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ABSTRACT 

Hadronic two-body amplitudes involve two components. The imaginary part 

of the nondiffractive component R is dominated by the most peripheral impact para- 

meters (b N r). The imaginary part of the diffractive component P has substantial 

contributions from all impact parameters b 2 r. We study the energy dependence of 

the b-representations of both components as well as various possible forms for the 

corresponding real parts. We show that the following three assumptions are mutually 

inconsistent: (i) Im R(s, t) is always dominated by b - r terms; (ii) Im R(s, t) shrinks 

indefinitely as s - 03, (iii) r approaches a constant as s - 00. We define three 

classes of models obtained by abandoning, one at a time, these three assumptions. 

We discuss the complex J-plane structure as well as the asymptotic phase of the R- 

amplitude for each of these classes and propose various experimental ways of dis- 

tinguishing between the models. A detailed analysis of Re R indicates that, while in 

certain cases it reaches its asymptotic phase at relatively low energies, in other 

cases the asymptotic phase is approached very slowly and it has no resemblance to 

the observed phase at present energies. 
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1. Introduction 

The phenomenological description of hadronic scattering amplitudes for two- 

particle final states involves two components.’ The first component, R(s, t), con- 

tributes to both elastic and inelastic processes. According to the usual duality 

ideas2 it can be viewed either as a sum of s-channel resonances or as a combination 

of 11 ordinary (7 t-channel exchanges (poles and cuts). The second component, 

P(s, t), is the diffractive ~Pomeron-exchange” part and it contributes only to 

elastic (or quasielas tic) processes. 

Both the t-channel and the s-channel points of view seem to be crucial for the 

description of various systematic features of elastic and inelastic amplitudes. In 

general, the t-channel picture has been more successful in explaining the s- 

dependence of hadronic amplitudes while the s-channel picture has been very useful 

in understanding the structure of amplitudes as a function of t. 

Many systematic features of the t-dependence of differential cross-sections 

can be successfuq explained in terms of a simple dual absorptive picture which 

relies heavily on an s-channel impact parameter description of the amplitude. 

According to this picture3, the impact parameter representation of Im R(s, t) is 

dominated, at energies of several BeV’s, by the most peripheral impact parameters 

within the interaction radius 4-8 (figure la). The analogous representation of 

ImP(s, t) includes substantial contributions for all impact parameters within a 

certain radius (figure lb). We believe that this qualitative description is correct 

at energies between, say, 2 and 20 BeV. Whether it continues to hold at higher 

energies, we do not know. The development with energy of the two functions of 

figure 1 is obviously a crucial question which has to be tackled before we can make 

any progress in understanding the features of hadronic two body reactions at higher 
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energies. In fact, 0,nce we accept the general features of figure 1, the following 

set of problems becomes relevant: 

(i) The functions of figure 1 can be presumably characterized by a few para- 

meters such as the effective interaction radius (which may be different for the R 

and P amplitudes), the value of the amplitude at the peak and the width of the peri- 

pheral R-amplitude. How do these parameters vary with energy? Do we have a 

fixed width? fixed radii? 

(ii) Given an answer to the previous question, how do we translate the resulting 

amplitude into the language of t-channel exchanges and singularities in the complex 

angular momentum plane ? 

(iii) Given the impact parameter representation of Im R and Im P at all energies, 

what can we say about the real parts of these amplitudes? 

(iv) What is the physical interpretation of the various possible answers to the 

previous questions? What (if any) is the relation between these possibilities and the 

existing models for hadronic reactions? 

(v) Which future experiments can distinguish between the different possibilities? 

In the present paper we address ourselves to all of these questions. In Section II 

we discuss several possible schemes for the energy dependence of Im R. We discuss 

three classes of models - 

(I) Models in which peripheral dominance is abandoned at high energies. 

(II) Models in which shrinking stops at high energies. 

(III) Models in which the radius increases with energy. 

The first two classes correspond to certain moving pole schemes and fixed 

singularity schemes, respectively. The third class of models corresponds to a more 

complicated J-plane structure involving complex singularities. 
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Section III is devoted to a brief discussion of experimental ways of distinguishing 

between the three classes of -models. 

In Section IV we investigate the real part of the R-amplitude within the frame- 

work of our models. 

A few applications and tests of these real parts are presented in Section V. 

In Section VI we compare our ideas with previous models and briefly discuss 

the classification of these models into our three classes. 

Section VII is devoted to an analysis of the P-component, its energy dependence 

and its real part. 

Our main conclusions are summarized in Section VIII. 

II. Energy Dependence of the Impact Parameter Description of Im R(s, t) 

Our basic assumption is that, at energies of several BeV’s, Im R(s, t) is dominated 

by the peripheral impact parameters. The impact parameter representation %(s, b) 

of an s-channel helicity amplitude R(s, t) is given by the usual Bessel transform: 

9?(s,b) = s R(s, t)JAh(bfl) 2/-t d fl 0) 
0 

where AA is the total s-channel helicity change. 

If the strength of Im%(s, b) is entirely concentrated at a point b = r, namely - 

Im%(s,b) s 6(b-r) (2) 

we obviously have: 
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A more realistic case would be to consider an impact parameter representation 

which is peaked at b N r but has a finite width around this point. In such a case 

the JAA (r &%)-f ac to r in the t-representation will be multiplied by a smooth function 

such as eAt. In order to simplify our analysis, we shall therefore explicitly discuss 

amplitudes whose t-dependence is given by - 

Im R(t) = C eAtJAA (rfit) (4) 

All of our results, however, apply to a much wider class of amplitudes, namely - 

to all amplitudes whose b-representation is clearly dominated by the region b N r. 

The particular amplitude of F,q. (4) corresponds to’: 

r2 +b2 

where IAh is the hyperbolic Bessel function [IAh = JAA(ix)] . Using the asymptotic 

expans ion’of I Ahtx) - 

X 

&tx) = & ‘+q$, [ 1 
we can approximate Z(b), for b > F, by: 

Im S?(b) = ’ 
2-b 

e -+ [l+$i)] . 

The expression (7) exhibits a peak for: 

b max 

(6) 

(7) 

(8) 
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and the “widthl’ A of the peak may be characterized by - 

A- 2&c 

The value of .$Z (b) at the peak is: 

ImL%(bmti) = ’ 
2r64 

(9) 

I 1 1+q-+ 
r2 

Figure 2 shows the general behavior of such a function. In the t-representation, 

C determines the overall normalization, r determines the positions of zeroes (and 

consequently, the positions of dips and crossover effects in angular distributions) 

and A measures the deviation of the amplitude from a pure Bessel function JAh(r 2/-=t). 

