APPLICATIONS OF THE DUAL PARTON MODEL TO HIGH ENERGY MULTTPARTICLE PROCESSES ${ }^{\dagger}$
 Leonard Susskind ${ }^{*}$
 Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

Abstract

The dual parton model of Kraemmer, Nielsen and Susskind is reviewed and applied to high energy production processes. Most, but not all, of the predictions are not new and have been given by Nielsen and collaborators, Susskind and collaborators, as well as many practitioners of the multiperipheral and parton models. What is new is a unified presentation of these predictions in terms of the fragmentation of the hadronic string into segments, each retaining the properties it had before collision. The method is applied to transverse momentum distributions and correlations and to charge distributions of secondary hadrons.

(Submitted to Physical Review)

[^0]
I. Partons and Fragmentation

Several years ago it was suggested that a particularly clear description of hadrons moving near the speed of light might be possible because of a Galilean subgroup of the Poincare group. ${ }^{l}$ This subgroup guarantees that the description of a system from the infinite momentum frame is entirely nonrelativistic with respect to motions in the two dimensional plane perpendicular to the direction of large momentum. In particular it was argued that any many particle description of hadrons would only make sense in this frame. Subsequently, Feynman has shown that a great many features of strong interactions can be understood within the framework of a many "parton" picture at infinite momentum. ${ }^{2}$

In this paper I will explore the relationship between what goes on inside a free hadron on the one hand and what goes on during and after a high energy collision on the other. We shall follow Ref. 1 are assume a high energy hadron is a collection of constituents, each with a \tilde{y}-component of momentum k and a transverse momentum K. The total momenta of the hadron is ($p_{\mathscr{y}}, P$). Following Ref. 1 we describe the longitudinal motion by defining a longitudinal fraction η. We arbitrarily choose some very large momentum, either some momentum in the problem or else just some number, L, with which to compare \mathscr{y}-momenta. The longitudinal fraction of any system with \tilde{z}-momentum $\mathrm{k}_{\mathscr{z}}$ is

$$
\begin{equation*}
\eta=\mathrm{k}_{\tilde{\jmath}} / \mathrm{L} \tag{I}
\end{equation*}
$$

The longitudinal-fraction of the hadron is

$$
\eta_{\mathrm{H}}=\mathrm{p}_{\mathscr{\partial}} / \mathrm{L}
$$

and it is composed of the longitudinal-fraction of the constituent partons.

Each parton is thus described by a triplet consisting of its longitudinal fraction and its transverse momentum (η, K). In terms of these variables the relativistic phase space is

$$
\begin{equation*}
\mathrm{d} \Omega=\frac{\mathrm{d} \eta \mathrm{dK}}{\eta} . \tag{2}
\end{equation*}
$$

Now it is characteristic of high energy collision products that while their transverse momentum is strongly bounded below a few hundred MeV the longitudinal distribution of secondaries roughly follows phase space meaning that for $\eta \rightarrow 0$ the number of secondaries in the interval $\mathrm{d} \eta$ goes as $(\eta)^{-1}$. In view of this Feynman has suggested that the partons themselves are similarly distributed. We shall follow Feynman and assume the parton density in η space behaves like

$$
\begin{equation*}
\frac{\mathrm{dN}}{\mathrm{~d} \eta} \sim \frac{1}{\eta} \tag{3}
\end{equation*}
$$

at or near $\eta=0$.
If we consider the action of a boost along the z axis it is readily seen that K is left unchanged and η is rescaled:

$$
\begin{equation*}
\eta \rightarrow \mathrm{e}^{\omega} \eta \tag{4}
\end{equation*}
$$

where ω is the hyperbolic anglc of the boost. One way to characterize the Feynman distribution is to say that in the region near $\eta=0$ (where the partons are called "wee" by Feynman) the distribution is unchanged by boosting. From this it follows that by looking at the wee parton sea it is not possible to distinguish hadrons of different momentum along the axis. This universality of the wee sea is the single most important feature of the Feynman distribution, accounting not only for the properties of multiparticle final states but also for the constancy of high energy cross sections.

