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ABSTRACT 

We discuss the space-time phenomenology of real and virtual photon absorp- 

tion by nucleons, with the aim of developing intuition about these processes. 

We argue that they may be understood in terms of two principal types of inter- 

actions, a short-range one which we refer to as a bare photon interaction, and 

a long-range one which represents the photon’s hadronic constituent. This 

hadronic constituent is not restricted to the surface of the light cone. We give 

a tentative interpretation of the data in terms of these two types of interaction. 

The principal feature of our data analysis is that the slow approach to scaling at 

small x is due to the long-range terms. We find that in general we should expect 

scaling to set in when v Rp >> 1 and Q2/m2 >> 1. Here Rp is a size, character- 

istic of the structure of the target and m is a mass , characteristic of the hadronic 

constituents of the incident photon. 

We assume scaling and a power law fall off at large longitudinal distances 

for the absorptive part of the forward Compton amplitude. We are then lead to 

a Regge-like behavior for the total cross section and for the scaling structure 

functions at small x. The intercept of the Regge trajectory turns out to be 

intimately related to the power of this large distance fall off. 
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I. INTRODUCTION 

Several years ago, Gribov, Ioffe, and Pomeranchuk (lJ suggested that the 

qualitative features of the energy-momentum dependence of high energy ampli- 

tudes could be related to the space-time properties of their Fourier transforms. 

In photon initiated reactions, this Fourier transform is a matrix element of the 

retarded commutator of the electromagnetic currents. They were particularly 

interested in studying the longitudinal range of the interactions. Ioffe (2J sub- 

sequently showed that certain features of the experimental results from inelastic 

scattering of electrons by protons (3J imply that the longitudinal range increases 

with energy. This result is associated with the small photon mass (q2), large 

photon energy (V ) , region. Recently, several authors (4J have undertaken the 

study in the scaling limit (5J (V and q2 tending to infinity for finite values of the 

ratio q 2 /v) to correlate the behavior of the current commutator on the surface 
1 

of the light cone to that of the inelastic structure functions of nucleons in mo- 

mentum space. It turns out that the structure functions are something like 

Fourier transforms of functions measured along the light cone. An analysis by 

Pestieau, Roy, and Terazawa (6J shows that these functions have a long range 

(power law) (7J component, tending to confirm the general picture obtained by 

Ioffe. We will see later how these results are related. 

It seems apparent from these results that a study of the space-time behavior 

of high energy processes is likely to provide a new intuitive way of understanding 

them. Such a study will encompass more than the behavior at the light cone, 

determined solely by the scaling behavior. In the present paper, we study in- 

elastic electron scattering at less than asymptotic energies in order to develop 

this intuition and get some understanding of how the transition to asymptotic 

behavior takes place and what energies might be relevant in this transition. It 
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will become clear that in addition to the behavior on the light cone (y2=O), the 

behavior inside the light cone (y2 > 0) is very important for the understanding 

of the transition. It will turn out that there are two rather separate contribu- 

tions to the processes under consideration. The first is a short-range contri- 

bution which is close to the light cone and which we might term a “bare photon” 

type of interaction. The other is a long range contribution which has propagation 

characteristics. We imagine that this corresponds to the “hadronic cloud” of 

the physical photon; i. e. , we imagine that the incoming photon is composed of 

hadrons a small fraction of the time and the long-range is due to the long time 

such virtual states may exist at very high energies. 

The restrictions on the behavior of the current commutator which lead to 

scaling in the Bjorken limit (for short, the Bj limit: v-m, q2--a, 

x= -q2/(2Mv) fixed) have been adequately investigated by other authors (4J. It 

turns out that scaling restricts the nature of the singularities on the surface of 

the light cone to a “canonical” form which is also obtainable from free field 

theory. We shall accept these restrictions and make the further assumption 

that the functions are sufficiently smooth in the interior of the light cone that 

the standard methods (&9J may be used to study the asymptotic behavior of the 

electron scattering structure functions. If necessary, we interpret certain 

apparently divergent integrals in terms of distribution theory (9J. The current 

commutator can be expressed in terms of two invariant functions of the invariant 

distance (y2) and the longitudinal distance (y. P = yoM in the laboratory frame). 

The way scaling sets in as a function of energy and x, and the behavior of the 

scaling functions depend sensitively on the longitudinal structure of the com- 

mutator, as will be seen. The experimental evidence indicates that there are 

contributions at large longitudinal distances which fall with power law behavior 
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(l/y0 P)“, with a 5 1 (not necessarily integral). This power law behavior for 

3 > a 2 1 leads to a R egge-like cross section c(q2, v) w v o!(O)-1 at any fixed 
2 q , with a(O) =2-a. For large 1q21, it gives a power law in q2 which leads to a 

a-l scaling function of form (10) VW,(X) w Ixl- . In particular, diffraction corre- 

sponds to a very long range with a=l. Shorter range terms (including those 

with _a 2 3) scale at large energy without regard to whether lq2j is large or not. 

Returning to the idea of two contributions mentioned earlier, we think the short 

range terms correspond to the “bare photon” type of interaction and the a=1 

terms to the “hadronic cloud” type of interaction. An intermediate contribution 

with a=2 also seems to be important and we believe it may correspond to an 

interference between the other two contributions. Whether this is the correct 

interpretation or not we shall refer to it frequently as the interference contri- 

bution. Terms with a=3/2, corresponding to expected Regge behavior could be 

present, but do not seem to be exceptionally important. Although such long 

range behavior can be related to Regge behavior, e.g., through the DGS (11) or 

JLD (11) representation (3, it is hard to understand intuitively the significance 

of the particular powers obtained. 

We try to apply these ideas to the interpretation of present data on total 

photon absorption (13) and inelastic electron scattering (30 For this, we need 

a more specific model of the large distance behavior. Since there is evidence 

that the vector mesons play an important role in photon interactions, we take 

the “@-dominance” contribution as a model (14) for this large distance behavior. 

This model seems to give an adequate account of the variation of the structure 

functions with energy in the small x region. The short distance contributions 

represent a breakdown of this VMD term as an explanation of all the data. As 

data is refined and higher energies are obtained, the small x region will give 
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us more information on the hadronic constituents of the photon. To the extent 

that these terms can be separated out, the remainder will contain information 

about the interference and short range terms. It is interesting to note that 

these terms vanish as IXI- 0, in linear and quadratic manners respectively. In 

the real photon total absorption, the leading hadronic contribution gives an energy 

independent cross section, the interference decreases like l/v and the short 
2 range terms as l/v . 

II. KINEMATICS AND DEFINITIONS 

In this section, we compile the main kinematic formulas for inelastic elec- 

tron scattering which will be used in the remainder of this paper. Refer to 

Fig. 1 for the definition of some of the variables; we define in addition (metric 

(1, -1, -1, -1)) 

Q2 = -q2 = 4EE’ sin2 (e/2) when m 10 - e 

v=E-E’ 

s = (q+P)2 = ‘2 -Q +M2+2Mv (II. 1) 

x = Q2/2q 0 P = Q2/2Mv 

x’ = Q2,‘(s+Q2) = Q2/(M2+2Mv) 

The kinematic domain for inelastic electron scattering is 0 5 x 5 1. The cross 

section for inelastic electron scattering may be expressed in the laboratory 

frame (j?=O) as 

d2, 
m = “NS [W2 (Q2, v) + 2 tan2 (e/2) w,tQ2,v)l 

= [IY~/(~-M’;] x(Q~, s, 6) (II. 2) 
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where the dimensionless “experimenter’s structure function” is defined as 

X = (s-M2, 
I 
oT(Q2, s) + E tQ2, s, 0) oL(Q2, s)) 

E(Q~,s, 0) = k-+2(1+ V2/Q2) ta2 (e/2)}-’ 

rt(Q2, s, 0) = ((r/(4Mr2)) ((s-M2)/Q2) (E’/E)(~-E)-~ 
tn. 3) 

crNs(Q2,E’, 0) = 
C 
4a2 Et2 Cos2 (812) 1 /Q4 

where Q! is the fine structure constant. 

The usual theoretical structure functions Wi are related to the transverse 

(a,) and the longitudinal (oL) virtual photon absorption cross sections by 

VW2 = 
2x . (s -M2) 

t1+= 87r20! 
’ t”T+ “3 

V 

and their ratio is 

UL 
R(x, v) = - = 

“T MW1 

(II. 4) 

(II. 5) 

These cross sections are positive definite in the physical region v > 0, 

OLxll. 

These structure functions occur in a gauge invariant expression obtained by 

summing over all final states of the hadronic system 

W TV = (2q2 (p”/wJ?14y eiq’ y<Pl~~(y)3 Jv V9] IP>csa 
-co 

=- Wl(q2,q.P) + (1/M2) 

(II. 6) 
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where csa means connected and spin averaged. It is sometimes convenient to 

define another set which is free of kinematic singularities 

W 
PV = - tc12gpv - qpqv) c,ts2,q* P) 

-!- { -q2pppv + (4’ ~wl~PV+4, p/J - gpv (4. P12} c2ts2, q. P) (II*? 

clearly the relationship between the two sets is given by 

MW;=-MQ 2 C 1 +Mv 3 2 C 2 
(II. 8) 

vw2 = M2Q2v C2 

Another set which is convenient in connection with the separation into trans- 

verse and longitudinal cross sections is 

MW =M3v2C 1 T 

vW2 = M2Q2v 
1 
CT+Q2CL 1 

(II. 9) 

We may transcribe these expressions to configuration space; for example, 

if s,=&& 

Cl(Y2,Y.P) = (P&f CL(Y2,Y.P) 

c,(y’, y” ‘) = c,(Y2, y’ ‘) + apap ‘L(Y2, Y’ ‘) 
C 

PV = t2g2 tp’/hl, <PI ~JY) 3 Jv (04 I P>csa 
(II. 10) 

= ‘gpv audQ&) c,l+[PpPv gf -pu~utppaV+pV $)+gpv($~u~2]C, 

where Ci(y 2 , y* P) so defined are odd and causal (local) functions which are free 

from kinematic singularities. We will call y2 the “invariant” distance between 

the points of absorption and re-emission of the virtual photon and ye P the 
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“longitudinal” distance (also called the range) 0 This is illustrated in Fig. 2. 

Note: y is not the difference between the coordinate of the photon and the 

nucleon. Because of this interpretation, the points of absorption and emission 

can also be represented in a space-time diagram as shown in Fig. 3. 

III. RESULTS OF THE SPACE-TIME ANALYSIS 

Before giving a more thorough treatment of the space-time approach, we 

will present a heuristic derivation and discussion of the principal results. It 

should always be kept in mind that we are interested in large, but not neces- 

sarily asymptotic, values of the energy. In particular, we shall frequently use 

the approximation v 2 >> Q2 to neglect certain terms. Within present experi- 

mental accuracy, the data can be interpreted in a reasonable way in terms of 

our assumption that the asymptotically leading terms do dominate the behavior 

of deep inelastic electron scattering. There is admittedly the possibility that 

this could be misleading. We also keep in mind that our aim is to obtain an 

intuitive understanding of the experimental results in terms of the space-time 

behavior rather than to compute the actual functions from first principles. We 

feel that the intuition thus gained will be helpful in evaluating other more funda- 

mental work, which however always involves approximations of one sort or 

another. 