For helicity nonflip (Ah = 0) the slope of the amplitude at t = 0 is determined by r 

and A: 

d [c eAtJoP~]t=O 
2 

3-t = A+% 

In the b-representation (to lowest order in A/r2), r determines the position of the 

maximum, A reflects the “width”, i. e. the degree of localization of the dominant 

contribution around b N r and C fixes the overall magnitude. 

The three parameters C, A and r are presumably sufficient for a semi- 

qualitative description of Im R(s, t) at energies of a few BeV. However, every one 

of these parameters is, apriori, a function of energy. The energy dependence of 

C, A and r determines which features of our qualitative picture remain true as the 

energy increases. Only a study of the functions C(s), A(s) and r(s) may enable us 

to analyse the features of the non-Pomeron parts of hadronic two-body amplitudes 

at energies of several hundred BeV. 
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In the most naive geometrical picture one would tend to assume that the 

radius r approaches a constant value at high energy: 

r(s) -r s--Lo3 co P) 

In this case a shrinkage of R(s, t) (as observed, for instance, in z d”(7Y p - “On)) 

-can come only from an increasing A(s). In particular, the usual logarithmic 

shrinkage implies 10 : 

(13) 

However, the condition for a dominant peripheral contribution is: 

GGi< r(s) (14) 

(i. e. the width of the peak in figure la sh<xlld be sufficiently small compared with 

the radius). The three relations (12), (13) and (l4) are, of course, incompatible. 

We therefore conclude that the following set of assumptions is internally inconsistent: 

(i) Dominance of the peripheral partial waves at all energies. 

(ii) Indefinite shrinking of non-Pomeron amplitudes at high energies. 

(iii) A radius which approaches a constant at high energies. 

Facing such an inconsistency, we have to abandon at least one of these three 

assumptions. We are led to three alternative classes of models for the behavior 

of non-Pomeron amplitudes at high energies. 

Class I models: We first consider models in which we abandon assumption (i), 

namely - we do not insist that the peripheral partial waves always dominate. We 

havel0: 
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r(s) - ‘cm; 4s) s AOlogs s-c* 

AOt 
an R(s, t) g C(s) s JAA trm 2/-t) 

(15) 

06) 

In this case, when the energy increases, the amplitude “will lose its peripherality~~ 

and the significant b N r peak of ImZ(s, b) will disappear at high energies. Figure 3 

shows typical b-representations for relatively large values of A. The characteristic 

properties of such a model include: 

(i) Dips and crossover effects which are fixed in t. 

(ii) Indefinite shrinkage of differential cross sections. 

(iii) At sufficiently large energy the dips will become less and less significant 

as a result of the increased slope (in other words - the relative strength of the 

secondary peak and the first peak in the angular distribution becomes smaller). 

An example of such a model is an ordinary Regge pole model with a residue 

function of the form JAh (r,fl). In such a modellO’ll: 

C(s) -c s aO 
0 (17) 

s-00 
and 

Im R(S, t) gCoSLyo+ Aot JAh (rood-) 

A typical Regge model will, however, require ghost killing factors which are (in 

general, but not always) inconsistent with our JAh (ro32/-t) residue function. We 

shall return to this point in Section IV, in our discussion of the real part. 

Class II models: In the second class of models we abandon the assumption 

of indefinite shrinkage. We then have - 
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r(s) -roe; s-00 A(s) -A s-000 00 09) 

~R(s, 9 s-&;C(s)e Aat JAA @,2/‘-E) (20) 

In this case the dominance of the peripheral partial waves can be maintained at all 

energies (provided that K< roe). The entire energy dependence is given by 

C(s) and the shape of the angular distribution “freezes” at high energies. The 

characteristic experimental consequences of such a model involve: . 

(i) Dips and crossover effects at fixed t-values. 

(ii) No shrinking at high energies. 

(iii) An identical energy dependence for any fixed t. 

Models of this category correspond to fixed t-channel singularities (poles or 

cuts) in complex angular momentum plane. 

Class III models: Finally we consider the possibility that the radius r(s) is 

not constant at high energies. In this case, if r(s) increases at least as fast as 

[A(sjl’, we may have indefinite shrinking and maintain the dominance of the peri- 

pheral impact parameters as s --L m. A typical example of such a model would be 

r(s) s~rolog s ; A(s) szAolog s 

m Rts, t) SC(S) e AOtlog s 
JAh trolog s fl 

(21) 

(22) 

If we further assume that C(s) follows a power behavior we have: 



-lO- 

C(s) ~cOsao 

Im R(s, t) ~Cosao +Aot JAA (rolog s 2/-t) 

A slight variation of this model would replace r(s) in Eq. (21) by: 

(23) 

(24) 

This is the usual energy dependence of the effective radius in most Reggeistic 

(25) 

models. In that case the arguments of the Bessel functions in Eqs. (22) and (24) 

will be modified. Equation (24) would then read: 

JmRts,t) s -00 o -C scYgfAot JAh (r. dq) (26) 

The most obvious experimental characteristics of this class of models are: 

(i) As the energy increases, the positions of dips and crossover effects in 

angular distributions should generally shift towards smaller t-values. 

(ii) Inelastic differential cross sections should shrink indefinitely. 

(iii) The energy dependence of any given amplitude 

will show oscillations as a result of the moving zeroes. 

In order to analyze this type of model in terms of 

at fixed t (but not at t = 0) 

its singularities in the com- 

plex J-plane we may use the integral representation’ for JAh. 

(27) 

Equation (24) will then take the form: 
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Zm R(s, t) 
cO 

+?I- 

--gzzFs 
cro+Aot 

s 

i 
S 

-7T 

We obtain a superposition of complex poles a .t 

sint#~ rofl 
e-i$A$Q . (28) 

J = a0 +Aot + i sin@ roil (2% 

Forall- sin+5 $1. Our class III model is therefore reflected in the complex 

J-plane by the unpleasant structure of a complex conjugate pair of moving branch 

pointsl’ (see figure 4) at: 

or,(t) = oO+Aotk irofi (30) 

The actual J-plane structure may be even more complicated if we admit logs terms 

into the expression (23) for C(s). 

The characteristic properties of the three classes of models are summarized 

in table I. It is clear that other possibilities exist, in which two (or all three) of 

our basic properties (peripheral dominance, indefinite shrinking, constant radius) 

are abandoned. Since we are reluctant to give up even one of them, we believe that 

such “exotic” models are not very realistic. 