It is very convenient to introduce a variable called rapidity in terms of which boosts act as translations and in which the wee parton density is uniform. Eqs. (3) and (4) show that the required variabls is

$$
\begin{equation*}
r=\log \eta \tag{5}
\end{equation*}
$$

A second assumption which will be used involves the nature of the interactions between partons. We shall picture each parton as occupying a position on the η or r axis and we will furthermore assume a degree of locality of the interactions in this space. Specifically, we suppose that the interactions between partons extend only over a finite distance in rapidity so that a hadron can be considered to be a one dimensional string whose parts interact only with neighboring parts. The one dimensional axis used to label partons or string locations can be taken to be η, r or any function of η.

To complete the description of the system's motion we introduce transverse degrees of freedom either in position or momentum space. The transverse location of partons with a given fraction η will be called $\mathrm{X}(\eta)$ and the transverse momentum $\mathrm{K}(\eta)$. The Hamiltonian of this system in the infinite momentum frame is to be identified with (mass) ${ }^{2}$ as in Ref. 1 and is expected to have a part which can be described as attractive potential energy between partons of neighboring rapidity and a part describing the "nonrelativistic" kinetic energies of the partons. In the next section we will illustrate this viewpoint with the specific dual parton model.

Consider next the collision of two such hadrons at large energy. One hadron called the right mover has a positive momentum p_{R} along the $\not \approx$ axis and the other, the left mover, has momentum $-p_{L}$. Let us represent particle 1 , the right mover, as a segment of the η axis extending from where the wee partons reside to p_{R} / L
where L is the arbitrarily chosen momentum scale. Similarly particle 2 , the left mover, is a segment of the η axis extending from 0 to $-p_{L} / L$.

Now according to Feynman the dynamics of such a collision initially effects only those partons in a bounded momentum interval. Let us call the characteristic size of the interval K . Then the partons which actually are effected by the collision are those in the interval

$$
|\eta| \sim \frac{\mathrm{K}}{\mathrm{~L}} .
$$

Thus after collision we see a system of two strings each being perturbed, the perturbed section extending over an interval from $|\eta|=0$ to $|\eta|=K / L$. Now, if we choose our scale L to be of order P_{R} or P_{L} then the perturbed segment becomes smaller and smaller tending ultimately to a point at the $\eta=0$ wee parton point. The remainder of the partons are initially unaffected by the impulsive collision.

Now what becomes of the two systems after collision? If they were both ideal harmonic strings, the perturbed ends would act as a source of phonons or waves which would propagate back and fourth on the string indefinitely. In this approximation each subsystem is described as a superposition of narrow resonances which make up the spectrum of a harmonic string. This, however, is not correct. We know that the actual collision products are not two excited stable states but rather a collection of secondary hadrons. Accordingly, we will assume that the excitation energy is quickly dissipated by the mechanism of fragmentation of the strings into segments near the wee ends. The process is depicted schematically in Figure 1 where we show the evolution of the process as 2 initially free strings, a collision which quickly excites the wee ends and a final fragmented state.

The longitudinal momentum of a fragment of length $\mathrm{d} \eta$ near the end $\eta=0$ is given by the sum of longitudinal momenta carried by partons in that interval. This in turn is

$$
\mathrm{L} \eta \mathrm{dN} \approx \mathrm{~L} \eta \frac{\mathrm{~d} \eta}{\eta} \sim \mathrm{~d} \eta \mathrm{~L}
$$

Thus near the wee end the length of a fragment $d \eta$ is directly measured by the longitudinal fraction of the fragment.

To obtain an idea about the pattern of fragmentation we shall rely on a symmetry argument.

We have already stated that the wee sea is expected to be universal so that hadrons of different momentum cannot be distinguished by the properties of the low η distribution. Therefore we expect that the pattern of fragmentation near $\eta=0$ will be independent of the momentum P_{R} say. Now since a longitudinal boost is simply a rescaling of the η axis it follows that the fragmentation near the $\eta=0$ end should not know about the length of the η axis and should be scale invariant under a rescaling of η. This requires the mean number of fragments per unit η

$$
\frac{\mathrm{dN}}{\mathrm{~d} \eta}
$$

to be scale invariant which in turn means

$$
\frac{\mathrm{d} N}{\mathrm{~d} \eta} \sim \frac{1}{\eta}
$$

Another way to say the same thing is that the mean number of partons on a fragment just after collision is the same for all fragments of low η.