We shall illustrate the ideas by discussing v W2; the treatment of MW1 is 

similar in principle, but involves some additional details. Using the symmetry 

properties of W 
l-JV$ 

we may write 

iC2(y2,y*P) = E(Y+) etY2) f2ty2,y+) (III. 1) 

where f2 is an even function of yn P 0 It has been shown by other authors (4J that f2 

should be regular near the light cone (and presumably inside as well) in order 

- 10 - 



that vW2 possess a scaling limit. Using this canonical definition, the expres- 

sion for vW2 may be written 

vw2 = 2Q2vM2 O"4 
1 d Y sin tq- Y) 0 (~0 P) 4~2) f2ty2, Y- P) (~02) 

--co 

To investigate the integral, we take the 3-axis along ?J in the laboratory 

frame. Then 

40 Y = q”yo - 14 Y3 

= ; ts” + El, (YO-Y3) + ; cs” - El, (y0+y3) (III. 3a) 

Frequently, we use the proton mass to provide a scale for momenta and lengths; 

i. e., we use units in which M=l. Then we define 

It is then natural to introduce light cone variables (laboratory frame) 

Y+ = i (Y” + Y”) 

Y- = (YO - Y”) 

(III. 4) 

(III. 5) 

so that 

q-y = ;y- - “Y+ (III. 3b) 

Roughly speaking, y+ measures the longitudinal range when y is on the light 

cone, and y gives a measure of the separation of y from the light cone. This 

is illustrated in Fig. 3. Because y- is multiplied by the large argument v in 

(III. 3b), the main contributions to the integral are expected to come from small 

values of y -; more precisely, the behavior at small values of y is supposed to 

control the integral. This follows from the Riemann-Lebesgue lemma for any 
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fixed y+ as v tends to infinity; but, as we shall see, for fixed v , there may be 

situations where for large enough y+, the integral depends on the integrand at 

finite values of y-. However, it is generally true that the most important region 

has y- << y+. 

We note that 
+2 

Y2=2Y+Y--YI (III. 6) 

so that (III. 2) may be written 

cc, 

vw2 = 27rQ2v 
J-7 

dy+ dy- sin (3 y- - x y 
JJ- 

2Y+Y- 
f2th y++$P 

0 0 w 7) 

We shall make the approximation of neglecting y- compared to y, in the second 

argument of f2. This approximation leads to contributions which will be shown 

in Section V to be of order l/v compared to terms which are kept. The leading 

such contribution is of the same form as one of the short range contributions 

which will be discussed immediately. 

Short Range Contributions 

Suppose, for the moment, that f2 contains only short range contributions, 

1. e., contributions which drop off rapidly when y+ exceeds a distance of order 

the proton radius, R . 
P 

Then we can integrate (III. 7) by parts twice to obtain 

the leading term of a series in l/v 

dy+dy- cos (; y-- G+) 2y+ f(2sR) PY+Y2 Y+) 

y+ thfyJ) f’2SR’ (o,y$ (III. 8) 

co aftSR) 
- 87rx dy+ dy- sin tv Y, - XY+) Y, 

2 
dy 
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The first term is well known from the works of several authors. However, it 

has not been previously emphasized that it vanishes quadratically in x as x ---+ 0. 

The second term can be integrated by parts once again and be shown to have at 

least one more inverse power of v and to vanish linearly in x as x -+ 0 (except 

by accident). Thus, the short range contribution is of the form 

v WtSR) 
2 

N x2 FtsR) 2 (x) + f G(,sR)(x) (III. 9) 

(SRI Generally we neglect the term G2 . At this point, we include it only because 

(SW it is the only part of v W2 which contributes to the real photon cross section, 

which is given by the coefficient of Q2 as Q2-+ 0. The correction mentioned in 

connection with (III. 7) has the same form as this term, unfortunately making it 

impossible to give a unique interpretation to the part of the real photon contri- 

bution which is of this form (l/v 2). This is clearly seen in Eq. (VI. 4). 

If this were tie only contribution, it would disagree with the data on two 

counts. (i) It vanishes strongly as x + 0 in the scaling limit. The data appear 

to remain finite in this limit. (ii) The real photon cross section decreases 

like l/v 2 at high energies, in disagreement with the observed constant cross 

section. This disagreement was anticipated, in effect, by the analysis of Roy, 

Pestieau, and Terazawa. They tried to invert the first term of (III. 8) in order 

to obtain the function f2 at the light cone. As the data suggest that the scaling 

function attains a nonzero constant for small x, they were led to the conclusion 

that in addition to a short range component, f2(0,yo) has a long range part. 

f2(0,Y0) - l/lYOl 

The integral in (III. 8) is then interpreted in a distribution sense 

co 

dy+ sin (x y+) = l/ii 

(III. 10) 

(III. lla) 
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For later use, we note the other distribution result 
c-3 

/ 0 
dy+cos (“yJ =x6(;;> =0 ifg#O (III. llb) 

These results can most easily be obtained by taking the real and imaginary parts 

of 
co 

Lim 
If 

dy+ e 
i(X+ie)y+ i 

=7 
E’O 0 x+ ie 

+ I 
(III. llc) 

Since (III. 10) is not a short range contribution, it is necessary to consider long 

range contributions to v W2. , 

Long Range Contributions 

The simplest type of long range contribution is an inverse power law, as 

already suggested by (III. lo), and as first used by Okubo (3,. In the following, 

we assume such behavior. It is trivial to add in terms which are powers of 

logarithms times inverse powers, but they do not change the essential features 

of the analysis. Accordingly, we study contributions to f2 of the form 

ff) = hp+y2)/‘ly. PI’ (III. 12) 

Although this is the asymptotic form for large ye P, we extend it, where possible, 

to the origin, as illustrated in Fig. 4. It will be shown in Section V that the 

corrections are equivalent to short range terms. The analysis of such terms 

is now quite straightforward. We make the following transformation of variables 

(III. 13) 
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The contribution from (III. 12) then becomes 

2h 
v WF) N 2n gl ff * dp sin (p - i Q2rl)/ 

,I3 0 
h?)(A) dh 

(III. 14) 

Careful examination in Section V of the integral in (III. 14) shows that it converges 

properly only if a < 3; for higher values of a the asymptotic form cannot be extended 

to the origin and the contributions are essentially of short range character. We note 

that the result is not in scaling form. However, we shall see shortly that when Q2 

(3 becomes large, the asymptotic form of G2 will take a simple power form such that 

a scaling function results. To show this, we imagine that the P-integration has been 

carried out to give a result 

where Riemann-Lebesgue analysis of the P-integral shows that for small T, the 

two functions have the asymptotic behavior 

(III. 16) 

(a) (a) (a) The value of b2- depends on h2- (0)) while d2- depends on h2 @j’(O). For large 

Q2s we can examine the asymptotic behavior of the integral and find that only 

the C2- term contributes and it leads to the proper power of Q2 such that (4 

(III. 17) 

(4 The contribution to the real photon cross section comes from the S2- term and 

has the power law 

“r 

w 1/pl 
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The Combined Result 

It will be seen later that separate contributions of the form (III. 14) are 

meaningful in the small x region (say whenIxl,$ 0.2). The reason for this is 

that for larger x, the contribution is affected by the approximation of extending 

the large y, behavior to the origin. Of course the corrections are again of the 

short range form, so it is justified to write the total contribution as a sum of 

terms like 

vw2 N x2 F y) (x) -I- ; GrR’ (x) +c -$i Gf$Q2) 
_a<3 v-- 

(HI. 19) 

but our discussion indicates that such a decomposition is not unique and cer- 

tainly has no great physical significance for values of lxllarger than about 0.2. 

One could, for example, redefine the terms in the sum by subtracting their 

Bj limit values and adding those limits to the short range term to obtain 

VW 2 = g2(X) + c cl 8pJ(Q2, 
a<3 v- 

(III. 20) 

where now 

Taking the Bjorken limit, we find that (III. 19) reduces to 

vw2-x 2 FfR)(x) + c LF)lx,‘-’ (III. 22) 
a<3 

where we have also dropped the asymptotically small nonscaling contribution. 

The corresponding real photon cross section takes the form 

o- 
Y 

- 5 GfR)(0) + 3 3 -+Gf’(O) + O(+) (III. 23) 
V - 
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What Regions of Space-Time are Important? 

It is interesting to identify the important space-time region for each type 

of contribution. One cannot strictly say that a given integral comes primarily 

from a certain region since the magnitude of the integrand may actually be 

larger in some other region. Integrals of the type we are considering often do 

have their asymptotic behavior controlled by the properties of the integrand in 

a given region as long as the modulating functions are sufficiently smooth in 

other regions and the range of integration includes very many oscillations. For 

example, the short range result depends only on the value of f2 on the light cone. 

This is a good approximation if f2(y2, ye P) does not vary significantly as a func- 

tion of y- over regions of order l/v. In common parlance, one says that the 

integral comes mainly from within l/v. This is somewhat misleading, since 

if f2 varies rapidly within a distance l/v anywhere inside the region of integra- 

tion, the correction terms will be very significant. What we have is a situation 

where the contributions from two successive half waves in the integral nearly 

cancel, but leave a small residue. If the modulating function has derivatives of suffi- 

ciently highorder and v is large enough, the sum of these small residues is 

independent of the detailed behavior of the function away from the end points of 

integration, and can be expressed in terms of the properties of the modulating 

function at the end points. We assume that the short range contribution has 

some characteristic distance R 
P’ 

which we associate with the proton radius. In 

a rough sense, we imagine each successive derivative to be of order l/Rp times 

the preceding one. Then we expect the asymptotic approximation to be good 

when vRp>>l. 

The longer range terms are a bit trickier. One might incorrectly infer 

from (III. ‘7) that the main region of y- is again of order l/v . However, as 
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(a) mentioned in the preceding paragraph, this could only be true if h2- (2y+y-) were a slowly 

varying function of y-. Since we expect that hF)is some sort of an oscillatory 

function, associated perhaps with vector mesons or other particle propagators, 

we see that for very large y+ the oscillations in y- will come at very small dis- 

tanc es. This is illustrated in Fig. 3. Thus as y, becomes large, the most 

important region of integration will no longer be near the light cone. It will 

either spread to the entire region inside the light cone, or more likely, to the 

stationary phase region where the oscillations in the sine function are matched 

by those of hp). This is also indicated schematically in Fig. 3. It is for this 

reason that the result of the y- (or p) integration in (III. 14) does not give the 

result (III. 16) for all values of y, (or q). The power law growth of (III. 16) must 

ultimately stop, and perhaps go over to an exponential decrease. Now when we 

consider the behavior of the 77 integration as a function of Q’, we expect that 

for very small Q2 the behavior of Cp) and SF) at very large values of 7 will be 

important. However, as Q2 increases, the behavior of these functions at small 

values of q will dominate the result. This is the region usually referred to as 

Y- - l/v 

(III. 24) 
Y+ - G/Q2 

One should not attempt to give too precise a meaning to relations such as (III. 24). 

The actual domains are not all well defined, as should be evident from the dis- 

cussion. These relations indicate only the typical values of these variables 

within a factor of two or three. 