III. The Imaginary Part of R(s, t): Proposed Experimental Tests 

In order to find which one of our three classes of models actually describes 

ImR(s, t) we must determine the high energy behavior of r(s) and A(s). We have 

remarked in the previous section that, at any given energy, r determines the positions 

of the zeroes of the various imaginary parts while both r and A appear in the ex- 

pression for the slope of the amplitude. Consequently, it is simpler to isolate the 

s-dependence of the radius r. 
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The energy dependence r(s) can best be studied by finding the t-values in 

which dips and crossover effects occur. The most direct test involves the position 

of the crossover point between particle and antiparticle elastic differential cross 

sections on the same target. It is well known that the quantity 
[ %(EP) - g+P)] 9 

for x = r’, K+,p, changes sign somewhere around t N - 0.2 Be?’ at energies of 

several BeV’s. Since the Pomeron contributes equally to xp and zp elastic scat- 

tering the most important term in the different between the two cross sections is 

the interference term: 

$i9 - g txp) - 21m Ws, t) h-n Rots, t) l 

The expression (31) vanishes wherever Jo(r fl) does3 and the t-value of its first 

zero determines the argument of this Bessel function and hence the value of r. If 

r(s) is constant, the crossover point should remain at a fixed t-value at all energies. 

If r increases logarithmically, the crossover point should move slowly towards 

lower t-values, as the energy increases. Experiments at NAL should be able to 

settle this point. A rough estimate indicates 13 that if the crossover point moves at 

all, it should move by about 0.05 - 0.1 BeV2 in t between, say, 5 BeV and 200 BeV. 

The present data below 20 BeV are not sufficiently accurate for such a study. An 

accurate determination of the crossover t-value requires a knowledge of the exact 

relative normalization of the particle and antiparticle elastic differential cross 

sections at the same energy. We hope that in future experiments, a special effort 

will be made to minimize the experimental ambiguities in these relative normalizations. 

Another test of the energy dependence of r(s) is offered by the positions of dips 

in processes such as n-p - lr’n or YP - n”P. Here, again, an increasing radius 

should lead to a moving dip. The position of any of the inelastic dips should then 
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move to lower t-values as the energy increases. This effect, if it exists, should 

also be visible at energies of several hundred BeV. 

It is more difficult to study A(s), especially if r(s) is not constant. If the 

radius stays constant (namely - - if the dips and crossover points do not move in t), 

any shrinking effect must come from increasing A(s). However, if r(s) increases, 

the only way to study A(s) would be to fit specific amplitudes, as a function of t at 

different values of s by expressions of the form: 

ImR(s, t) = C(s) e 

However, this cannot be done in a model independent way. In order to isolate the 

imaginary part of a specific helicity amplitude we must make certain assumptions 

concerning the real part of the same amplitude, the relative strength of different 

helicity amplitudes and, in some cases, the Pomeron exchange amplitude. Here 

also, we believe that the best chance for studying A(s) is offered by the quantity 

- $m] ” More explicitly, we should use the relation3: 

g(K-P) - gS+P) 
= C(s)e W)t 

~,/$(K+P) 
J,~W 01 (33) 

and study A(s) using elastic differential cross sections at different energies. Again i 

the present data are not sufficiently accurate for a meaningful analysis. 

It is somewhat paradoxical that our best hope for understanding the I1 inelastic11 

component of hadronic scattering, R(s, t), and its parameters r(s) and A(s) is in 

performing accurate measurements of elastic differential cross set tions. This 

curious situation is a consequence of our poor knowledge of the real parts of R- 

amplitudes. In elastic scattering, t&e predominantly imaginary P-term projects 



-14- 

out the imaginary part of the Ah = 0 R-amplitude3 through their interference term, 

enabling us to study ImR(s, t) in an almost model independent way. 

We hope that accurate measurements of elastic differential cross sections in 

the crossover region as well as studies of the slope and dip-position of inelastic 

differential cross sections will soon enable us to distinguish between our three 

classes of models. 

IV. The Real Part of R(s, t): Mathematical Analysis 

Our discussion, so far, has been centered around the impact parameter re- 

presentation of the imaginary part of the R-amplitude. We believe that this ima- 

ginary part may have relatively simple properties (namely - the dominance of 

b w r impact parameters) as a result of the simple properties of the prominent s- 

channel resonances. It is much more difficult to make specific statements con- 

cerning the real part of the same amplitude. The contributions of s-channel 

resonances to the real part are not as localized in energy as the contributions to 

the imaginary part. Consequently, we have no reason to assume that the simple 

energy-spin relation (1 a @J which applies to the dominant terms in the imaginary 

part, is also valid for the real part. 3 

The only way of making intelligent guesses on the behavior of the real part is 

presumably to deduce it from the t and s dependence of the imaginary part of the 

same amplitude. If we know the asymptotic energy dependence of ImR(s, t), we 

can compute the high energy form of Re R(s, t). This follows from several theorems 

relating the asymptotic energy dependence and the asymptotic phase of hadronic 

amp1 itudes. 14 In practice, we can easily determine the s -) 00 limit of Re R(s, t) by 

inserting the corresponding limit of Im R(s, t) into fixed-t dispersion relations. 

This would give us the real part, subject to two additional assumptions - 
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(i) In principle, the amplitude may always include a real constant (in s) 

which cannot be identified by studying the imaginary part. We will tentatively 

ignore such a possibility, but we must remember that our conclusions regarding 

the real part are valid only modulu such an additive constant (for any fixed t). 

(ii) In order to study the real part, using fixed t dispersion relations, we 

have to know the high energy behavior of Im R(s, t) for s -+ 00 and for s a - ~0. 

In order to simplify our discussion we shall use amplitudes with definite signature 

(in other words - with a definite connection between their s -c f ~0 limits). We 

realize that, in general, we may have combinations of different signatures, but 

this should not modify the essential features of our analysis. 15 

Having made these assumptions, we may now proceed to discuss the real 

part of R(s, t) within the framework of our three classes of models. 

Class I models: We assume that as s d m, Im R(s, t) is given by”: 

mR(s, t) scos 
(YO+AOt 

JAh (‘co d-- l 
(34) 

The high energy limit of the full (real part and imaginary part of the ) amplitude 

can be determined from its discontinuity (34). For an amplitude R* with a definite 

signature, we find: 

R*(s, t) q- CoJAh(‘,, 2/TTt) Satt) 
-ino( 1 

e sbn a(t) 

where 

a(t) = a0 + Aot . 

