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ABSTRACT 

The dual parton model of Kraemmer, Nielsen and Susskind is reviewed and 

applied to high energy production processes. Most, but not all, of the predictions 

are not new and have been given by Nielsen and collaborators, Susskind and colla- 

borators, as well as many practitioners of the multiperipheral and parton models. 

What is new is a unified presentation of these predictions in terms of the fragmen- 

tation of the hadronic string into segments, each retaining the properties it had 

before collision. The method is applied to transverse momentum distributions and 

correlations and to charge distributions of secondary hadrons. 
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1. Partons and Fragmentation 

Several years ago it was suggested that a particularly clear description of 

hadrons moving near the speed of light might be possible because of a Galilean 

subgroup of the Poincare group.’ This subgroup guarantees that the description 

of a system from the infinite momentum frame is entirely nonrelativistic with 

respect to motions in the two dimensional plane perpendicular to the direction of 

large momentum. In particular it was argued that any many particle description 

of hadrons would only make sense in this frame. Subsequently, Feynman has 

shown that a great many features of strong interactions can be understood within 

the framework of a many ‘*parton” picture at infinite momentum. 2 

In this paper I will explore the relationship between what goes on inside a 

free hadron on the one hand and what goes on during and after a high energy collision 

on the other. We shall follow Ref. 1 are assume a high energy hadron is a col- 

lection of constituents, each with a g-component of momentum k and a transverse 

momentum K. The total momenta of the hadron is (p3, P). Following Ref. 1 we 

describe the longitudinal motion by defining a longitudinal fraction q . We arbi- 

trarily choose some very large momentum, either some momentum in the problem 

or else just some number, L, with which to compare y-momenta. The longitudinal 

fraction of any system with g-momentum kg is _ 

q = k,-/L 

The longitudinal-fraction of the hadron is 

0) 

‘H - - P/L 

and it is composed of the longitudinal-fraction of the constituent partons. 
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Each parton is thus described by a triplet consisting of its longitudinal 

fraction and its transverse momentum (q, K). In terms of these variables the 

relativistic phase space is 

dQ = drl dK -. 
rl (2) 

Now it is characteristic of high energy collision products that while their 

transverse momentum is strongly bounded below a few hundred MeV the longi- 

tudinal distribution of secondaries roughly follows phase space meaning that for 

q - 0 the number of secondaries in the interval d7 goes as (7)-l. In view of this 

Feymnan has suggested that the partons themselves are similarly distributed. 

We shall follow Feymnan and assume the parton density in q space behaves like 

dN 1 
zj-5 

at or near 7 = 0. 

If we consider the action of a boost along the 2 axis it is readily seen that K 

is left unchanged and q is resealed: 

77-e % (4) 

where w is the hyperbolic angle of the boost. One way to characterize the Feymnan 

distribution is to say that in the region near q = 0 (where the partons are called 

ff wee” by Feynman) the distribution is unchanged by boosting. From this it 

follows that by looking at the wee parton sea it is not possible to distinguish hadrons 

of different momentum along the axis. This universality of the wee sea is the 

single most important feature of the Feynman distribution, accounting not only for 

the properties of multiparticle final states but also for the constancy of high energy 

cross sections. 
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It is very convenient to introduce a variable called rapidity in terms of 

which boosts act as translations and in which the wee parton density is uniform. 

Eqs. (3) and (4) show that the required variabls is 

r = log77 (5) 

A second assumption which will be used involves the nature of the interactions 

between partons. We shall picture each parton as occupying a position on the 77 or 

r axis and we will furthermore assume a degree of locality of the interactions in 

this space. Specifically, we suppose that the interactions between partons extend 

only over a finite distance in rapidity so that a hadron can be considered to be a 

one dimensional string whose parts interact only with neighboring parts. The one 

dimensional axis used to label partons or string locations can be taken to be 71, r 

or any function of 71. 

To complete the description of the system’s motion we introduce transverse 

degrees of freedom either in position or momentum space. The transverse location 

of partons with a given fraction 77 will be called X(Y)) and the transverse momentum 

W.8. The Hamiltonian of this system in the infinite momentum frame is to be 

identified with (mass):! as in Ref. 1 and is expected to have a part which can be 

described as attractive potential energy between partons of neighboring rapidity 

and a part describing the ‘*nonrelativistic 11 kinetic energies of the partons. In the _ 

next section we will illustrate this viewpoint with the specific dual parton model. 

Consider next the collision of two such hadrons at large energy. One hadron 

called the right mover has a positive momentum pR along the 3 axis and the other, 

the left mover, has momentum -pL. Let us represent particle 1, the right mover, 

as a segment of the 77 axis extending from where the wee partons reside to pR/ L 
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where L is the arbitrarily chosen momentum scale. Similarly particle 2, the 

left mover, is a segment of the 77 axis extending from 0 to -pL/ L. 