We may now ask the question: At what value of Q2 can we expect the func- 

(a) tion G2 to acquire its asymtotic form such that (III. 17) becomes valid? This 

(a) depends on the scale of the function h2 . For example, if the p-meson is very 
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important, we would expect the natural scale of y2 to be l/m2. 
P 

The behavior 

(III. 16) should be valid then for 

or (III. 25) 

Then if Q2 is comparable to rni the contribution from inside the light cone will 

be important and we obtain (III. 14). When Q2 >> mg, the asymptotic result 

(III. 1’7) is expected. However, if Q2 is too large, the power law behavior be- 

comes a poor approximation since the value of y, in (III. 24) may lie inside the 

nucleon. Thus we expect this contribution to be lost as a meaningful separate 

term if 

2v/Q2 S Rp 

or 

[Xl> l/MR, SO.2 

(III. 26) 

The virtual photon also suffers a transverse displacement in forward scat- 

tering. This can be estimated from 7: i 2y+y- by using the typical values of 

y+ and y- in the various cases. Thus in the short range case 

7: - Min (Rp/v , 1/Q2) (III. 27a) 

This is always much smaller than the size of the proton. On the other hand, the 

transverse size can be rather large in the long-range case where 

42 
Yl. - Min ( l/m2, 1/Q2) (III. 27b) 

Here m is the mass of the intermediate hadronic state. In the region Q2 6 m2 

this is, if anything, an underestimate of the transverse size since we have used 

the typical range (v /m2) at which we expect the contributing region to begin to 
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veer inside the light cone. To the extent that this inside region is important, 

much larger values of 712 may be attained. The physical meaning of this trans- 

verse spreading and its consequences for momentum transfer distributions has 

been discussed by several authors (15). They argue that the width of momentum 

transfer distribution and transverse momentum distribution depend on the 

effective size of the colliding objects. In particular (15) the momentum transfer 

distribution in a two-body collision is very narrow for a pair of extended col- 

liding objects, while it is broader if one or both the objects are point like. 

Similar behavior is expected, by them, for the distribution of transverse mo- 

mentum of the produced particle P in multiparticle production processes, like 

B+T -+P+anything. This is not surprising to the extent that uncertainty 

principle arguments would lead (15c) us to expect that one needs large transverse 

momentum components to confine the interaction to a small transverse region. 

And in turn this transverse size of interaction is directly related to the trans- 

verse size of the colliding objects and the nature of the collision. 

Returning to the short range, or large Q2, case the entire disturbance 

created by the photon is contained in a small transverse region, and we think 

of it as a “bare photon” interaction. For this case, the preceding arguments 

would lead us to expect a relatively broad momentum transfer distribution. This 

must be the ‘parton’ domain from the space-time point of view since if the proton 

were merely a cloud of charge it would be soft to this localized type of interaction. 

If 1x1 was also large we could think of the photon as actually hitting a bit of matter 

(parton) in the proton. The long range interaction (with small Q2) is rather 

different in nature. Because the energy dependence can be scaled out by (III. 13) 

(2y+y- = 274, the transverse behavior becomes frozen in at high energies. This 
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constancy of the transverse size together with strong absorption leads naturally 

to the constancy of the total cross section at high energies and narrow momentum 

transfer distributions. It would also imply a nonshrinking diffraction peak for 

the a=1 term. However, we cannot completely rule out a shrinking diffraction 

peak since our analysis of the a=1 term implies only that the total cross section 

is constant and the “characteristic” transverse size is of order l/m. There- 

fore it cannot forbid a logarithmic increase in transverse size together with a 

suitable decrease in absorption to keep a constant cross section and still give 

a shrinking diffraction peak. We may view this long range contribution in the 

following way: The incoming photon makes a transition over some distance to 

its hadronic constituents 0 These constituents spread transversely, but are 

limited to stay inside the light cone. If this transition occurs mainly inside the 

characteristic region (y+ - v /m2, y- - l/v); the transverse size of the disturb- 

ance when it hits the proton will be of order l/m. To the extent that it comes 

from inside the light cone, it may be larger and may correspond to an extended 

particle hitting the proton. One then has the picture of one extended object 

hitting another, very much like the usual hadronic interactions. 
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The a=1 term 

From (III. 18)) this is the most important term at large energies for real 

photon absorption; it is of course the term associated with diffraction. It also 

appears to be the dominant scale violating term at small x. Its contribution to 

VW is 2 
v W(l) = Q2 G( ‘) (Q2) 

2 2 (III. 27) 

Because of its long range nature, we believe that this represents the “hadronic 

contribution” of the photon. Following Gribov (IJ, we visualize this term as due 

to the shadowing of the photon’s vacuum polarization by the nucleon. Uncertainty 

principle arguments suggest that a vacuum polarization fluctuation of mass m 

exists for a distance of order 2v /(Q2+m2). This compares with the values of 

y+ in (III. 24) and (III. 25). If this view is correct, there are many possible con- 

tributions to (III. 27). The photon may make a virtual transition to charged pairs: 

pions , kaons , nucleons, etc. , to vector mesons, or to more complicated virtual 

states. The simplest model for these terms is the p-dominance model (14); it 

also represents a reasonably well known and probably very important contribu- 

tion to real photon absorption. In this model, the transverse and longitudinal 

cross sections are given by 

o- 
(VT\ = 

oyT 
J 09 

1 + Q2/m$)’ T 

%L)= (III. 28) 
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where ,$ is the parameter introduced by Sakurai as the ratio of longitudinal to 

transverse p cross sections. The reason for the deviation of this ratio from 

unity is not clear, but we may attribute it to differences in the extrapolation from 

the p mass to space-like Q2. The functions JT and JL are introduced to take into 

account the fact that the Q2 dependence of (III. 28) cannot be taken literally if 

1x12 0.2; they are unity for small x. Practically, the x-dependence of JT is not 

too important since the transverse p contribution to v W2 cuts off fast enough 

autom.atically as x increases. -The longitudinal p contribution would give too 

large a value to v W2 for Q2 >> rnz and large x were it not for JL. In our data 

analysis, we have used the function suggested by Sakurai. Such a. function also 

emerges in a model calculation performed by Lee (14d). Clearly, the p con- 

tribution is of the form (III. 27) for small x where JT L are approximately 1. 
, 

It is interesting that the leading p term in the Bj limit is provided by the longi- 

tudinal p part, while the transverse part goes to zero for any fixed x. As will 

be described later, when the data is fitted assuming these are the only a=1 con- 

tributions, one finds 4 2 0.6. As seen from Fig. 5 these contributions are not 

insignificant compared to the total value of vW2. The space-time behavior of 

the p contributions will be discussed in more detail later. 

The a=2 terms 

When the _a=1 contributions are subtracted from v W2, the result appears to 

be linear near x=0. Referring to (III. 17)) we infer that this is probably due to 

a=2 contributions. From (III. 18)) such contributions also give l/v terms in the 

real photon cross section. (2) It is interesting to note that the slope L2 of the vW2 

residue is quite comparable with the observed energy dependence of o- 
YP’ 

What is the physical interpretation of the a=2 contribution? In our opinion, 

it represents an interference between the diffractive a=1 term and the short 

range terms. This is suggested by its energy dependence, which is the geometric 
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mean of the other two. We have no specific model for the ~=2 contribution; in 

(2) particular, it is not clear that the slope at the origin (G2 (0)) should be the same 

as that at large Q2 (L2 ) although they would be expected to be of the same order (2) 

of magnitude. Thus the agreement of the slope and the energy dependence of the 

real photon cross section may be slightly fortuitous. 

Other values of a 

While the data do not require other values of a, Regge theory suggests an 

a=3/2 contribution, corresponding to a l/v m energy behavior in the real photon 

cross section. Our data analysis indicates that a=3/2 does not dominate a=2, 

but a small contribution of this type cannot be ruled out. 

IV. ANALYSIS OF THE EXPERIMENTAL DATA 

Choice of Parameterization 

We have discussed the relation between the various types of space-time 

behavior and the energy-momentum behavior of the inelastic structure functions. 

We now confront the published data (3J on inelastic electron scattering to try to 

identify these various types of contributions and deduce a self-consistent set 

forming the picture of the process. We wish to emphasize right from the start 

that the data is not yet sufficient to determine a unique picture. In fact, as we 

discussed earlier, a separation into a sum of such tertns need not be unique, 

even in principle. The set of terms we select to parameterize the data seems to 

form a picture which is consistent with our space-time analysis and our knowl- 

edge of photon interactions in related processes. In addition it provides a good 

fit to the data over a wide range including low Q2 points. Our picture attributes 

the nonscaling variation at small Q’ and small x to the presence of long range 

terms when the photon interacts like an extended object via its “hadronic cloud”. 

The presence of such nonscaling variations in the observed data has also been 

discussed by Nauenberg (16a) and Nachtman (16b). 
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The intuitive picture we have developed is a two component (17) one in 

which the short range contribution may be regarded as a “bare” interaction of 

the photon and the long range contribution is attributed to the “hadronic cloud” 

of the physical photon. Such a two component picture was first proposed by 

Gribov and Ioffe (A, 2J, who, however, chose to disregard the short-ranged part 

giving as significant a contribution. On the other hand, we find that the data 

does have a significant amount of relatively short-ranged contributions and so 

it should not be ignored. 

To test such a picture against the data we must parameterize these contri- 

butions in a reasonable manner. We choose as our scaling variable the quantity 

x’ N x [l - M/(2v) + O(M/(~V))~] 

For x N 1 we find x’ z x where x is the natural scaling variable introduced in 

Eq. (III. 4) when we transform to the light cone variables. When v >> M both x’ 

and 2 approach the variable x. Phenomenologically and historically, when the 

lower energy data was plotted versus x’ rather than x , it was found to fall 

on a more universal curve and a duality picture was better satisfied (18). There- 

fore x’ was called a “better” scaling variable. The variable 2 was not tried, but 

our space-time analysis would indicate that % should be a better scaling variable 

since it occurs more naturally in the analysis. However, one can also offer 

possible theoretical reasons for x’ to be a “better’! scaling variable. One such 

reason, which applies to an analog of the short-ranged part, was offered in 

Ref. 19. In view of the ambiguities and multitude of such arguments we feel 

that the petty differences between various scaling variables cannot have great 

physical significance. The best choice of variables is, in our opinion, primarily 

an empirical question. So we use the variable x’ . Then our results can be 
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compared with other recent data analysis. Besides, the plots do look more 

universal. 

A simple uncertainty principle argument leads us to picture the long-ranged 

terms as a shadowing by the nucleon of the vacuum polarization fluctuations of 

the photon. These contribute to the time-like normal threshold cuts in the com- 

plex q2 plane for a fixed real s (19). Imbedded in these cuts are the vector 

meson poles which in some photon initiated reactions seem to dominate the cut 

contributions. Thus it seems reasonable to assume that one can parameterize 

this very long-ranged (- l/(y. P)) hadronic-like part of the photon interaction by 

diffracting vector mesons a la Sakurai (14). This is far more economical in 

parameters than a general spectral representation of the normal threshold cut 

contribution. Also, since the coupling of p” to the photon is much stronger than 

that of w” and Go, we further simplify the analysis by using a single vector 

meson term whose mass we expect to be close to m . 
P 

Though we believe that 

the diffracting vector meson states contribute significantly, we also believe that 

other low threshold multiparticle hadronic states should contribute to this hadronic 

part. The present data is insufficient to pin-point the location or the indicial 

power of the pole or to rule out the possibility of the contributions from the re- 

maining thresholds and poles at q2 > 0. Thus the present data analysis must be 

regarded as a very preliminary one which incorporates only the broad features 

of the underlying physics. 