(35) 

(36) 

The ratio between the real and imaginary parts is given by: 
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ReR+(s, t) - -cot y!L 
ImR+(s, t) ‘-O” 

Re R- (s, t) ~ tan r;(t) 

ImR- (s, t) ‘-=’ 

(37) 

(38) 

The presence of extra logs terms in C(s) in Im R(s, t) would not change the asymptotic 

ratios (37) and (38) (except for-integer values of o(t); see below). However, the 

rate of approach to these asymptotic ratios may be logarithmically slow. In such 

a case, the real part at intermediate energies may remain essentially unpredictable. 

A delicate problem arises in this class of models at (integer) o-values for 

which the ratios (37) and (38) develop poles. The real part of the physical amplitude 

should obviously be finite for t < 0, and some mechanism should therefore eliminate 

these unwanted poles. The only place where this problem is of practical importance 

is the o(t) = 0 point of the even s&natured tensor exchange (where o(t) - 0.5 + t). 

The o(t) = -1 point of the vector trajectory (t N - 1.5 GeV3 ?) is probably well outside 

the domain of validity of our approximate expressions. 

There are several ways by which the o(t) = 0 pole of Eq. (37) can be avoided. 

We mention two of them: 

(a) It may happen that JAh(rm &-& vanishes at the t-value corresponding to 

a(t) = 0. This seems to be the case3 for J1(r fi) for r N 1 fermi and o(t)- 0.5 + t. 

In such a case, the zero of JAh cancels the pole of cot9 and a well-behaved real 

part results. This mechanism may operate in some cases but it cannot be general. 

If it applies at all, it applies only to a specific helicity amplitudd6 (such as A.A = 1, 

but not Ah = 0, in the above example), and only for a very special correlation 

between the value of roe and the t-value corresponding to Q(t) = 0. 



-17 - 

(b) A second possible mechanism may result from logs terms in the 

asymptotic energy dependence of C(s) in Im R(s, t). In the neighborhood of o(t) = 0 

such logarithmic terms may significantly change the predicted asymptotic ratio 

(37) between the real and imaginary parts. The resulting real part at a)(t) = 0 

may depend in a very sensitive way on the details of these logarithmic factors. 

As we remarked above, the actual behavior of the real part at intermediate energies 

may then be totally unpredictable. An actual case in which this type of situation 

occurs3 seems to be the Ah = 0 amplitude for o!(t) N 0.5 + t (as in Re RAh =. in 

T-P - rn). 

A third possibility is that the poles of the ratios (37) and (38) are removed 

from the real a-axis by a logarithmic energy dependence of the radius in Eq. (35). 

Such a possibility corresponds to class III models and we will investigate it below, 

when we discuss the real parts of class III amplitudes. 

It is difficult to determine which one of these possibilities operates in nature. 

The most likely possibilities in the case of vector and tensor exchanges are3 the 

type (a) mechanism for Ah = 1 amplitudes (where Jl(r&t) 

t- - 0.5) and, the type (b) mechanism for Ah=0 amplitudes 

tribution is known to exist. 

happens to vanish at 

where a large cut con- 

Class II models: In these models we assume that, at sufficiently large s, we 

have: 
Aa2 

bn R@, t) s C(s) e JA&,d-- * (39) 

In this case the dependences on s and on t factorize and the relation between the 

real part and the imaginary part is entirely determined by the high energy behavior 
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of C(s). The resulting Re R/lin R ratio is necessarily independent of t. For 

we have: 

IQ? R+(s, t) - -cot “?I 
h-lR+(s, t) s-m 

2 

Re R- (s, t) “ob ----+tan- 
ImR-(s, t) s-to 

2 

Class III models: In such models we have assumed that - 

h RF, t) s Cgs 
ao+Aot 

JAA (rolog s m 

(40) 

(41) 

(42) 

(43) 

or, using the integral representation for JAh : 

Irn R(s, t) 
cO 

ao+Aot +’ isin@rofl 
-gzz2nS f 

S e-WAh d$ . (44) 
-T 

Restricting ourselves, for simplicity, to Ah = 0, we can now perform a Mellin 

transform and find: 

cO 
a+ 

ImRo(J, 0 = ‘?F- 
s 

1 dJ’ 

o! _ J (J’- Q+)(J’- a-) J-J’ 

where 

Qk (t) = a0 +Aot% ir02/-t . 

(45) 

(46) 
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The corresponding real part can be obtained by constructing the full amplitude 

whose discontinuity is given by Eq. (45). We find: 

cO 
a+ 

R;(j,t) = -F 
/J 

1 ,-inJ 1 f 1 dJ’ 

o! (J’- a+) (J’- cu-) sinnJ’ J-J’ 
(47) 

‘Transforming back to the (s, t) variables, we have: 

Co aO+Aot +’ 
Re Ri(s, t) = - 2n s 

s [ 
cot t(cr,+Aot + iro2/II-trsin@) 

I 

i roflsin+ 
s d4 (49) 

-‘IT 

cO 
+-iT 

ReRg(s, t) = E s 
cro+Aot 

+ irO&?sin$) 1 s 
ire fls in@ 

d@ (49) 

In order to get a qualitative feeling for the behavior of the real part in Eqs. (48), 

(49) we may use the following approximate expression17: 

ReRg(s,t) = Cos 
ao+Aot 

Jo(rolog s &t) - 

nQ+tt) 
- Imtanz JICro log s 2/-t> 1 

(50) 

and a similar expression for ReRi(s, t). a+(t) was defined in Eq. (46). Comparing 

this expression with the analogous real part for class I models we find that the 

energy dependence of the radius r leads to two effects: 

(i) The first term of Eq. (50)‘involves Re tang [o(t) + iro2/-t] instead of 

tan?. No poles are found at physical values of t and the problem of infinities 

in Re R(s, t) does not arise. This is the third mechanism for eliminating such 

infinities that we mentioned in our discussion of class I models earlier in this 

set tion. 
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(ii) The second term in Eq. (50) is usually smaller than the first one 

(except where the first term vanishes). This term will shift the positions of zeroes 

of the real part. The shifted zeroes will not coincide with the zeroes of the ima- 

ginary part. 

The numerical effects of these extra terms are shown in figure 5 where real 

parts derived from class I and class III mode&, respectively, are compared. 