Our third main assumption involves the way the conserved quantities are carried by the partons and what happens when fragmentation occurs. We will
assume that the transverse momentum, charge, isospin hypercharge and baryon number are carried by the partons in such a way that operator valued densities $\rho_{\mathrm{i}}(\eta)$ or $\rho_{\mathrm{i}}(\mathrm{r})$ exist in the η or rapidity space. By definition

$$
\begin{equation*}
\rho_{\mathbf{i}}(\eta) \mathrm{d} \eta=\rho_{\mathrm{i}}(\mathrm{r}) \mathrm{dr} \tag{6}
\end{equation*}
$$

and each equals the amount of the ith conserved quantity carried by partons in the interval $\mathrm{d} \eta$. We also expect to be able to define currents $\mathscr{F}_{\mathbf{i}}(\eta)$ so that local conservation can be defined on the η axis.

Furthermore, we will assume that when fragmentation occurs the individual segments carry the same value of the conserved quantities that they had just before collision. This means that the collision is so impulsive and the fragmentation so quick that the charges do not have time to redistribute themselves before fragmentation sets in.

The power of these assumptions lies in the fact that they directly relate the current and momentum distributions within a single free hadron to the corresponding distributions in a high energy collision. This allows us to relate different models of particles structure directly to predictions of multiparticle phenomena.

II. The Dual Parton Model

The dual-parton model ${ }^{3}$ represents a hadron as a string of partons parametrized by a parameter θ running from $\theta=0$ to $\theta=\pi$. The density of partons is assumed to fluctuate about a mean given by

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} \theta} \sim \frac{1}{\sin \theta} \tag{7}
\end{equation*}
$$

It is also assumed that the momentum density $\mathrm{P}_{\mu}(\theta)(\mu=1,2,3,4)$ is given by

$$
\begin{equation*}
\mathbf{P}_{\mu}(\theta)=\frac{\mathrm{P}}{\pi}+\text { fluct. } \tag{8}
\end{equation*}
$$

where \mathbf{P} / π is the total hadron momentum divided by the width of the strip and fluct. represents fluctuations which are mathematically describable by normal modes. If we allow P to increase to ∞ along the $\underset{z}{ }$ axis and divide $\mathrm{P}_{\mu}(\theta)$ by $\mathrm{P}_{\ddot{y}}$ to define the η density we get

$$
\begin{equation*}
\frac{\Delta \eta}{\Delta \theta}=\frac{1}{\pi}+\frac{\text { fluct. }}{P} \tag{9}
\end{equation*}
$$

We have analyzed the size of fluct. and have found that this part of $P_{\mathscr{y}}(\theta)$ does not grow with increasing $P_{\overparen{\partial}}$ so that in the infinite momentum limit $\Delta \eta / \Delta \theta=1 / \pi$ 。

The η of a parton at position θ may be estimated by dividing the total η in an interval $\Delta \theta$ by the number of partons in that interval. The result is that partons at θ carry an η given by

$$
\begin{equation*}
\eta(\theta) \sim \sin \theta \tag{10}
\end{equation*}
$$

Thus the η axis and θ interval are really the same. A slight difference occurs because θ is not quite defined by η. For each η there are two positions on the string, but near the ends $\theta=0$ and $\theta=\pi$ there is a one to one correspondence between θ and η. Since we will be interested in the fragmentation near one end, say $\theta=0$, the wee partons at the other end are not too important and we may identify η with θ.

Since the string density near the ends varies as $(\sin \theta)^{-1}$ the density in η space also tends to the Feynman form $\mathrm{d} \eta / \eta$.

The remaining degrees of freedom describing a parton at point θ are its two dimensional transverse position $\mathrm{X}_{\mathrm{i}}(\theta)$ and various discrete quantities.

