orders of magnitude for various Feynman diagrams. 

Fig. 4. (a) Lowest-order diagrams that contribute an uncanceled term s Pns 

to the scattering amplitude. 

(b) Lowest-order diagrams for pionization. 

Fig. 5. Example of a one-tower diagram. 

Fig. 6. Example of a multi-tower diagram. 

Fig. 7. Schematic plot of the appearance of a high-energy particle. 

Fig. 8. The singularities for the complete scattering amplitude in the complex 

J-plane. ,’ 
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