These arguments lead us to choose the following form for the contribution 

from the transverse and longitudinal parts 

a(vT)(~, Q2) =[%T/(1 + Q2/m$“} JT(S, Q2) 

(IV. 1) 

qvL)j(S*Q2) =(flyL(Q2&)/(l + Q2/m$“] J,~(s,Q~) 
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where u 
2 

YT ’ CyL’ mV are constant parameters, and the functions JT and JL 

reflect the arbitrariness (14c) in extrapolating the pure pole dominance hypothesis 

away from the pole. In the analysis we describe, we use the Sakurai’s (14a) VMD 

choice for these functions, viz: 

JT(s, Q2) = 1 
(rv..2) 

JLsb Q2) = { 1 + Q2/(s-M2) -2 = (1-x)2 

With this choice, the parameters o yT,L 
are related to the vector meson total 

cross section by 

W-3) 

uy L = ( e/fv) 2 c;p 

and their ratio is 
L 

“VP-.& 
4=7-- 

“VP 9 
W-4) 

Such an identification need not be unique as was discussed by Wu-Ki Tung (14c). 

We also tried other possible choices for JL. As we shall see, these do not work 

as well as JLs in our analysis. These choices were 

J = Ll 1+ Q2/(~-~2) I 
-’ = (lex) 

JL2 4Q2M2 + (s + Q2 

w* 5) 

w. 6) 

We expect that terms in the range 1 < a < 3 may also be present, but we 

have no physical model for parameterizing them. It is also clear that corrections 

to our simplified parameterization of the a=1 term, which dominates the small x 

- 27 - 



region, would tend to mask the Q2 -dependence of the remaining terms. There- 

fore, as an expedient, we choose a Pade/approximant in x’ to parameterize the 

remaining contribution from terms with a > 1 and short-range terms. Since 

experimentally crL << uT and since the presently observed u L will be found 

to be adequately pararneterized by VMD, we assume that these terms with a > 1 

are purely transverse. This, admittedly, may be an oversimplification. Thus 

we have chosen the functional form 

xT(SC) (s, x’) = (s-M2)(r 2MG(x’) a-2 ( 1-x’ f 
WC) 

(s, x’) = 
l-2Bx’ + Cx12 

(No 7) 

for the contribution of the not so long-ranged (SC) terms to the transverse part 

of the experimenter’s structure function X defined in Section II. In this form a 

and p are fixed parameters which are not varied by the fitting program. M is the 

target proton mass. G, B and C are the three variable parameters. In general, 

these parameters could be functions of s if one does fixed s fits to the x’ behavior. 

Such a form is also suggested by computing (19) the contribution of single particle 

exchange graphs leading to two particle final states. Such graphs lead to functions 

with complex singularities (19) of the amplitude in the complex x’ plane (at fixed s) 

which on Fourier transformation could lead to an exponential decay in y. P and 

thus act like a rapidly scaling short-range term. However, for our phenome- 

nological analysis we just consider the above form to be a nice approximant. 

With such a phenomenological model in mind, we have analyzed the pub- 

lished data (3J consisting of 198 points in the kinematic range 

I 
0.25 L Q2 L 20.1 GeV2, 3.6 F s F 26.8 GeV2, 0.025 I x’ 5 0.825 

I 
Out of these there are 6 points in the range 

1 
0.25 L Q2 L .5 GeV2 ,x’<O.l and 

I 
about 5 points in the range 0.5 < Q2 < 1 GeV2, x’ < 0.1 . Because of the low 
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Q2 values these are usually not shown by others (3J on the rrscalir@ plots. On 

the other hand, to us there points are of special interest since they are expected 

to be most sensitive to the Q2 dependence of the long range terms. All these 

points are plotted in Fig. 6 assuming R=O. 18. 

Fits of the Real Photon Cross Sections 

Our analysis consists of seeking the most rapidly scaling part of the data by 

subtracting out a reasonable long-ranged hadronic contribution, We believe that 

the relative proportion of these terms is already exhibited by the on-mass-shell 

photon absorption data which is consistent with the asymptotic form 

ojp(v) = oYp(m) + Gp/v W-8) 

The experimental values of the parameters uYp(co) and Gp are strongly de- 

pendent on the low energy cut off v min on the data fitted. Our fits to the high 

energy data from UCSB (13) give 

uyp(w) = 108.0 h 1.8 pb 

Gp = 106.5 zt 13.5 pb GeV w* 9) 

X2/DF = 33.3/34 , vmin = 3 D 7 GeV2 

However, the errors on these parameters could be misleading because of the 

cutoff dependence. Increasing the cutoff tends to decrease uYp(~) and increase 

G 
P’ 

and the range of these variations can be more than twice the size of the 

errors. Furthermore this fit is not unique. We can fit the data with equally 

good X2 by using the forms 

uypw = “rp (DC)) -I- G;/v + T;/v 2 

uyp(v) = ap + bp/v 1’2 

uyp(v) = a’p + bp/v 1’2 + C~/U 3’2 

(IV. 1Oa) 

(IV. lob) 

(IV. 1Oc) 
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In view of these experimental uncertainties we keep a,(w) and Gp as vari- 

able parameters determined by out fits to the inelastic data. We then compare 

these with the real photon (Q2=O) absorption data for consistency. 

Our space-time analysis gives the leading terms which are permitted. For 

example, for a=l, the cross section for large Q 2 can have a leading behavior 

(1/Q2) which gives a scaling contribution to vW2 with finite intercept at x1=0. 

The asymptotic constant real photon cross section u*(m) indicates the presence 

of such a term. From Eq. (IV. l), we note that the longitudinal vector cross sec- 

tion has this leading behavior while the transverse one has the nonleading behavior 

( 1/Q4). Pure VMD is ruled out by the finite value of R for large v and Q2; but 

since we now admit the possibility of a short-range transverse contribution, the 

data do not contradict the presence of an important vector meson contribution. 

Our data analysis does not rule out the possibility of a small transverse a=l, 

contribution which would have leading (i. e. , Q: 1/Q2) behavior and hence violate 

transverse VMD. For this reason, it would be interesting to study uT(Q2, V-+CO) 

carefully as a function of Q2. The longitudinal VMD term scales. Its contribution 

to vW2 is 
i 

(47r20) -1 2 
WV uyL) (1-x’) “1. It does not contribute to the real photon 

cross section which is purely transverse. 

This transverse diffractive part is expected and found to be equal for proton 

and neutron targets. This is seen by a fit to the UCSB (13) neutron data which 

gives 

CT,(W) = 105.7 x 3.2 pb 

Gn =54.0&26pbGeV 

X2/DF = 42/34, vmin = 3.7 GeV 

Clearly ayp(m) N ay,(a) within errors. 
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We believe that the remaining energy dependent part of the real photon absorp- 

tion cross section reflects the contribution of 3 = 2 and shorter-range terms which 

lead to nonzero scaling functions when we go off shell (Q2#O). We picture the 

G/v term as the a=2 term caused by interference of the long range part and a 
2 very short range term T/v . If such interpretation as an interference term is 

meaningful then the Schwartz inequality requires 

G2 

T >* I I P- Pm (Iv. 12) 

This leads to contributions which are hard to deduce from the present data since 

they are smaller than the errors on Gp and also somewhat ambiguous due to the 

correction terms discussed in Section III and seen in Eq. (VI. 4). 

A particular feature of a G/v term in the cross section is that it leads by 

crossing symmetry to a real part in the forward Compton scattering amplitude 

of the form 

{Re fltv)]sp = -IG/(24} QNv/vc) (Iv. 13) 

where vc is an arbitrary constant and leads to an arbitrary additive constant in 

the real part. Therefore, in the present non-Regge model one does not need the 

fixed pole at the wrong signature nonsense point a=1 since one does not talk of a 

“Pomeron exchange” and one does not need the fixed pole at the right signature 

nonsense point a=0 since the logarithmic real part is arbitrary up to an additive 

constant (20) D 

Since the shorter range terms with a > 1 are expected to start probing the 

internal structure of the target nucleon, there is no reason to expect them to be 

the same for the proton and the neutron. This, of course, is evidenced experi- 

mentally by the observation that for the nondiffractive parts. 

Gn/Gp = l/2 (Iv. 14) 
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I 

This has interesting implications for the data on inelastic electron scattering 

from neutron targets. 

Attempts toobtain Scaling by Subtracting a Transverse VMD Term 

We first try to find a fit omitting the longitudinal VMD contribution. For 

this purpose, we use a constant R=O. 18 and take m~=m~=O. 585 GeV2 and try 

the following fit to the data as a minimum X2 fit. 

Xp(s,x’,O) = 2MG(x’) a-2 ( 1-x’)p 
YT 

+ 
l-2Bx’ + CX’~ 1 [l+ c(S,x’, B)R] 

(Iv. 15) 

This fit in effect subtracts the transverse VMD contribution to obtain the most 

universal residue. We find that a best fit is obtained when we fix a=2 and p=4 

and u 
YT 

to be energy independent. The parameters of the best fit are 

U 
YT 

= 81.7 h 5.8 pb 

Gp=154.1*7.0pbGeV 

B = 0.31* 0.08 
P 

cP = O* 32 zt O. I9 

X2/~~ = 323.6/194 =1.7 

(IV. 16) 

The residual v W2(sC) and this fit are shown in Fig. 7a. From it we clearly see 

that the subtraction is leading to a more universal v W 
WC) 

than the total 

’ w2(TOT) l 

On the other hand the residual v W 
WC) 

is significantly less univer- 

sal if we make an energy dependent subtraction by vector dominating the whole 

of uYp(v) rather than just uyp(m). This is seen in Fig. 7b. To us this indicates 

that it is only the asymptotic real photon cross section that should be vector 

dominated, corresponding to the photon acting purely as a hadronic state. It is 

interesting to note that after subtraction the residual vW2 seems to vanish almost 

linearly with x’ as x’ ---) 0. However, the slope Gp is somewhat higher and u 
YT 
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somewhat lower than liked by the best fits to the real photon data. This is not too 

worrysome since one can find a compromise solution which is a reasonable fit to 

(2) both sets of data and best fit to neither. Also as we explained G=G2 (0) may not 

equal Lf) . To us this simple subtraction indicates that at low Q2 there is a very 

significant long range contribution in the data which can be reasonably parameter- 

ized by the transverse VMD. However, the rather poor X2 shown in (IV. 16) indi- 

cates that some physical contribution is missing at this stage. We will see shortly 

how the inclusion of the longitudinal VMD term results in a dramatic improvement 

in the fit. 

This model has interesting implications for the inelastic structure functions 

for the neutron. If we assume that R is equal for the neutron and proton targets, 

then experimentally 

G 
P 

= 2 Gn 

So we may expect that the ratio 

(IV. 17a) 

(Iv. 17b) 

since it is dominated by the diffractive _a=1 terms. The difference 

vw2p(s’x’) - VWZn(S,X’) M(Gp-Gn)/(2 n?Jly) x’ as x’+O (IV. 17c) 

since it gets dominated by the a=2 terms in our model. These predictions seem to 

be borne out by the present inelastic data (3J. However, the errors are too large 

to provide a real test. Also as we will see ahead, we cannot rule out an additional 

small &’ contribution coming from the _a=3/2 terms. 