We shall assume that each parton couples to its nearest neighbor in θ or η space with attractive forces which for small separations are approximately harmonic oscillator wells. Probably a more realistic idea is to think of $X_{i}(\theta)$ as the course grained average of positions of several partons in an interval of rapidity of undetermined size $\delta \mathrm{r}$ and the force as an effective attraction between such clusters.

The interval $\delta \mathrm{r}$ represents a limitation on our program since the averages of quantities such as charge and momentum densities are only defined for intervals larger than $\delta \mathrm{r}$. It is only useful to conceive of a hadronic reaction as the fragmentation of two strings if the available rapidity axis is many times longer than $\delta \mathrm{r}$. This in turn means $\log \mathrm{s}>\delta \mathrm{r}$ where s is the incident center of mass Mandelstam variable. Thus we encounter the fundamental difficulty of parton models, namely, that high energy means not that s is large but that log s is large.

Recalling the fundamental analogy between relativistic infinite momentum mechanics ${ }^{1}$ and two dimensional Galilean mechanics we identify the energy as the mass-squared of the entire system and consider a many particle Hamiltonian with kinetic and potential energies. The kinetic energy of a parton is

$$
\begin{equation*}
\text { K. E. }=\frac{\mathrm{K}_{\mathrm{i}}^{2}}{2 \eta_{\mathrm{i}}} \tag{11}
\end{equation*}
$$

and the potential energy we take to be

$$
\begin{equation*}
\text { P.E. }=\frac{\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}+1}\right)^{2}}{2 \eta_{\mathrm{i}}} \tag{12}
\end{equation*}
$$

Eq. (12) is chosen because it represents an attraction with a smooth behavior near the origin which is expected to be the right thing for the interaction of two clusters. The factors of $1 / \eta$ in both Eqs. (11) and (12) are present in order to give the infinite momentum Hamiltonian correct boost properties along the \tilde{g} axis. We can understand these factors as a consequence of time dilation. If two pairs have longitudinal momentum in ration η_{1} / η_{2} then the motion of the faster pair is time dilated relative to the slower pair by the same factor. Thus all things being equal the energy contained in the faster pair should be smaller by the inverse power.

If we now identify $\eta \sim \sin \theta$ and take the limit of a continuous string, the energy is

$$
\begin{equation*}
M^{2}=\int_{0}^{\pi} \mathrm{d} \theta\left(\frac{\partial \mathrm{X}}{\partial \tau}\right)^{2}+\left(\frac{\partial X}{\partial \theta}\right)^{2} \tag{12}
\end{equation*}
$$

where $\partial \mathrm{X} / \partial \tau$ is the "non-relativistic" velocity and is equal to the momentum in the transverse plane. The time τ is the usual infinite momentum dilated time

$$
\begin{equation*}
\tau=\frac{\mathrm{t}}{\mathrm{P}_{\jmath}} \tag{13}
\end{equation*}
$$

conjugate to M^{2}.
Eq. (2) will be recognized as the Hamiltonian for a nonrelativistic harmonic string. Accordingly, we can deal with it using a conventional normal mode decomposition. ${ }^{4}$
$\mathrm{X}_{\mathrm{i}}(\theta, \tau)=\mathrm{X}_{\mathrm{i}}^{\mathrm{C} \cdot \mathrm{M} .}{ }_{(0)}+\mathrm{P}_{\mathrm{i}}^{\mathrm{C} . \mathrm{M} .} \tau+\mathrm{i} \sqrt{2} \sum_{\ell=1}^{\ell{ }_{\max }} \frac{\mathrm{a}^{+}(\ell) \mathrm{e}^{\mathrm{i} \ell \tau}-\mathrm{a}^{-}(\ell) \mathrm{e}^{-\mathrm{i} \ell \tau}}{\sqrt{\ell}} \cos \ell \theta$.