Another interesting question concerning the real part of the R-ampltiude is 

whether or not it is dominated by the peripheral impact parameters b N r. We 

have started this section by remarking that Re R(s, t) has no apriori reason to obey 

the I a-relation which, for the imaginary part, yields the dominance of the 

b N r impact parameters. Now that we have presented the explicit expressions for 

the real part within the framework of the three classes of models (and assuming 

tentatively that the asymptotic phases are reached at an early stage) we may in- 

vestigate the b-representation ReB(s, b) and see whether or not it is peripheral. 

In the case of class II models the answer is obviously positive. Since 

ImR(s, t) is assumed to be peripheral and since the phase (Eq. (41), (42)) is inde- 

pendent of t, Re R(s, t) is necessarily peripheral. But this case is perhaps the least 

interesting as we shall see in Section V. The real parts for class I and class III 

models are very similar for sufficiently small values of r. (see figure 5). By 

numerically performing the relevant Bessel transforms we have found that the 

b-representations of these real parts are almost never dominated by the b- r 

impact parameters and that even the qualitative shape of ReZ(s, b) depends in a 

fairly sensitive way on the parameters used as well as on the energy. As an 

example, we show in figure 6 the b-representations of the real parts of Ah = 0 

and Ah = 1 negative signature amplitudes corresponding to a class III model. The 
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parameters chosen are the same as in figure 5. It is evident that the b- r- 5 

BeV-’ region is not dominant. In fact, in this particular example there seems to 

be a minimum at b - r, but this is presumably an accident since it does not occur 

for other values of the parameters. The b-representations of Re R for class I 

models are qualitatively similar to those of class III. 

We therefore conclude that if B(s, t) possesses its asymptotic phase at finite 

energies , Re R (s, t) is usually not dominated by the peripheral impact parameters 

(except in class II models). 

V. The Real Part of R(s, t): Applications 

In order to test the various possible schemes outlined in the previous section 

we have to isolate the real parts of specific helicity amplitudes. In a few cases 

this can be done with some confidence but, in most cases, it is very difficult to 

deterrnine the real part of a given amplitude. 

The one case in which we, more or less, know 3,18 Re R(s, t) is the Ah = 1 

R-amplitude in processes such as nN - nN, TN - 77 N and KN - KN at energies 

of several BeV’s. The elastic polarizations, as well as the inelastic differential 

cross sections indicate that, for C = - 1, t-channel exchanges (p, w and their 

associated cuts) - 

Req(s,t) N Imq(s,t)tany 

while for C = + 1 exchanges (f’, A2 and their associated cuts) - 

Re R$, t) - - II-II R&S, t) cot y 

(51) 

(52 1 
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where a(t)- 0.5 + t. In both cases ImRi(s, t) includes the Jl(rn) factor which 

vanishes around t- - 0.5 Be v? Consequently3, Re q (s, t) has a double zero and 

Re Rl’c s, t) has no zero 19 at t w- 0.5. 

This behavior may correspond to class I models (Eqs. (37) and (38)) or to 

class III models, provided that the parameter r. is sufficiently small and the in- 

fluence of the extra terms in Eq. (50) is numerically unimportant. At present, 

we cannot dis tinguist between these two possibilities. 

In contrast with the Ah = 1 amplitudes, we know very little about the real 

part of the Ah = 0 amplitudes in the same processes. Assuming that Im Ri and 

Im q are given, at present energies, by Eq. (4) and that Re q is given by 

Eq. (51) one can try to use polarization measurements for 7r-p - non in order to 

20 isolate Re Ri (s, t) in this process. Alternatively, we may take Re Ri and 

Re I+ as given by our various classes of models, predict the n-p - Ton polarization 

and compare it with the data. Among our different models, class II models are 

already ruled out by the observed behavior of Re q and class I models cannot 

make definite predictions for Re RO(s, t) since we do not know which mechanism 

eliminate the poles in tan =;tt) or cot y. The type (a) mechanism of Section IV 

is unacceptable here (since the zeroes of Jo(r fl) do not coincide with these poles). 

The other possibility, namely - the type (b) mechanism of Section IV is very 

reasonable but it leaves us with an unpredictable real part. 21 The only exercise 

left for us is therefore to assume the class III model and see whether it reproduces 

the 7r- p - non polarization. 
17 Using the same approximate integration of Eq. (49) that we have used in 

Section IV we now assume: 

Im R; (s, t) = Cos Q(t) Jo(ro log s &@ (53) 
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lmR;(s,t) = cls o@) Jl(rologsfi) 
(54) 

ReRi(s, t) = Cos a(t) 
[ 

TQ+V) nQ!+tt) 
RetanT JoPol% s 2/--6) - Zm tan- Jl(rolog s2/-t) 1 (55) 

Re q (s, t) 
*a+(t) TQ+tt) 

= Cl so@) [Re tan2 31(rolog s 0) + h-n tan2 Jo(rolog s fl)] (56) 

where: 

a+(t) = o(t) + irofl = oo+ Aot+iro&t . (57) 

We know that: 

= 2ImR;Rl . 

Hence 

da ( 1 pz- 0 N -2coc1s 2att) 
T p-n n 

h.ntany [Ji +Jl2] 

(58) 

(59) 

Equation (59) indicates that the predicted polarization for r-p - Ton is negative. 

An explicit calculation using the full expression (Eq. (49)) for the real part confirms 

this and yields a large negative polarization (sl- - 0.7 at t N -0.5 for the para- 

meters of figure 5). 22 This contradicts the recent data at 5 and 8 BeV/c which 

actually showed a large positive polarization for r-p - non. 

We may therefore conclude that regardless of whether the imaginary part 

obeys the requirements of class I, II or III, the real part of Ri (s, t) does not 

achieve its asymptotic phase at energies of several BeV’s. This conclusion is 
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20 consistent with previous analysis of the real part and it confirms the suspicion 

the Re Ro(s, t) and Re Rl(s, t) have different relations to their respective asymp- 

totic phases. The only way to obtain a positive polarization for 7r-p - Ton from 

Eq. (59) is to assume that the parameter r. is negative 23 , i. e. that the radius 

decreases when the energy increases. Such an energy dependence seems to us 

totally unreasonable. We suspect that Eq. (59) is simply wrong at present energies 

and we trace its failure to the failure of Eq. (55), i. e. to the failure of Ri (s, t) to 

reach its asymptotic phase. 