Combined Transverse and Longitudinal VMD Subtraction to Obtain Scaling 

Since the subtraction of the transverse VMD alone did not leave a remainder 

that scaled well, we next study the consequences of assuming that the longitudinal 
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cross section is purely a long range leading term parameterized by longitudinal 

VMD. We find that any one of the three choices for cr 
VW 

fit the 23 experi- 

mentally separated data points (3J for aL(s, Q2). The parameters for these one 

parameter fits (rnc =mE) are as follows 

(9 For qvLjs we get yL = 43.4 * 8 ,ub with X2/DF = 8/22 = 0.4 

(ii) For cr(vL)l we get oyL = 28.6 f 4,6 pb with X2/DF = 4.8/22 = 0.2 

(iii) For a(vL)2 we get uyL = 2.9 -I 0.6pb withX2/DF = 22.7/22 = 1.0 

(IV. 18) 

The smallness of the X2 indicates that the errors on the data are either not inde- 

pendent statistical errors or are very overestimated. Thus this separated data 

cannot distinguish between the various possibilities for o L’ 

We now try to fit the data under the assumption that the longitudinal cross 

section cr L is completely dominated by p-meson a la Sakurai. The total trans- 

verse cross section uT is now assumed to be a sum of transverse VMD ((T 
(VT)’ 

and a shorter-range contribution u 
VW 

which leads to a rapidly scaling VW 2(SC) o 
So now the fitting formula is 

Xp(x’,s, 0) = x (VT) + xT(SC) + E(X’,S, e) XfVL) (IV. 19a) 

where using Eqs. (IV. 1) , (IV. 2)) and (IV. 7) we get the transverse parts to be 

(x’, s) = (s-M u(VT) tx’ 9 ‘1 

N {x’m1t1-xf)2 4uyT)} [m@ls)] * 0; S >> (mi/x’, M2) (Iv. lgb) 

~(,,+x’ 9 s) = (s-M21 uT(SC)(X’ 9 s) 

= 2MGx’a-2(1-x1)p I l-2 Bx’ -I- Cx’ -1 ,(Iv 0 19c) 



and the longitudinal part is 

xtvL) (x1, s) = (s-M2) qvL)(x’ , s) 

N { ~~~'(1-x')~ (rn; oYL)] ; s >> mt/x’ , M2 ( (IV. 19d) 

In these expressions we should observe that scaling at a given x’ occurs only when 

s >> m$x’ , M2 . 
_I I In the data analysis rnt , a and p are fixed parameters and the 

other 5 parameters are variable, 

Using such an expression with n$ = rn: = 0.585 GeV2 we find that the best 

fit is obtained when we fix a=2, p4. The parameters of the fit are 

ajT 
= 97.5* 6pb if= 0.58 z.k 0.09 

OjL 
=56.3*5pb 

Gp = 117.5 * 7 pb GeV 

BP = 0.63 * 0.07 

cP = Ogg6 * O* l8 

X2/DF = 187/193 = 0.97 

(IV. 20) 

The residual v W2(sc) and this fit are shown in Fig. 8. From the X2 and Fig. 7 

we clearly see that v W 
WC) 

in this case is significantly more universal than that 

obtained by assuming a constant R and subtracting just the transverse VMD con- 

tribution. This indicates that the Q2 dependence of the longitudinal part is dif- 

ferent from that of the transverse part. The energy dependence and the relative 

proportion of the above terms in v W2 is shown in Fig. 5. From this figure it is 

clearly seen that for large x’, the nonscaling caused by the transverse VMD term 

’ w2(VT) is compensated by the longitudinal VMD term VW 2(VL)’ The opposite 

happens for small x’. That is partly why the present parameterization works 
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better than the one, in Eq. (IV. 15)) without the longitudinal VMD. The energy 

dependence in v W 
WC) 

is due to the kinematic factors relating MWl and I, W2. 

If we take this “p-dominance” model seriously enough to identify the param- 

eters of our fits with the actual cross sections, then we would expect the 

real photon absorption cross section to be given approximately by 

uyp(v) = uyT + G/v 

and 

t= 

= (98*6) + (118*7)/v pb 

ZYLL 
u 

-0 
= 2 0.58*. 09 

(IV. 2 la) 

(IV. 21b) 

It is satisfying that this agrees surprisingly well with the measured real photon 

total absorption cross sections and the separated longitudinal cross section, 

although the latter is of course not a completely independent result. 

This fit is rather sensitive to the choice of the factor J 
Lj 

and the parameters 

2 mv, a and P. If one uses the factor JL1 instead of JLs one can again obtain a 

reasonable fit with a X2 of 1.1 per degree of freedom. However, JL2 leads to 

a poorer fit with a X2 of 1.6 per degree of freedom. This indicates that if a 

longitudinal VMD-type term is to be included it must fall at least as rapidly as 

(l-~‘)~ for large x’ and Q2. This is not surprising. Within the framework 

of this model, JLs is much more probable than either of the other two choices. 

The sensitivity to /3 is also of a similar nature. If ,0 was 3 instead of 4 one 

would again obtain a reasonable fit with a X2 of 1.1 per degree of freedom. 

This changes to 2.3 if @=2 and a very poor fit is obtained if @=5. 
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The sensitivity to a is rather strong. a=3 or 3/2 lead to poor fits. This 

indicates that the leading behavior at small x’ corresponds to an a=2 term. 

However, this does not rule out small additional contributions with different 

values of a or even some energy dependent factors. 

The fit is also sensitive to the value of the vector meson mass rnVo In fact 

a fit with rnt = 1.05 GeV2 gives the most minimum X2. Then the parameters 

are 

OjT 
= 70.7 * 4;Opb 5= 0.34 * 0.07 

YL 
= 21.0 & 3.4pb 

Gp = 116.0 k 7.8 pb GeV 

cP = 1.23 -f o*25 

X2/DF = 173/192 = 0.9 

This fit is shown in Fig. 9. Comparing Fig. 8 and Fig. 9 we observe that by 

&@.ng m$ from 0.585 to 1.05 we have removed the systematic deviation of the 

data from the fit in the region 0.09 5 x’ 5 0.3. What is the meaning of this result? 

The fact that X2 was reduced by 14 by changing the vector meson mass indicates, 

at least, that there was some systematic correlation remaining in the data when 

fitted at the p mass. This may imply .that some small, but significant, physics 

may have been omitted from our fitting procedure. The most obvious possibility 

is that the use of a single vector meson was too great a simplification. There 

is also a mass continuum, and the larger mass fit may indicate that the “center of 

gravity” of this continuum is well above the p mass. This seems implausible to 

us because of the poor agreement of (IV. 22) with the real photon cross section. 

If we were to constrain the parameters so that they simultaneously give a 
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reasonable fit to the real photon cross section, the smaller mass is clearly 

preferred. We are also influenced by the likelihood that the low mass non- 

resonant 277 virtual states (usually associated with the “Drell processes”) give 

an appreciable (10-20s) contribution to the real photon cross section. A more 

likely possibility is that this small systematic correlation may be due to a 

neglected a=3/2 contribution or to the oversimplification of incorporating the 

a=2 term only in the scaling contribution. However, lacking a detailed model 

of the Q2 dependence of these terms, we were unable to do more. Because of 

systematic errors in the data due to effects such as radiative corrections, it is 

probably premature to attach too much significance to this rather small effect. 

The presence of these systematic errors in the data was indicated to us 

by the small values (CC 1) of X2 per degree of freedom obtained when we tried 

to make fixed s fits to the data, with our parameterization. In the absence of 
n 

independent statistical errors, the XL alone need not be a very reliable criterion 

for the goodness of the fit, and so one must exercise some caution in fitting this 

data. In particular, one should also calculate the mean deviation to check that 

there are no systematic deviations. For example using such tests we found 

that if we kept rnc = m2 
P 

= 0.585 GeV2 and relaxed the X2 to be not quite a mini- 

mum one could reduce the systematic deviation in 0.09 I x’ i 0.3 by increasing 

YT 
and decreasing G. This just illustrates some of the practical ambiguities 

in the determination and the interpretation of the parameters of our fits. 

In the present two component picture, R does not diverge but instead scales 

when Q2 >> m2 V’ In Fig. 10 we plot the value of R obtained from our parameteri- 

zation and at present energies it seems to increase with Q2 at a fixed x’. 

Ultimately it will scale. This again appears consistent with the present separ- 

ated data as seen in Fig. 6b. 
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Consequences for Sum Rules 

From our best fits we can extract the scaling functions and evaluate the 

various sum rules. The results are as follows 

(i) The Bjorken and Paschos sum rule (21b) 

/ 

1 

0 
dx’ vw2(sc)(x’) = 0.09 

1 

J dx’ ’ w2(TOT) (x’) 2: 0.15 * 0.02 < 2/9 
0 

where VWZtTOTj = Vw2tscj + yw2tvLj since v w2(vT) + 0. 

(ii) The Gottfried sum rule (22) 

1 

s 0 
$vw 2tsc) (x’) = 0.46 < 1 

1 

I- dx’vw ‘0 x’ 2(TOT)(x’) = * 

The Bjorken and Paschos sum rule leads to a value too small to be compati- 

ble with a quark parton model without gluons (23). The Gottfried sum rule di- 

verges. However, if we believed that only the short range contribution should be 

associated with the nature of the nucleon and thus the partons then we might only 

integrate v W 
WC) 

/x’ . This would then lead to a value much less than 1 in con- 

tradiction with the field theory result of Drell, Levy, and Yan (21c). However, 

as they emphasize (24), the parton picture is not covariant and only applies in 

the infinite momentum frame. In their model the multiplicative powers of x’ in 

v W,(x’) which are different from 2 (indicating long ranges) are obtained when 

they exponentiate a series of terms. So then we may really need to integrate 

’ w2(T(-,T)(x’)/x’ l 
Then their inequality for the Gottfried sum rule will be 

satisfied (as co > 1) by the present data if and only if they allow the presence of 

the longitudinal component. This, of course, will give R f 0. 
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V. DETAILED DERIVATION OF THE FINITE ENERGY REPRESENTATION 

Assumptions 

We now give the details of the derivation of the finite energy representation 

that we have used in Section III for the inelastic structure functions and cross 

sections . This was based on the following assumptions on the space time struc- 

ture of the forward matrix element of the current commutator: 

(i) On the surface (y2=O) of the light cone, the invariant functions C(y2,y- P) 

have the leading singularity which is weak enough to lead to asymptotically “scaling” 

structure functions. This restriction leads to the following canonical light cone 

structure 

iCl(Y2,~*P) = E(Y+) &y2) fs(~2sy+l + E(Y+) W2) fe(y2,y+) 

iC2tY2,Y+) = E(Y+) ety2) f2tY2,yP) 

where fj(y2, y. P) are real and even functions of ye P which are integrable near the 

surface of the light cone y2=0. The mass spectrum condition requires that the one 

dimensional fourier sine transforms like 
00 

g2(x) = 87~ 
J 0 

W-2) 

have finite support -1 I x 5 1. This is not obtained in our analysis but most 

easily seen (4a) using either the DGS (11) or the JLD (11) representation. Examples 

of such light cone behavior are easily obtained using free field theory (3. That 

is why we call these singularities in Eqs. (V. 1) as the “canonical singularities” Q 
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(ii) At large longitudinal distances fj(y2 = 0, y* P) either fall off exponentially 

or have a pure power law behavior of the form 

for y*P>>l (V-3) 

where a is a real number. This is a reasonable @,7J physical assumption since 

it leads to structure functions Wi which are compatible with the experimental 

data. It is not the most general one,but that it is consistent with the mass 

spectrum condition is seen by inverting Eq. (V. 2). Theoretical models of such 

behavior will be investigated elsewhere. 