The normal modes describing the point θ range from a zero frequency mode describing the linear center of mass motion, $\mathrm{X}^{\text {C.M. }}{ }_{(0)}+\mathrm{P}^{\text {C.M. }} \tau$ to a normal mode $\ell_{\max }(\theta)$. The maximum normal mode ${ }^{3} \ell_{\max }(\theta)$ is chosen to reflect that fact that in a region of the θ axis where the spacing of partons is $\Delta \theta$ the shortest wave length which can propagate has wave length $\Delta \theta$. This means

$$
\begin{equation*}
\ell_{\max }(\theta) \sim \frac{1}{\sin \theta} . \tag{15}
\end{equation*}
$$

Eqs. (12)-(15) then define the motion of the parton string in the transverse plane and Eq. (10) prescribes the longitudinal motion.

III. Application to Transverse Momentum Spectrum

Let us consider the average transverse momentum of a secondary string fragment by identifying it with the fluctuation of transverse momentum on the corresponding string segment before collision. A fragment with small longitudinal fraction η is expected to originate from a point $\theta=\eta \mathrm{c}$ and have length $\Delta \theta=\eta$, where c is an experimentally determinable number having to do with the density of secondaries in rapidity space. To compute the momentum on such a fragment consider first the momentum density defined to be canonically conjugate to $X(\theta)$. For the transverse components, $\mathrm{P}^{\mathrm{C} . \mathrm{M} .}$ vanishes so that the fluctuating normal modes give the whole answer

$$
\begin{equation*}
p_{1}(\theta)=\frac{1}{\sqrt{2 \pi}} \sum_{\ell}\left[a^{+}(\ell)+\mathrm{a}^{-}(\ell)\right] \sqrt{\ell} \cos \ell \theta \tag{16}
\end{equation*}
$$

The momentum carried by a segment from θ_{1} to θ_{2} is

$$
\int_{\theta_{1}}^{\theta} p_{1} d \theta
$$

The integration will wipe out those contributions to Eq. (16) from modes with wave length smaller than $\theta_{1}-\theta_{2}$ so that a rough approximation is
$\frac{1}{\sqrt{2 \pi}}\left(\theta_{1}-\theta_{2}\right) \quad \sum_{\ell=1}^{\ell=\theta_{1}-\theta_{2}} \sqrt{\ell}\left(\mathrm{a}^{+}+\mathrm{a}^{-}\right) \cos \ell \theta=\frac{1}{\sqrt{2} \pi} \eta \sum_{1}^{\pi / \eta}\left(\mathrm{a}^{+}+\mathrm{a}^{-}\right) \cos \ell \theta$.

This is the momentum on the segment corresponding to the secondary fragment of longitudinal fraction η. Squaring and taking the expectation value gives

$$
\begin{equation*}
<\mathrm{p}^{2}>=\frac{\eta^{2}}{\pi^{2}} \sum_{\ell=1}^{\pi / \eta} \ell(\cos \ell \theta)^{2} \sim 0.25 \tag{18}
\end{equation*}
$$

The estimate is independent of η as long as η is small.
Since for a harmonic system the ground state probability distribution is Gaussian for any coordinate or momentum we conclude that the transverse momentum distribution for low η pions must be approximately

$$
\mathrm{e}^{-4 \mathrm{p}_{1}^{2}}
$$

The scale of momentum is of course 1 GeV or more precisely the inverse slope of Regge trajectories. This conclusion is-probably only sensitive to the postulated string-like nature of the hadron and to the approximation of round potential wells, i. e., harmonic oscillators.

A similar computation can be done for the transverse momentum correlation function. Define $P(\eta)$ to be the transverse momentum of a fragment with fraction. The correlation function measures the degree of coupling and correlation between
fragments at different points on the string. We define the correlation to be

$$
\begin{equation*}
\mathrm{F}\left(\eta_{1}, \eta_{2}\right)=\left\langle\mathrm{P}_{1}\left(\eta_{1}\right) \cdot \mathrm{P}_{1}\left(\eta_{2}\right)\right\rangle \tag{19}
\end{equation*}
$$