The polarization in 7r- p -+ non is a sensitive test of the various models, 

since it vanishes at the limit of r. - 0 in our class III model, corresponding to a 

class I model with an exact tan m phase in both helicity amplitudes. 2 Another 

quantity which vanishes in similar circumstances and which might serve as a guide 

to the details of the correct model is the observed deviation from various exchange 

degeneracy predictions. A class I model with no logs terms in C(s) would predict: 

g (K-P -c K’n) = g(K+n - K’p) (61) 

and many similar equalities between other pairs of reactions related to each other 

by “line-reversal”. In many cases, one reaction of the pair is exotic and has a 

purely real amplitude while the other is nonexotic and has a reaI as well as an 

imaginary contribution. The detailed behavior of the real parts of the amplitudes 

for these processes may produce deviations from the exchange degeneracy equalities. 

These deviations might, in principle, help us to select the correct class of models. 

In practice, however, it turns out that the sensitivity of the deviations to the details 

of the real part is so great that a long time will pass before we can really make 
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use of them in any reasonable way. The following observation is a good example 

of this sensitivity. 

A class III model, as defined by Eqs. (43), (48) and (49) will usually predict: 

$K-P -c#On)z dt da (K+n - K$) 

or, in general 25. . 

(%)nonexotic L (%)exotic 

(62) 

(63) 

It turns out, however, that this relation may be reversed if we consider a slightly 

different version of our class III models in which the radius r(s) and the width 

A- 2m both increase 26 like logs. In that case, the complex J plane structure 

is even more complicated than that of figure 4 and we 9 find 27,28 : 

(%)exot ic 5 ($)nonexo tic (64) 

Experimentally, Eq. (64) is more attractive than (63). However, the observed 

differences between pairs of line reversed reactions may have other contributions 29 , 

and it is very difficult to draw any conclusion from the type of analysis outlined 

here (except for the fact that the results depend sensitively on the details). 

The overall conclusion of our discussion of ReR(s, t) is therefore a statement 

of theoretical ignorance,with the only exception of the case of AA = 1 amplitudes 

for vector and tensor exchange. 
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VI. Discussion of Previous Models 

The starting point of our analysis in the preceding sections was the assump- 

tion that the peripheral impact parameters dominate the imaginary part of R(s, t), 

Within the framework of this hypothesis we defined our three classes of models. 

In this section we shall briefly discuss several earlier models for hadronic col- 

lisions, and consider their consistency with our basic peripherality assumption 

as well as their classification into the three classes of models. 

(i) The ordinary Regge pole model is, in general, inconsistent with our 

basic assumption. Although the t-dependence of a typical Regge residue is not 

fully specified by the model, it must obey several constraints which, in most 

cases, are inconsistent with the assumption of dominant peripheral impact para- 

meters. A typical example is the tensor-exchange amplitude (such as A2 or f’). 

This amplitude must include a ghost killing o-factor for all values of the helicity 

change. Its imaginary part must therefore vanish around t - - 0.5 BeV2. This 

vanishing usually imposes strong constraints on the impact parameter represen- 

tation of the same amplitude, and in most cases we find that the peripheral impact 

parameters are not dominant. An exception to this particular example is the 

A.A = 1 amplitude which may turn out to be peripheral (because of the peculiar 

coincidence between the zeroes of Jl(r ,&-t) and o(t)). Our general conclusion is, 

therefore, that the Regge pole model is inconsistent with our basic assumption, 

with a few exceptional cases. In those cases this model is obviously a class I 

model, since the zeroes of the amplitude are fixed while shrinking continues at 

all energies (see Table I and Section II). 

(ii) Regge pole models with If weak cuts116 take absorption into account. 

However, in several cases, the absorption correction is not sufficiently large and, 
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as a result, the amplitude is not sufficiently peripheral. This is the case for 

the Ah = 0 amplitude in elastic “p and Kp scattering, where the ‘*weak cut’! model 

is inconsistent with our basic assumption (and with experiment). In the case of 

the Ah = 1 amplitudes the “weak cut” models are certainly adequate. Within our 

classification, such models belong to class III. 

(iii) Regge pole models with “strong cutsff7 can be consistent with our basic 

assumption and are usually designed to enhance the relative importance of the 

peripheral partial waves. In such models the radius increases logarithmically 

(essentially because of the slope of the input trajectory). The width of the peri- 

pheral distribution also increases with energy. At sufficiently high energy (far 

above our present energies) the flabsorbedf’ region in the b-representation 

becomes small relative to the radius (in other words, while jr-A)is bounded below, 

A/r - 1 as s - m). This type of model is basically a class III model in our termino- 

logy, except that it has an 11 internal radius” rl and an If external radius” r2 (see 

figure 7). The first grows with energy like log log s while the second increases 

logarithmically. The C(s) term in such models involves significant log s factors 

and the real part approaches its predicted asymptotic phase very slowly. At energies 

of a few BeV the phase of the ‘1 strong cuP model is totally different from its 

asymptotic value (and for Ah = 1 vector and tensor exchanges this contradicts the 

data3’18). The impact parameter representation of the real part is peripheral in 

this model, contrary to our conclusions in Section IV. 

(iv) The Dar-Weisskopf absorption model8 is perfectly consistent with our 

basic assumption. It is basically a class III model since it has a logarithmically 

increasing radius. However, this model does not possess the correct asymptotic 

real part. Its real part is also peripheral. 
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(v) Complex pole mcdels12 may be consistent with our basic assumption. 

This is especially true in those models where the complex poles are viewed 

merely as a convenient mathematical description of absorptive cuts. Such models 

belong to our class III and the real parts of their amplitudes are similar to the 

ones derived in our discussion in Sections IV and V. 

VII. The Diffractive Component - P(s, t) 

Our entire discussion, so far, was devoted to the properties of the non- 

diff rat tive component R( s , t) . We now turn to a brief discussion of the P-component. 

The Pomeron exchange amplitude is qualitatively given in figure lb by a non- 

peripheral b-representation. The Pomeron exchange term seems to be structure- 

less3 for t < 1 Be v? We therefore assume, for simplicity 30. . 

Imp(t) = Cpe APt 
(65) 

This corresponds to a Gaussian distribution in impact parameter: 

cP 
= 9’b) = 2Ap e 

- b2/4Ap 
w-3) 

A natural way to define the effective radius of the Pomeron exchange term is 

therefore: 

‘P = 2% (87) 

This radius has no simple relation to the radius r which characterizes the R- 

component of the amplitude. The energy dependence of the functions C,(s) and 

rp(s) (or Ap(s)) determines the behavior of ImP(s, t) at high energies, and through 

it - the behavior of ReP(s, t). Another interesting parameter is the degree of 

absorption or the If opacity11 which is proportional,to Cp/AP. The total cross 
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section is proportional to ihnP(t=O) as s -, 00. 