Fourier transforming this assumed space time structure we can represent 

the inelastic structure functions as 

00 
vW2(Q2, v) = 2 M2Q2v s d4Y sintY.p)etY~p)etY2)f2(Y2,Y~p) 

-CO 
(V.4a) 

co 

M.Wl(Q2,v) = 2 % M2Q2v 
Q 

s d4y sin(ySP)e(yoP)e(y2)fT(y2,yoP) (V.4b) 
-CO 

Here we have used the functions C2 and CT for the sake of symmetry and to 

clearly see the approach to scaling. However, we must remember that the pairs 

of functions that occur in a kinematic singularity free decomposition of C are 
PV 

either the pair 0 These are related by 

Cl = (P*a)2 CL 

c2=cT+ocL 

(V. 5a) 

(V. 5b) 

using Eqs. (V. 1) the two sets are seen to have consistent leading light cone 

singularities since as a distribution 

y26(y2) = .o tv. 6) 
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These related pairs with different light cone singularities merely reflect the fact 

that the nature of this singularity is intimately connected with the tensor chosen 

to multiply the invariant function. There is no unique “natural” choice. Our 

choice involves only e-function singularities on the surface of the light cone. 

As we will see at small Q2, this can lead to nontrivial Q2 dependence even in 

parts of the structure functions which ultimately “scale” for large Q2. This is 

because of behavior inside the right cone. A term involving leading a-function 

singularity masks this Q 2 dependence by restricting the function to the surface 

of the light cone right from the start. The nontrivial Q2 dependence is then 

incorporated in the nonleading terms. This rearrangement corresponds to 

writing a function as 

where 

A 2 
F(Q , x) = F@ , x) + K(Q2, x) 

WQ2,x) 4 0 
2 

as Q-+m 

(V-7) 

Since we are interested in the approach to scaling, it is convenient for us to 

choose the functions C2 and CT. All our conclusions can of course be reproduced 

using any other choice provided one is careful about the nonleading terms. They 

can also be derived using other methods. In fact Brown (12) has checked some 

of these results using the JLD representation. Pedagogically, however, our 

method is somewhat more direct. 

Since from Eqs. (V. 4) we find that MWl is of the same form as v W2 except 

for the additional factor (1/2x) we only discuss v W2. The results for MWl can 

then be easily written down. So we start with Eq. (III. 7) and first discuss the 

conditions for its convergence and the nature of our approximation before ob- 

taining our representation for v W2. 
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Convergence of the Integrals 

Inour analysis the assumption of scaling restricts the nature of the light 

cone singularities of Ci. Similarly the allowed values of a that can lead to a 

Regge-like behavior are restricted by the condition that the asymptotic power 

law l/(y* P)’ be continuable to small y. P without making the integrals diverge. 

Since these restrictions on the assumed behavior of fj depend upon the conditions 

that the integral in Eqs. (III. ‘7) p (III. 8) and (V. 4) converge, it is of interest to 

study, briefly, these conditions. Here we study the convergence of these inte- 

grals. Since Wi(v, x) can be measured at any given point (v, x) the overall inte- 

grals must exist as ordinary functions rather than distributions (which only make 

sense when integrated with a test function). To study this convergence it is con- 

venient to write Eq. (V. 4) in terms of ordinary (t, z, yL) variables rather than 

the light cone variables introduced in Eq. (III. 5). 

As an example we consider 

v W2(v, Q2) = 2nQ2 VI(V) q3) (V. Sa) 

where from Eq. (V. 4a) 

m t (t2-z2) 

I(w3) = 2 
s 

dt sin vt 
f 

dz cos 
0 0 

(q3z) 
/ 0 

dhf2@, t) 
(V. 8b) 

The assumptions on f2 guarantee convergence in the finite t region, so we need 

to study the convergence of this integral at the limit t=eo. 
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We first reduce the integral to a two-dimensional one by integrating by parts 

with respect to z 

co 
I(v ) q3) = + 4 s 

t 
dtsinvt 

43 0 
dz sin (q3z) z f2(t2-z2, t) 

Consider the z-subintegration, which is 

K&i34 =( CIZ z sin (q3z) f2(P-23, t) (V. 1Oa) 

W.9) 

1 tb =- 
/ 2 0 

dA sin (q3fi)f2(h, t) (V. lob) 

Since we expect f2 to decrease like t -1 , the final z-integration will be conver- 

gent if the other explicit t-dependence in (V. lob) does not lead to a result which 

cancels out this decrease. A reasonable way to assure convergence seems to 

be to require 

a 

/ dh f2(h, t) = e(t) < O(t-e) (E ’ 0) 
0 

(V. 11) 

(In fact, we expect E 2 1.) The t-dependence in the sin factor of (V. lob) then 

seems harmless, but we have not tried to give a rigorous proof that it causes 

no trouble. In fact, it is not difficult to construct examples where K decreases 

less rapidly than e(t). However, we assume that for reasonable physical func- 

tions (V. 11) implies convergence of (V. 8). 

The Approximations 

To obtain our representation we need an asymptotic expansion of the fourier 

integrals (V. 4). This can be done by using @,9J the Reiman Lebesgue lemma or 

the method of stationary phase depending on the nature of the integrand. These 
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have already been discussed in Section III. The asymptotic expansion is obtained 

by repeated partial integrations (8J as follows 

b 

f .a 
dy ;o”stv~) WY) = - 

+ 1 r f 
bdy 

v a 
(V. 12) 

where r is any nonnegative integer such that all terms in the expansion converge. 

In our approximation to the structure functions we will always ignore terms 

of order Q2/v 2 (= Mx/v). Because of this we could make the approximation of 

ignoring y- in the second argument of f2 in Eq. (III. 7) and freely throwing away 

the contribution at infinity on integration by parts. We now justify this and show 

that the corrections to this approximation are of order Mx/v compared to the 

terms which are kept. 

To see this we can perform one integration by parts with respect to y- in 

Eq. (III. 7) and get 

vW2(x, v) = 4nxv l:y+Lly- W;Y--;~;) ZY+ f2(2y+y-, Y++;Y-) 
1 

2Y+Y. 
-I- 

f 
dA1 a -- 

0 2 ay+ f2 q++ ( Y- (V. 13a) 

Our approximation ignores the second term and replaces (+ 2 y +Iy -1 
by just y, in 

the first term. It allows ignoring the surface terms at infinity in further inte- 

grations by parts with respect to y- since f2(2y+y-, yJ vanishes as y- +oo due 
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to its first argument. The correction to our approximation can be written as 

vW~~(V) = 47rxv 
/ I- 

dy+ 
O 0 

dy- cos(&--;;ys Y++;Y- 

- f2(2Y+Y-’ dh’ a -- 
2 by+ f2( A3 y++;y- (V. 14a) 

and the total v W2 as 

a0 00 

v W2(x, v) = 4nxv 
s f- 

dy+ dy-cos(;y-- 
0 0 

(V. 14b) 

We can perform one more partial integration with respect to y- obtain 

vw2c(x’v) = sin(;y--xy - $ 

-f2PY+YyYJ] + Y+[$+f2 (“.Y++;Y-jih=zyg 

2Y+JL 2 
+ 

s 0 
dh + +- f2(h, Y+++Y- 

@y+ 

= (V. 15) 

Since the integrand in parenthesis in Eq. (V. 15) is an integrable function of 

y and y, we can use the Reiman Lebesgue lemma (or perform one more partial 

integration) to see that the integral in Eq. (V. 15) decreases at least as fast as 

l/v. Therefore this correction term has the leading behavior (x/v) GC2(x) which 

is similar to the nonleading short range terms in Eq. (III. 9). These vanish in 

the Bjorken limit but give a contribution of order l/v 
2 to the total cross section 

at any given Q2, like the short range terms in Eq. (III. 9). Therefore they 
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affect the coefficient T of the l/v 2 term in Eqs. (IV. 10) and (IV. 12) which makes 

the interpretation of Eq. (IV. 12) somewhat ambiguous. This can also be seen 

from Eq. (V. 45). 

Long Range Contributions 

Let us now consider the remaining contribution to v W2. 

co 03 2y+y- 
vW2(x,v) -vw2c(x,v) = 4nx_v dY_ sint;Y--;j;) 

s 0 
~ f#b Y+) 

(V. 16) 

Here it is understood that we must ignore the contribution at infinity on inte- 

grations by part with respect to y- in agreement with Eq. (V. 14b). 

We first determine the contribution of a term like Eq. (III. 12) in f2 which 

has pure power behavior in y+ for large y+ and is moderated by a smooth cutoff 

as y+-+ 0. For example 

where w* 17) 
gf) ---) 1 when y+/Rp >> 1 

O(Y+/R~? when y+/Rp << 1 

such a term is illustrated in Fig. 4. 

If we change to the variables @= iy- and q=y+/v then the contribution of 

such terms to v W2 is 
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The variable v has disappeared from the integrand except for the argument of 

&‘q F//R ) . If th 
P 

e power a is such that the integral remains convergent (near 

rl (a) = 0) even when g2 is replaced by 1 everywhere, then we can write 

vwf+x, v) = (l/@) Q 2 (a) 2 (4 G2- (Q ) + VW, + 0 (V. 19a) 

where 

(V. 19b) 

(V. 19c) 

This rearrangement of the integral has been done by adding and subtracting the dashed 

pieces to fig) as shown in Fig. 4. The first term reflects the effect of extrapo- 

lating the large longitudinal distance behavior all the way to very small distances 

(a) by adding a short range piece which is subtracted by the part VW, . 

To determine the range of a for which this decomposition is possible we have 

to study the convergence of the integral in Eq. (V. 19b) for small q. So we inte- 

grate with respect to p to obtain a result of the form 

=-87rq2 h?)‘(O) + O(q3) 

(V. 2Oa) 

(V. 2013) 
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and 

--4q h?)(O) -I- O(+$ (V. 2Oc) 

The integrals in (V. 19) clearly converge if a < 3 due to the small r] behavior 

in (V.20). For large Q2 we can partially integrate in Eq. (V. 2Oa) and use 

(V .20b, c) to obtain the asymptotic behavior 

G@+Q2) N 2 
+ (Q2/2)“-2 @) 

which leads to a “Regge-like” scaling form when Q 2 
and v are large 

(V. 21) 

(V. 22) 

The question of how large v and Q2 have to be before the scaling behavior of 

Eq. (V.22) sets in was discussed in Section IIl. There we saw that we need at 

least “Rp >> 1 for the leading term of the asymptotic expansion to be a good 

approximation. We also saw that we need Q2 >> m2 (when L%? is below LZ? in Fig. 3) 

to have the integral obtain contribution from very close to the surface of the light 

cone and thus scale. We also saw in Eq. (III. 6) that such Regge-like behavior 

is only meaningful for region of small 1x15 l/R - 0.2. 
P 

The behavior of the total virtual photon absorption cross section at fixed Q2 

is then found to be 

c@) (Q2, v) = & (Q2) ,v a-’ (V. 23) 

This is Regge behavior corresponding to a Regge trajectory with the intercept 

o!(O) = 2-a , a<3 (V. 24) 
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A remarkable feature of these results is the intimate relation between the 

Regge power of v dependence and the power of Q2 dependence. They are both 

determined by the longitudinal distance behavior and are such as to lead to a 

scaling vW2 (10). It should, however, be observed that the relation (V. 24) 

depends on the nature of the light cone singularity also. In particular if we did 

not have the scaling assumption to restrict the nature of this singularity to be 

tfcanonical I’, we would not get a similar unique relation. Such a situation would 

occur if one performed similar-analysis for hadronic reactions (7J like the for- 

ward ~1?‘f, nN, NN, KN scattering, etc. There for each different type of light 

cone singularity one could obtain a different analog of the relation (V. 24). In 

case the light cone singularity structure in these hadronic reactions was 

“canonical” like the forward Compton scattering, then we could expect the long 

range terms to be rather important since the mass Q2 of the probe is relatively 

small. 