Using the normal mode expansion of P_{\perp} we find that the correlation function for small η_{1} and η_{2} behaves like

$$
\begin{equation*}
F\left(\eta_{1}, \eta_{2}\right) \sim-\eta_{1} \eta_{2}\left[\frac{1}{\left(\eta_{1}+\eta_{2}\right)^{2}}+\frac{1}{\left(\eta_{1}-\eta_{2}\right)^{2}}\right] \tag{20}
\end{equation*}
$$

or in rapidity space

$$
\begin{equation*}
F\left(r_{1}, r_{2}\right) \sim \frac{e^{r_{1}-r_{2}}}{\left(1+e^{r_{1}-r_{2}}\right)^{2}}-\frac{e^{r_{1}-r_{2}}}{\left(1-e^{r_{1}-r_{2}}\right)^{2}} \tag{21}
\end{equation*}
$$

From Eqs. (20) and (2l) we see that F is a symmetric function of r_{1} and r_{2} and depends only on $r_{1}-r_{2}$.

Of course, the result should only be believed for $\mathrm{r}_{1}-\mathrm{r}_{2}$ larger than the coarse grain averaging sizes which define limitations on the string model. Specifically, we believe that the correlation is a symmetric function of $r_{1}-r_{2}$ which asymptotically behaves like ${ }^{5}$

$$
\begin{equation*}
F\left(r_{1}, r_{2}\right) \sim-e^{-\left|r_{1}=r_{2}\right|} \tag{22}
\end{equation*}
$$

IV. Currents of Charges

So far we have considered the distribution of momentum in a hadron and in a collision process. Similar methods will now be applied to the study of the charge distribution. For definiteness, consider the electric charge which we assume to be distributed with a density $\rho(\eta)$. By definition $\rho(\eta) \mathrm{d} \eta$ is the total charge carried by partons in the interval $\mathrm{d} \eta$ centered around η.

Our method will be to relate $\rho(\eta)$ to the electromagnetic form factor ${ }^{6}$ so as to establish a connection between the form factor and the distribution of charge among secondary fragments.

If we consider a fast moving hadron miving along the \hat{z} axis with an infinite momentum and localized at a transverse position which we take to be the origin of the transverse plane then an observer looking down the y axis will see a charge distribution $\sigma(b)$ where b is distance from the origin. The form factor of the hadron is the Fourier transform of $\sigma(\mathrm{b})$.

Let us consider the contribution to $\sigma(\mathrm{b})$ from partons in the interval $\mathrm{d} \eta$ centered at η. The average charge of partons in this interval is defined as $\mathrm{e}(\eta)$. We shall assume that the distribution of such partons in the transverse plane is goverened by a density $\mathrm{s}(\eta, \mathrm{b})$. The contribution to σ is then

$$
\begin{equation*}
\frac{\mathrm{d} \eta}{\eta} \mathrm{e}(\eta) \mathrm{s}(\eta, \mathrm{~b})=\sigma(\bar{\eta}, \mathrm{b}) \mathrm{d} \eta \tag{23}
\end{equation*}
$$

The factor $\mathrm{d} \eta / \eta$ is just the number of partons in the interval, $\mathrm{e}(\eta)$ their average charge, and $\mathrm{s}(\eta, \mathrm{b})$ their density. Obviously, $\mathrm{e}(\eta) / \eta=\rho(\eta)$.

Now in a harmonic system the distribution of any coordinate is always Gaussian so that we will assume $s(\eta, b)$ is of the normalized form

$$
\mathrm{s}(\eta, \mathrm{~b})=\frac{\mathrm{e}^{-\mathrm{b}^{2} / \mathrm{f}(\eta)}}{\mathrm{f}(\eta)}
$$

where $\mathrm{f}(\eta)$ is the mean square distance of partons at η from the center of mass. The result is

$$
\sigma(\mathrm{b})=\int \sigma(\eta, \mathrm{b}) \mathrm{d} \eta=\int \frac{\rho(\eta)}{\mathrm{f}(\eta)} \mathrm{e}^{-\mathrm{b} / \mathrm{f}(\eta)} \mathrm{d} \eta
$$

The Fourier transform of this is clearly given by

$$
\begin{equation*}
F\left(q^{2}\right)=\int \rho(\eta) \mathrm{e}^{-\mathrm{q}^{2} \mathrm{f}(\eta)} \mathrm{d} \eta \tag{24}
\end{equation*}
$$