The conventional models for the P-component fall into three categories, 

when classified in terms of the asymptotic energy dependence of their Cp and 

rP parameters. 

First category: 

rpW ---+r s--cm Pm ; C,(s) s-a) cpms W3) 

Im PtS, t) s Cpm e 
r2pmt/4 

. (69) 

In this case the radius approaches a constant at high energies; the total cross 

section approaches a constant; no shrinking should be observed at high energies; 

the opacity approaches a constant. In such models the Pomeron term is given by a 

fixed J-plane singularity. The corresponding real part obeys: 

* o Rep(O) 
ImP(s, t) s-00 

This possibility is consistent with the most naive geometrical-optical approach. 

Second category: 

$0 2 
- rppg s ; C,(s) -c S s-a, S-=00 P=J 

(70) 

(71) 

b-n pts, t) s cpm s 
0 + * riot) 

(72) 

In this case AP(s) increases like logs; the total cross section is constant; the dif- 

fraction peak shrinks logarithmically; the opacity decrease logarithmically. The 

Pomeron term represents a moving J-plane singularity. The real part obeys: 



Re P(s, t) - -cot ImP(s, t) s--*=J 

Third category: 

-3o- 

rpw &=Fp()log s ; C,(s) ~cPos10g2s 

(73) 

(74) 

This is the ffmaximalff case saturating the Froissart bound. If we insert the 

asymptotic behavior of Eq. (74) into our canonical diffractive form (Eq. (65)) we 

find that, for t < 0, the amplitude decreases with energy faster than any power 

of s. Such a possibility is unacceptable 31 and we have to assume that the impact 

parameter representation In&‘(b) is different than the Gaussian of Eq. (66). The 

simplest alternative which is consistent with Eq. (74) is the model of a completely 

absorbing disk with a logarithmically increasing radius 32 . In this case the total 

cross section grows like log2s, the slope of the diffraction peak increases like 

log2s and the opacity is constant. The corresponding J-plane structure involves 

complex singularities 32 . 

Other possibilities exist, of course, but they are theoretically less appealing 

and we shall not study them here. 

It is clear that the two crucial experimental quantities that are needed for 

determining C,(s) and rp(s) are, respectively, the total cross section and the 

slope of the diffraction peak at high energies. The present data from Serpukhov 33 

and from the CERN Intersecting Storage Rings 
34 are confusing in this respect since 

they seem to indicate that C,(s) increases while rp(s) does not. That would mean 

that the opacity increases, a process which cannot continue indefinitely since the 
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opacity has a fixed upper limit corresponding to full absorption. We hope that 

the next few months will settle this issue and will help us select the correct 

category of models. 

VIII. Summary, Conclusions and Several Open Problems 

We have presented here a disc-ussion of a number of rather technical points 

related to the behavior of hadronic two-body scattering amplitudes at high energies. 

We did not try to reach decisive conclusions on most issues. Rather, we have 

tried to outline the different possibilities in every case, and to suggest experi- 

mental tests which will help us select the right solutions. A few general concluding 

remarks should help us to separate the technical details to which much of our pre- 

vious discussion has been devoted from the important qualitative problems. 

Our first observation is that all evidence3 points in the direction of a non- 

Pomeron component R(s, t) whose imaginary part is dominated by the peripheral 

impact parameters. This was our starting point in the present paper. 

Our next remark was that a peripheral imaginary part is inconsistent with 

indefinite shrinking of inelastic amplitudes and with an asymptotically constant 

effective radius. We have to abandon at least one of the three assumptions as 

s -c =J) i. e. either the peripheral impact parameters cease to dominate or the 

shrinking of inelastic differential cross sections stops or the radius increases in- 

definitely. These three options lead to three families of models (described in 

Section II) which in one way or the other incorporate the many earlier versions of 

the absorption model. Simple feasible experiments (mentioned in Section III) 

should help us decide in the near future between these three possibilities. 
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Cur third observation is that, regardless of which of the many possibilities 

of Section IV becomes true, the real part of R(s, t) has no reason to be dominated 

by the peripheral impact parameters and, in general, it is not dominated by them. 

This is certainly true when the real part approaches its asymptotic phase at an 

early energy. 

Concerning the details ~3 the real part - we basically have two possibilities. 

It may reach its asymptotic behavior very rapidly at relatively low energies or it 

may reach it very slowly (with nonleading terms which are smaller than the leading 

term only by factors of logs). If the asymptotic phase is reached at an early stage, 

the general features of the real part are insensitive to the detailed energy dependence 

of the radius, as long as the latter does not increase too fast. The example shown 

in figure 5 demonstrates this point. If, however, the approach to the asymptotic 

phase is slow and the present energy domains are below the asymptotic region we 

remain completely ignorant with respect to the real part. We have remarked that 

for vector and tensor exchanges, Ah = 1 amplitudes reach their asymptotic phase 

very early while Ah = 0 amplitudes do not seem to do so. It has been spectulated 3 

that this follows from the fact that the Regge p& term in Im RAA = o cannot be 

peripheral and require a large cut contribution which induces logs factors in the 

energy dependence C(s). Even if this is true, it sounds like an accident which 

requires explanation. 

The energy dependence of the two radii - r(s) and rp(s) - is extremely im- 

portant. The first of these radii controls most of the striking features of inelastic 

differential cross-sections. The second is relevant both to our understanding of 

diffraction scattering and, through unitarity, to our understanding of the multi- 

hadronic final states which dominate the total cross section at high energies. 
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Notice that the correlation between these radii is far from clear. Intuitively, 

we might suspect that if one of them grows with energy, so does the other. How- 

ever, one can think of models in which, for instance, the diffractive radius rp 

stays constant while the nondiffractive radius r increases. In such a case, as the 

energy increases, the decreasing contributions of inelastic two-body final states 

may come from larger and larger impact parameters within the “grey fringe” of 

the hadron. In any event, the high energy behavior of the radii should be found 

soon from accurate measurements of elastic differential cross sections (where the 

slope determines r p and the crossover point determines r). 