Examples of Long Range Terms 

To gain familiarity with the representation in Eq. (V. 20) we consider a model 

for the functions S(a) and C(a) which involve the nonleading terms in rl. Such non- 

leading terms are also interesting since they are sensitive to the derivatives of 

the commutator at the surface of the light cone. Naively, this is seen by using 

the distribution theory result for any positive integer n 

1 ~ s odg p eiP = ei(n+l) ‘I2 (V. 25a) 

This is obtained from 

w 

/ 
dp p ei(x+i’)P = e 

i(n+l) n/2 * i(n+ 1) n/2 
Lim di/ y(m+lkl e’y= e r(n+l) 

c--,0+ 0 s 0 

for Rex > 0 and Ren > -1 (V. 25b) 
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If we use the Taylor expansion near the light cone 

we obtain for small 9 

* C@)(7J) = 2n c (27j)n 
n=l 

[$ “p+A)-j h=O cos {(*l)d2) 

(V. 26) 

(V. 27a) 

(V. 27b) 

Let us first consider the free field model of Ref. 4b consisting of the Born 

and seagull diagrams. In this model one gets the canonical light cone singularity 

with 

f,(y2,y*P) = 9 (V. 29a) 

I 
The lack of y2 dependence indicates the absence of form factors. We also note that 

(V. 29a) is an example of the behavior obtained from s-channel resonance terms and 

that it is not within the class of functions we have assumed for f2. This may indi- 

cate that our class is too narrow. For the present, however, our class is broad 

enough to cope with the data. It must be kept in mind, though, that future experi- 

mental results may demand a still broader class. Barring unforeseen difficulties, 

we believe that the present arguments could easily be extended to a more general 

set of functions. In any case, (V. 29a) seems unphysical since it leads to 

vw2 = 4n2 x [8(x+1) - 8(x-l)] (v. 29b) 

which is not a physically measurable quantity. 
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Another, more interesting, example is the diffractive cross section associ- 

ated with the p-meson. We expect h c) to have oscillations associated with the 

o-propagator; for example, it might be a Bessel function of argument mPJ2pv. 

In (V. 19b), we are interested in the large 7 region where we expect the contri- 

bution to veer inside the light cone. Using a typical asymptotic form for such 

an oscillating function, we expect the p-integration to be like 

z 27-j [d/3 cos (/3 - $ Q2q) sin (mp& +b) N&d (V. 30) 

The factor p is a slowly varying modulating factor, and b is some phase shift 

in this asymptotic function. We will use the stationary phase approximation 

to discuss this integral. First the addition formula is used to get sine functions 

of arguments 

The first of these has a stationary phase at 
2 

P=Lm2r, 
2 P 

i.e. c.Q y-=5 2 y+ 
V 

while the second leads to a rapidly oscillating integrand, and hence negligible 

integral. The first phase may be rewritten 

(V. 31) 
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and the resulting integral is easily seen to be of the form 

Const x mp q 3’2~(~m~~2) cos[~(Q2+m~)y+b’] (V. 32) 

where b’ differs from b by 7r/4. Strictly speaking, (V. 32) has been derived as a 

good approximation only for large 71. However, we will try to match it to the cor- 

rect form for small 9 in (V. 20b,c) in order to reproduce the VMD expressions. 

Therefore we require that 

~3’2~(~m~q2) cos(imiq+b’) Q: q2 

~“‘“~($m~q2) sin(irniq +b’) a 7 

Ifb’ # %, we need 

rl 3/2 
Pa q2 

Ifb’ = $, weneed 

73/2 lJarl 

(V. 33a) 

(V. 33b) 

(V. 33c) 

(V. 33d) 

For b’ =0, We may as well consider the two independent cases b’ = 0, $ . 

comparing (V. 33~) and (V. 20~)) we note that hT (l) (0) = 0, and we expect a non- 

leading Q2 dependent e . In this case, if we call the modulating factor @, 

G(l) = 4 
T 

-ab,m p fiv vos[$(Q2+-$/ @pprpT), (b’=O) (17.34) 

We have anticipated the physical interpretation and normalization of the result 

by supplying the subscript T for transverse VMD and ow for our simplifying 

assumption that all the asymptotic cross section is in this term. The correct 

form of 4 is not known, but a simple exponential leads to a very nice result: 
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This has a resonant behavior when Q2 s 
2 

-mp (but not with quite the right strut 

lure), and for spacelike Q2, the approximation I’ + 0 leads to the transverse 
P 

VMD expression we have used in our data analysis. 

We shall not discuss the other case b’ = i in detail. Suffice it to say that it 

leads to a result 

This has the leading Q2 behavior (as it must, since h(0) # 0 in this case). It is 

not directly of longitudinal VMD form, but a linear combination of (V. 35) and 

(V. 36) can obviously give that form. 

Short Range Contribution 

The next step is to study terms with a _ > 3 for which the large longitudinal 

distance behavior cannot be extrapolated to short distances. We can also con- 

sider the shorter range terms which decay exponentially as a function of longi- 

(a) tudinal distance and the correction terms in VW, in Eq. (V. 19c) along with 

the a 1 3 terms and call these collectively the “short range terms”. In this 

case we can integrate Eq. (III. 7) by parts twice with respect to y to get 

Eq. (III. 8). The behavior of the terms in Eq. (III. 8) even in the presence of 

power law terms with a _ > 3 is the same as discussed in Section III. The special 

case a=3 is interesting in that it leads to functions of the form 5 ln x in the 

second term. When a < 3 the correction term in Eq. (III. 8) is no longer small 

at large v unless Q2 is also large. 

Thus the short range contribution is of the form 

v WtSR) 2 (x, v) = x2 FYI(x) + (x/v) Gy+x) f o(dv2) w*37) 
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This leads to a universal function of x once v is large irrespective of Q2. Such 

short range terms are expected to be important in the very deep inelastic region 

IN,> l/(MRp) . 

With this representation it is easy to study the correction term vW2 @I due 

to replacing g2 (a) by 1 for a < 3. By definition 

y+/R -+ * 
P 

(V. 38) 

So either it is another power in the range a < 3 and leads to “Regge-like” scaling 

behavior or it is a short range term and leads to a universal behavior. Therefore, 

if the longitudinal behavior of the current commutator with canonical light cone 

singularities consists of a power fall off at large y. P which gets moderated at 

small distances inside the target proton, then the asymptotic structure functions 

2 can be expressed as a sum of short range terms like x F (sR)(x) and Regge terms 

like L(a)lxla-! Of course in general this decomposition need not be unique since 

we are not expanding in terms of linearly independent functions. It is also not 

physically meaningful for 1x1 > l/(MRp) as was discussed in Section III, How- 

ever, it is covariant since y2 and y. P are invariants. 

The reason that the short range terms lead to a universal behavior requiring 

only large v is that they always restrict the integral to obtain contribution from 

regions very close to the surface of the light cone even when Q2 and x are small. 

To probe the inside of the light cone and thus obtain nontrivial Q2 dependence 

we need small Q2 and long range terms. 

Delta Function Light Cone Singularities 

At this point it is interesting to note that had we used the function CI instead 

of CT in MWl we would have obtained 

ml = (2x)-l VW2 - Mw16 - My* (V. 39a) 
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where (if M E 1) 

(V. 39b) 

where t z y++ iy- and p = Vy- (1+$(23)) and the integral is interpreted using 

the distribution theory as in Eqs. (III. 11) and (V. 25) 0 This is a “universal 

function” of x once ii/F =Q2/(2v2) << 1 for any Q2. Thus it shows no nontrivial 

Q2 dependence and leads to Regge-like behavior if 

fg (0, t) = 4t2 fL(O,t) - t2-a (V. 40) 

The nontrivial Q2 dependence is now contained in the nonleading term 

(V. 41) 

This leads to terms similar to v W2 except for the additional factor (l/v). There- 

fore MWIB gives vanishing contribution in the Bjorken limit. However at small 

Q2 it gives a nontrivial Q2 dependent contribution to the scaling terms and acts 

like the correction K(Q2, x) in the example of Eq. (V. 7). 

VI. SUMMARY AND CONCLUSION 

Let us summarize our results. First we note that our representation is 

independent of whether Q2 is space like or time like. However, it only repre- 

sents the possible leading behavior under the assumption of scaling. What terms 

actually exist in any given kinematic region has to be determined by experiment 

or a theoretical model which satisfy our assumptions. 

We find that for any given IQ21 when we take “the Regge limit vR >> 1 
P 

we can represent 

vW,(Q~,ZJ) = E3 ($‘-1($)~iZ)(Q2/~2) + x~F~~)~+~[~/(vR~)] (VI. la) 
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and 

mltQ2, 7’) = c 
a<3 

(F) a-2 G ta) (Q2/M2) + 1 x F tSR) 
T- 2 ‘I’ (9 + 0 [l/PRp)] (VI. Ib) 

In these expressions the “universal” terms and the orders of magnitude of cor- 

rections are exhibited explicitly. When we let IQ21 >>m2 we get the asymptotic 

expansion 

Gf’tQ2/m2) 2 i (Q2/( 2M2)) g-2 I+ 0 ((Q2/m2)g-3) for a < 3 (VI. 2) 

The mass m2 is the “characteristic mass” of the dominating hadronic component 

of the photon. 

Then in the “finite Bjorken limit vR >> 1 
P and IQ21 >> m2 If we obtain the 

representations for the “scaling functions” 

gz2(x) z VW,(X) = c 
a<3 

,x1’-l Lp’ + x2 FrR)(x) 

Fl(x) = Mwl(x) = ;c ,x\‘-~ L$) + $ xF~)(,) 
_a>3 

(VI. 3a) 

(VI. 3b) 

gL(X) = VW,(X) - 2xmI = c 
a>3 

,X1@ ($’ - I,:‘) + x2 (Fy)(x) - Fy’(x)) 

(VI. 3c) 

As we discussed in Section III and Eq. (III. 26)) such representation of the 

scaling functions is meaningful only in the region of small x (i. e. , Ix1 5 l/R P- Os2). 

For larger values of x we start probing inside the target and the power law gets 

moderated to lead to a behavior like the short range terms. Furthermore kine- 

matics require these scaling functions to vanish for~xi > 1. In our data analysis 

we mocked up these effects by introducing the factors J L 
, 
.(x) which are nearly 
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unity for Ix1 s l/Rp but may fall off at larger x. We should emphasize here that 

such factors are not derivable from the integrals in a general way, but they may 

result from particular models. As we have already discussed, a unique separa- 

tion into such component terms may not be possible. However, a dominant 

power _a may be discernible from the data at small x, as in our data analysis. 

It is also convenient to write the representation for the transverse and 

longitudinal total virtual photon absorption cross sections. 

2 
uT(Q2,V) = “z” a c 

M (l-x) IL913 
(M/zJ)~-’ GEJ(Q2/M2) 

a,tQ2,v) = 

FfR)(x) + Gy) (x)+Gc2(“l +O[M2/(v 3Rp)j} 

(VI. 4a) 

(M/+-l - Gt+Q2/M2) 1 

+$ (M/v) 

(VI. 4b), 

where G c2, .(x) is the contribution of the correction mentioned in Eq. (V. 15). 