Now $f(\eta)$ is the expectation value of the squared distance of partons at η to the center of mass. Using Eq. (14) and

$$
\ell_{\max } \sim \frac{1}{\sin \theta}
$$

we readily compute that $\mathrm{f}(\eta) \sim-\log \eta$ so that Eq. (24) becomes

$$
\begin{equation*}
\mathrm{F}\left(\mathrm{q}^{2}\right) \sim \int_{0}^{1} \rho(\eta) \eta^{\mathrm{q}^{2}} \mathrm{~d} \eta \tag{25}
\end{equation*}
$$

With the form of Eq. (25) for $f\left(q^{2}\right)$ we can try to ask what different assumptions about $\mathrm{F}\left(\mathrm{q}^{2}\right)$ mean for $\rho(\eta)$ and vice versa. For example, if $\rho(\eta)$ is constant then the integral is

$$
F\left(q^{2}\right)=\frac{1}{q^{2}+1}
$$

The pole, characteristic of a vector meson of $\mathrm{m}^{2}=1$, is generated by the region of integration very near $\eta=0$. The real electromagnetic form factor has poles at the position of the ρ meson and ω meson which for simplicity we take to be $m^{2}=\frac{1}{2}$. This can be accomplished by allowing $\rho(\eta)$ to bchave as $\eta^{-\frac{1}{2}}$ near $\eta=0$. Since
in the interval $\Delta \eta$ there will be $\Delta \eta / \eta$ secondary fragments, the mean charge of a secondary fragment in a high energy collision is predicted ${ }^{7}$ to behave like $\eta^{\frac{1}{2}}$ as $\eta \rightarrow 0$.

This correlation between the way the charge distribution penetrates into the wee parton sea and the spectrum of mesons which couple to that charge is in our opinion very general and should be experimentally tested.

Although the wee sea is expected to be electrically neutral on the average, the quantity of charge in a bin $\Delta \mathrm{r}$ very deep into the wee sea will fluctuate. The fluctuations are of interest because they give insight into the dynamical laws governing the charge distribution. Since the same dynamical laws are responsible for the spectrum of particles we expect some relations between the charge, SU_{3} and Baryon current fluctuations and the spectrum of particles.

Specifically we will consider the quantity of charge found in a bin of width Δr centered around rapidity r as $\mathrm{r} \rightarrow-\infty$. The translation invariance of the rapidity axis due to longitudinal boost invariance should guarantee that very far from the endpoint of the r axis the properties of the charge flucturations are independent of r. However, the properties may well depend on the bin size $\Delta \mathrm{r}$. We shall therefore consider the average of the square of the total electric charge found in the interval $\Delta \mathrm{r}$. This quantity called

$$
<Q^{2}(\Delta r)>
$$

is directly measurable in very high energy production experiments in which the wee tail has sufficient length to include several smearing lengths $\delta \mathrm{r}$.

Consider first a model in which the rapidity axis is populated randomly with an equal number of positive and negative charges. In such a completely statistical model the average squared charge will grow linearly with the number of partons
so that

$$
<Q^{2}(\Delta r)>\sim \Delta r
$$

as Δr increases.
Now if the population is random we expect the mean charge of a hadron to be of order \sqrt{n} where n is the number of partons. Another way to say this is that a random population is consistent only when the energy required to change the charge by an amount of order \sqrt{n} is very small. Therefore, such a model would lead to the unphysical result of a spectrum of very high charge hadrons almost degenerate with the ground state hadrons.

Let us consider the move physical possibility that high charges are not formed or more exactly that exotics are strongly suppressed. A convenient picture which we have previously discussed ${ }^{4}$ is that the matter contained between the two ends $\theta=0$ and $\theta=\pi$ is electrically neutral (exactly) and that at each end a quark resides. The quantum numbers would then certainly be nonexotic. That this theory is untenable follows from our previous arguments which demonstrate that the charge must be smeared with a $(\sin \theta)^{-\frac{1}{2}}$ density across the θ axis.