We have often referred tc the s - ~0 behavior of various quantities. It is 

conceivable that some of these quantities (such as one of the radii) grow steadily 

until a certain energy and only then begin to approach a constant. Such a behavior 

might affect our conclusions, especially those related to the real part. The real 

part of R(s, t) was analysed in Section IV by using asymptotic forms for Im R(s, t) 

and essentially substituting them in fixed-t dispersion relations, In this case the 

main influence on the real part at a given energy comes from the imaginary part 

in a region centered around the same energy. Consequently, if r(s) grows logari- 

thmically until, say, s = 1000 Be v2 and then slowly becomes constant, we may 

safely ignore its s > 1000 behavior when discussing the real part at, say, s = 200 

Be . v2 In that sense, when we talk about the s - 0~) behavior we really refer to some 

finite energy domain. We should then believe the conclusions for energies which 

are not too close to the higher energy end of this domain. We have performed 

several numerical calculations checking the sensitivity of the real part to such a 

possibility and found that when I7 s - mfr for Im R(s, t) is defined as some energy slllaX 

the conclusions regarding the real part are certainly safe for s 5 4 smax assuming 

that no violent changes occur anywhere. 
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We have noticed two specific examples of quantities which are extremely 

sensitive to otherwise minor details. These are the polarization in r-p -. Ton 

and the deviations from the exchange degeneracy predictions for line reversed 

reactions. We feel that, at present, we are far from reaching the stage in which 

we would like to use such sensitive probes in order to settle fine details. However, 

when all the relevant parameters and energy dependences are experimentally 

decided, we may return to these quantities as a tool for pinpointing such details. 

Meanwhile, we should continue to analyze existing data, testing our various 

classes of models as well as our basic peripherality assumption, hoping to get 

some better understanding of the nature of hadronic collisions. 

We thank many colleagues, particularly G. Ringland and R. Roskies, for 

helpful comments. 
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of reference 28 where the inequality (64) has been obtained. 

28. D. P. Roy et al. , Phys. Letters 34B, 512 (1971). -- 

29. Deviations from the predicted equality between exotic and nonexotic line- 

reversed pairs of reactions, could come from several sources: (i) there 

may be a small residual imaginary part in the exotic reactions, (ii) the 

degeneracy between the energy dependence of the even and odd signatured 

exchanges may be broken; (iii) low lying trajectories or cuts (especially 

double particle exchange contributions) may produce strong deviations at low 

energies, (iv) at present energies, the phase of the Ah = 0 amplitude is com- 

pletely different from the asymptotic phase. 

30. At+ St2 The data actually indicates that an amp1 itude of the form C e might be 

more appropriate. However, our qualitative remarks in this section will not 

be changed by the presence of the extra term and we therefore ignore it at 

this stage. 

31. See e. g. R. J. Eden, High Energy Collisions of Elementary Particles, 

Cambridge University Press, 196 7. 

32. H. Cheng and T. T. Wu, Phys. Rev. Letters 24, 1456 (1970); J. Finkelstein 

and F. Zachariasen, Phys. Letters 34B, 631 (1971); J. R. Fulco and R. L. 

Sugar, UCSB preprint, 1971. 

33. G. G. Benznogikh et al. , Phys. Letters 30B, 274 (1969) and reports to the -- 

Amsterdam Conference, 1971. 

34. M. Holder et al., Phys. Letters 35B, 355 0971) and reports to the Amsterdam -- 

Conference, 1971. 
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Table I 

Summary of Properties of the Three Classes of Models 

r(s) - s--L* 

Class I rca 

Class II rw 

Class III rOlog s 

A(s) - s--c* 

AOlog s 

AC0 

AOlog s 

Position 
of Dips Shrinkage 

fixed 
I 

yes 

fixed no 

moving Yes 

Dominance of 
Peripheral 

Impact Parameter 

no 

Yes 

yes 
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Figure Captions 

Figure 1: (a) Schematic representation of Im Z(b). The dominant impact para- 

meters are centered around b N r. 

(b) Schematic representation of Irn Y(b). All impact parameters 

b 5 rp contribute significantly. 

Figure 2: Impact parameter representation Im &R(b) for r = 5 BeV -l, A = 2 BeVm2. 

The two curves show the explicit expression (Eq. (5)) and the approxi- 

mate expression (Eq. (7)). The approximation is extremely good 

(although it necessarily breaks at b = 0). A realistic value of A at 

pL = 5 CeV/c is A = 1.3 BeV -2 (see reference 3), well below the value 

which we have arbitrarily chosen here. For A = 1.3 the approximation 

of Eq. (7) is even better than the one shown in the figure. 

Figure 3: Impact parameter representation Im 9?(b) for r = 5 BeV -l, A = 1, 4, 

8 BeV 
-2 

, using Eq. (5). For sufficiently large values of A we lose the 

dominance of the peripheral impact parameters. This is the case at 

high energies according to class I models. 

Figure 4: Class III models can be described by complex conjugate pair of moving 

branch points a; = o. + Aot & ire fl The relevant complex cut 

stretches from Q+ to (Y-, and it moves as a function of t. Assuming 

aO = 0.5, A0 = 1, r. = 0.2, this complex J-plane structure is shown. 

All units are in BeV. 
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Figure 5: A comparison between the real parts obtained in class I and class III 

models. We assume Im Rih(s, t) = s”(t)ectJAA[(rl +rOlog s) fl] and 

s = 8; a(t) = 0.5 + t; c = - 0.3 (in order to duplicate the t-dependence 

of Im R in &p scattering; see reference 3); rl = 5 BeV -1 = 1 fermi; 

r. = 0.2 (see footnote 13). All units are in BeV. We then compute 

Re RAA (s, t) twice. Once by pretending that r(s) is constant, thus 

multiplying the above expression for ImR by tan sp. These are the 

solid curves (for Ah = 0,l). We then compute the real part using the 

full Eq. (49) and its analogous expression for A.A = 1. The resulting 

curves are the dashed curves. We see that the differences between 

the curves are fairly small. A similar exercise for R+(s, t) reveals 

larger differences, particularly around t- -0.5 where cot 
nQ+tt) 

!!.$U has a 

pole while cot 2 does not. The results for R+ are extremely 

sensitive to the chosen value of r. and to additional logs terms in the 

energy dependence. 

Figure 6: The b-representamf Re Ri and Re 5 for a class III model using 

the parameters described in figure 5 (except that s = 5). In both cases 

Re &Z(b) is not dominated by the peripheral impact parameters. 

Figure 7: Schematic representation of Im B(b) in a Regge pole model with *lstrong 

cuts”. The It external radiusll r2 (s) G log s. The ‘1 internal radius” 

‘l(S) zlog log s. Hence rl/r2+ 0 and the “absorbed region” 

eventually becomes small relative to the width (r2-‘1). 
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