The bound a=1 is due to unitarity or the Froissart bound. Gauge invariance 

requires that 

Lim aL(Q2, v) = 0 
Q2 * 0 

(VI. 5) 
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This imposes the conditions 

Gy)(O) + GC2(0) = Gy’+ GCT(0) 

(VI. 6a) 

(VI. 6b) 

Therefore the total real photon absorption cross section becomes 

y(v) 5 UT(O, v) = - (M/v)a--‘G:)(O) ++(M/vf +Gc2(0) 1 

On the other hand there is no a priori reason for L2 (3 T and L(a) to be equal. Thus 

in the presence of the a=1 terms the longitudinal scaling function gL(x) could 

have a finite intercept as x-r0 (with v , Q2-w) . The longitudinal VMD term is 

an example of such behavior. 

The Total Scaling Functions 

Before we conclude it is useful to obtain a representation for the total scaling 

functions in the presence of the long range terms, and also to discuss some im- 

plications of the mass spectrum condition (4a). 

If we integrate by parts with respect to y+ and y- in Eq. (V. 14) we obtain 

vW,(x, v) zz 2F2(“, v) = 954x) + @&‘“, V) 
Ll 

where the scaling function is 

(VI. Sa) 

(VI. 8b) 

And &2Z2c(x, v) represents the correction to scaling at finite energies 

W W 

g2c(x, v) = (x/v) GC2(x) -t 87r JJ dy+ 
s2 

0 0 
dy- ~0s (~Y--XY+) dy 8y 

-I- - 
[ Y+f2(2Y+Y2 Y+)] 

(VI. 8c) 

- 59 - 



As already discussed in Section V, at large Q2 the magnitude of these corrections 

can be of order x/(v R , 
1 d 

m2/Q2 . 
I 

The integral in Eq. (VI. 8b) is well defined 

for both the short and the long range terms. To extract the a=1 term explicitly 

we subtract the limit 

Lim 8n tf2(0,t) = Lv’ 
t+* 

(VI. 9) 

in Eq. (VI. 8b) and integrate by parts with respect to t to get 

g2(x) = Lf) -I- xpdt sin(xt) {8n tf2(0, t) - Lf)] 
0 

(VI. 10) 

Thisis similar to the result obtained by Jackiw, Van Royen and West (4b) 

and others (3, which can now be used even in the presence of a=1 term without 

resort to distribution theory. However our representation for sL(x) is different 

from theirs due to the presence of the long range terms. 

.!2ZL(x) = [Lr) - L$ + x “dt sin (xt) 8nt f2(0, t) - fT(O, t) 1 J 0 1 [ ]-~~~-L~~] 

(VI. 11) 

These long range terms in gL(x) would also clearly destroy the Schwinger term 

sum rule derived by Jackiw, Van Royen and West (4b). 

The mass spectrum condition requires the functions $?Z2 in Eqs. (VI. 8, VI. 10) 

to vanish for 1x1 > 1. So we can Fourier transform Eq. (VI. 8b) to obtain 

f2(W) = J&x (y) g2tx> (VI. 12) 

This equation, which is based on scaling and finite support of .g2(x) implies that 

the total f2(0,y. P) is an entire function of y-P. This has already been emphasized 

by Brandt and Preperata and others (25). Similarly fT(O, y. P) is an entire function of 

y. P. However, it should be clear that the total f2 may be considered as a sum 
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of terms, as in Fig. 4, which are individually singular and lead to functions 

that are nonvanishing for 1x1 > 1 as long as their sum has the proper analyticity 

and support. Such is the situation for our separation in the case of the long 

range terms. This separation was useful to study the small 1x1 behavior which 

is controlled by the behavior of f2 at large ye P. But it is useless when discus- 
n 

sing g2(x) for large x (near x=1) or the integrals of x”g2(x) that occur in the 

Cornwall-Norton sum rules (25). 

We can use Eq. (VI. 12) to see that realistic scaling functions g2(x) lead to 

f2(0, t) whose asymptotic behavior can be adequately described by the class of 

functions considered by us. To be specific, we consider two typical examples: 

(i) Suppose g2(x) = (l-lx,) 2 8 (1-1~1). Then using Eq. (VI. 12) we get 

47r2 f,(O, t) = t-‘lt da! (F) - 2te2+ts2[cos t t t-l sin t] 

This is like a leading a=1 

11/3 ast-+O 
+ 

t (T/2)/t as t-r* 

term. However we should also note that in this 

(VI. 13) 

example f2 contains nonleading terms t -2 cos t and t -1 sin t which are like 

(V. 29a) and which do not belong to the class of function we have choosen since 

they have long range (a < 3) but oscillate. 

(ii) If g2(x) = 1x1(1-1~1)~ 0 (1-1~1)) then we get an a=2 term 

4n2 f2(0, t) = t-2 - 6t-5 (t-sin t) 

-4 l/20 as t--,0 

l/t2 as t-+* 

(VI. 14) 

From these examples we see that the oscillations of f2(0, t) occur due to finite 

support of $X2(x) and do not affect the leading smooth power fall off at large 
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distances. Therefore they are unimportant for the behavior near x=0. However, 

these oscillations will strongly affect the threshold behavior near 1x1=1. To the 

extent that s-channel resonances lead to oscillations, like in Eq. (V. 29a), they 

may be expected to affect this threshold behavior. The implication of these 

observations for threshold behavior and duality (18) will be investigated elsewhere. 

Final Remarks 

What we have done is to supplement Bjorken’s (5J original proof of asymp- 

totic scaling to finite energies. Once we accept his proof of the existance of the 

asymptotic scaling functions, we can restrict (4J the singularity structure on the 

surface of the light cone to be “canonical”. Then we can perform our analysis 

which shows that these scaling functions should be attained rapidly at finite v and 

Q2. In fact the conditions for scaling to set in are 

v Rp >> 1 and Q2/m2 >>l 

where Rp is a size characteristic of the target proton (say the proton radius) and 

m2 is a mass characteristic of the hadronic constituents of the incident photon. 

We find that the rapidity of approach to scaling and the form of the scaling functions 

obtained (specially at small x) are strongly dependent on the form of the longitudinal 

distance dependence of the current commutator. A very slow fall off at large longi- 

tudinal distances can lead to a slower approach to scaling as we increase Q2. In- 

terestingly, a slow power fall off at large longitudinal distance leads naturally to a 

Regge behavior in v for the total cross sections and a Regge like term in x for 

the scaling functions at small x. Furthermore there exists a very simple rela- 

tion (V. 24) between the powers of v, Q2 and x and the power of the fall off in y. P. 

As we discussed earlier, this relation will be sensitive to the nature of the light 

cone singularity. In particular if we did not have the scaling assumption to 

restrict the nature of this singularity to be canonical we would not get a similar 
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unique relation. Therefore, care must be exercised in extending our analysis 

to on-mass-shell hadronic reactions (7J 0 

Since we were dealing with a causal commutator, we could determine the 

order of magnitude of the transverse sizes involved in the interaction. We dis- 

cussed these and their consequences for momentum transfer distributions in 

Section III. In particular the momentum transfer distribution would be expected 

to broaden at large Q2. (15b). Such a simple discussion would not have been 

possible had we been dealing with a noncausal object. 

Our space-time analysis and the data analysis leads us to interpret photon 

interactions in terms of a two component picture. These components are the 

short-ranged “bare” interactions and the long-ranged “hadronic” interactions of 

the physical photon. Interestingly, the effect of both these contributions seems 

to be present even at relatively low Q’. We have no means, at present, to decide 

whether these represent two distinct dynamical processes or just the two extreme 

features of a single dynamical process. The possibility of extending such space- 

time analysis to nonforward amplitudes was already anticipated by Gribov, Ioffe, 

and Pomeranchuk (1). The discussion of such extensions and construction of 

models to understand the pure power law (?J fall off in y. P will be left for later 

publications. 

The picture of photon interaction that we have developed is applicable to 

any target. In particular the target could be the nucleus. As a matter of fact 

the present work was motivated, in part, by trying to understand the physics 

of photon absorption in nuclei, which has some of the features of strong inter- 

actions (1,26). It is expected that if the photon interacts very locally with a 

nucleon, the presence of other nucleons should not influence the probability of 

interaction with any particular nucleon (aside from the very small absorption); 

and the total cross section should be proportional to the number A of nucleons. 
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The observation of strong shadowing effects, like slower A dependence, is 

then circumstantial evidence of the long range part of photon absorption. Pre- 

sumably this strongly shadowed part is the a=1 ‘hadronic cloud”. On the other 

hand, we do not expect the short range part to be shadowed at all. Then the 

interesting question that arises is the extent to which the other Regge-like terms, 

with I < _a < 3, get shadowed. We expect them to be partially shadowed. Attempts 

to determine how partial is this shadowing will be made elsewhere. As an example 

if the _a=2 term was really an interference between the strongly shadowed a=1 

term and the unshadowed short-ranged term then it is not unreasonable to expect 

it to be partially shadowed. To the extent that the relative proportion of these 

terms, in our two component model, changes as Q2 increases we would expect 

the amount of shadowing to decrease at large Q2. 

This interference model would also have interesting implications for the 

photo- and electroproduction of vector mesons off nucleons. In particular we 

expect that the vector mesons will come primarily from the diffractive (a=l) 

and the interference (a=2) parts of the amplitude, and not from the direct short- 

ranged part. 
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FIGURE CAPTIONS 

1. Kinematics of inelastic electron scattering. 

2. The “hadronictl contribution of a physical photon in the rest frame of the 

target. The left half of the diagram represents the virtual photon trans- 

forming to hadrons some distance before reaching the nucleon and creating 

some final state at the vertical dashed line. The complete diagram repre- 

sents the imaginary part of the forward Compton scattering amplitude, which 

by unitarity is related to the square of the matrix element. If the photon 

disappears at the origin of space-time, its point of re-emission is repre- 

sented by y. 

3. Schematic space-time picture of forward Compton scattering. The four 

vector y represents the space-time gap in the propagation of a virtual 

photon due to its interaction with a nucleon. The shaded area of dimension 

Rp represents absorption and re-emission inside the proton (short range 

contribution). The strip of thickness l/v along the light cone represents 

the region of principle contribution in y- if y, is not too large. For larger 

y+, this region veers inside the light cone as indicated by the curve %. The 

place where this happens is indicated by .$Z’( w v /m2) and 9?(- v /Q2) indi- 

cates the characteristic distance which is important in the long range 

contribution. 

4. Decomposition of a cutoff power law term into a pure power law plus short 

range term. 

5. The results of fitting a model consisting of VMD terms plus a scaling con- 

tribution to deep inelastic electron scattering data. The bottom curve is 

the transverse VMD contribution, the second is the non-VMD contribution, 

the third is the longitudinal VMD contribution, and the top one is the total 

theoretical fit to the data. 
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6. The deep inelastic electron proton scattering data. 

a. v W2 calculated assuming constant R = 0.18. 

b. The observed values of R. 

7. The results of subtracting a transverse VMD contribution to obtain the 

most universal residual VW 2(SC) * In (a), this VMD is applied to a constant 

real photon cross section, and in (b), to an energy dependent one. 

8. The results of subtracting both transverse and longitudinal VMD contribu- 

tions using rnt = rn: are shown in the top curve. The bottom one shows 

v W2 from the experiment using the longitudinal cross section which results 

from the fit. 

9. The same as Fig. 8 with m2 v adjusted to give the most universal residual. 

10. The ratio R obtained from our fits shown in Figs. 8 and 9. 
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