Let us, however, suppore that the hadronic string is composed of $\bar{q} q$ pairs, each electrically neutral and an extra quark and antiquark at each end. Let us further suppose that the string is polarizable so that the existence of a charge at an end slightly pulls the opposite charges toward it and repels the like charges. Let us consider one of the ends near $\theta=0$ where we can assign each parton a rapidity $\log \theta$. The positive charges shift an amount $\delta^{+} \mathrm{r}$ and the negative charges an amount $\delta^{-} \mathrm{r}$. The net charge at position r then becomes

$$
\rho(r)=\frac{\partial \delta^{+}}{\partial r}-\frac{\partial \delta^{-}}{\partial r}=\frac{\partial \delta}{\partial r} .
$$

We shall assume that the charges shift just enough to cancel the extra "valence"
charges at the end leaving a charge density near the end given by

$$
\rho(\mathrm{r})=\mathrm{e}^{-\frac{1}{2} \mathrm{r}}
$$

which is equivalent to $\eta^{-\frac{1}{2}}=\rho(\eta)$.
Now let us consider a point r deep in the wee sea and the charge contained in a bin $2 \Delta \mathrm{r}$ centered at that point. The total charge is

$$
\int_{r-\Delta}^{r+\Delta} \rho d r=\delta(r+\Delta)-\delta(r-\Delta)
$$

and the mean square charge is

$$
\left\langle\delta(\mathrm{r}+\Delta)^{2}+\delta(\mathrm{r}-\Delta)^{2}-2 \delta(\mathrm{R}+\Delta) \delta(\mathrm{r}-\Delta)\right\rangle
$$

Now invoking the uniformity of the rapidity axis we set the first two terms equal to $\langle\delta(-\infty)\rangle^{2}$. The last term represents a correlation between points separated by rapidity $2 \Delta r$. If the chain is a near neighbor coupled system we can suppose that the correlation goes to zero as $\Delta \mathrm{r}$ grows so that

$$
<\mathrm{Q}(\Delta)^{2}>\sim 2 \delta^{2}
$$

where δ is independent of r.
Thus we are led to predict that $Q(\Delta)^{2}$ is independent of Δ for large Δ as well as being independent at the position of Δ.

The main point we wish to emphasize is the close connection between statistical properties of the moments of ρ and the spectrum of hadrons. Since the difference between hadronic states involves the charges and quantum number distributions, measurements of the moments of $\rho(\mathrm{r})$ directly probe the dynamics which define the spectrum of hadrons.

Acknowledgments

I am deeply indebted to many people for discussions concerning the material in this paper. Special thanks are due to Y. Ahoronov, J. D. Bjorken, A. Casher, D. Horn, H. B. Nielsen, H. Noskowicz and S. Nussinov.

References

l. S. Weinberg, Phys. Rev. 150, 1313 (1966). L. Susskind, Lectures in Theoretical Physics, University of Colorado (1968), K. Bardacki and M. Halpern, Phys. Rev. 176, 1686 (1968). More recently, see J. Bjorken, J. Kogut and D. Soper, Phys. Rev. D3, 1382 (1971).
2. R. P. Feynman, Proceedings of the Third Topical Conference on High Energy Collisions, Stony Brook, 1969.
3. A. Kraemer, H. Nielsen, L. Susskind, to be published in Nuclear Physics. H. Noskowitz and L. Susskind, Tel Aviv Preprint (1971). J. D. Bjorken, Proceedings of the Conference on Duality, Tel Aviv (1971).
4. L. Susskind, Phys. Rev. Dl, 1182 (1970). Y. Nambu, University of Chicago report, 1969. S. Fubini, D. Gordon, G. Veneziano, Phys. Letters 29B, 679 (1969).
5. K. Wilson, Cornell Preprint CLNS-131, November (1970).
6. L. Susskind, Observable Consequence of the Parton Model, Tel Aviv Preprint, 1971.
7. H. Abarbanel, Phys. Rev. D3, 2227 (1970).

[^0]: \dagger Work supported in part by Tel-Aviv University and the U.S. Atomic Energy Commission.

 * Premanent Address: Yeshiva University, New York, New York 10033.