Now according to Feynman the dynamics of such a collision initially effects 

only those partons in a bounded momentum interval. Let us call the characteristic 

size of the interval K. Then the partons which actually are effected by the collision 

are those in the interval 

Thus after collision we see a system of two strings each being perturbed, 

the perturbed section extending over an interval from I q I = 0 to I 17 I = K/L. 

Now, if we choose our scale L to be of order PR or PL then the perturbed segment 

becomes smaller and smaller tending ultimately to a point at the 7 = 0 wee parton 

point. The remainder of the partons are initially unaffected by the impulsive 

collision. 

Now what becomes of the two systems after collision? If they were both ideal 

harmonic strings, the perturbed ends would act as a source of phonons or waves 

which would propagate back and fourth on the string indefinitely. In this approxi- 

mation each subsystem is described as a superposition of narrow resonances 

which make up the spectrum of a harmonic string. This, however, is not correct. 

We know that the actual collision products are not two excited stable states but 

Accordingly, we will assume that the * rather a collection of secondary hadrons. 

excitation energy is quickly dissipated by the mechanism of fragmentation of the 

strings into segments near the wee ends. The process is depicted schematically 

in Figure 1 where we show the evolution of the process as 2 initially free strings, 

a collision which quickly excites the wee ends and a final fragmented state. 
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The longitudinal momentum of a fragment of length dq near the end 17 = 0 

is given by the sum of longitudinal momenta carried by partons in that interval. 

This in turn is 

Thus near the wee end the length of a fragment dq is directly measured by the 

longitudinal fraction of the fragment. 

To obtain an idea about the pattern of fragmentation we shall rely on a sym- 

metry argument. 

We have already stated that the wee sea is expected to be universal so that 

hadrons of different momentum cannot be distinguished by the properties of the 

low q distribution. Therefore we expect that the pattern of fragmentation near 

17 = 0 will be independent of the momentum PR say. Now since a longitudinal boost 

is simply a resealing of the 7 axis it follows that the fragmentation near the 77 = 0 

end should not know about the length of the r] axis and should be scale invariant 

under a resealing of 7. This requires the mean number of fragments per unit 77 

dN 
G- 

to be scale invariant which in turn means 

Another way to say the same thing is that the mean number of partons on a 

fragment just after collision is the same for all fragments of low 7. 

Our third main assumption involves the way the conserved quantities are 

carried by the partons and what happens when fragmentation occurs. We will 
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assume that the transverse momentum, charge, isospin hypercharge and baryon 

number are carried by the partons in such a way that operator valued densities 

pi(q) or Pi(r) exist in the ?I or rapidity space. By definition 

Pi(rI) dq = Pi(r) dr (6) 

and each equals the amount of the ith conserved quantity carried by partons in the 

interval dr] . We also expect to be able to define currents gi(@ so that local con- 

servation can be defined on the 77 axis. 

Furthermore, we will assume that when fragmentation occurs the individual 

segments carry the same value of the conserved quantities that they had just before 

collision. This means that the collision is so impulsive and the fragmentation so 

quick that the charges do not have time to redistribute themselves before frag- 

mentation sets in. 

The power of these assumptions lies in the fact that they directly relate the 

current and momentum distributions within a single free hadron to the corresponding 

distributions in a high energy collision. This allows us to relate different models 

of particles structure directly to predictions of multiparticle phenomena. 

II. The Dual Parton Model 

The dual-parton model3 represents 

metrized by a parameter 0 running from 

a hadron as a string of partons para- 

e=o to 0=n. The density of partons 

is assumed to fluctuate about a mean given by 

dNw 1 
dB sin* (7) 
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It is also assumed that the momentum density Pp( 6) & = 1,2,3,4) is given 

P/JO) = p + fluct. (8) 

where P/r is the total hadron momentum divided by the width of the strip and 

fluct. represents fluctuations which are mathematically describable by normal 

modes. If we allow P to increase to m along the 2 axis and divide Pp(0) by P2 

to define the r] density we get 

Arl - 1 flue t. 
m-;r+P. (9) 

We have analyzed the size of fluct. and have found that this part of P9(B) does not 

grow with increasing I?$ so that in the infinite momentum limit Aq /A0 = l/n D 

The q of a parton at position 8 may be estimated by dividing the total q in 

an interval A0 by the number of partons in that interval. The result is that 

partons at B carry an 77 given by 

77(O) -sinB. (10) 

Thus the 7 axis and 0 interval are really the same. A slight difference occurs 

because f3 is not quite defined by T,J. For each 77 there are two positions on the 

string, but near the ends B =0 and 0 = 7r there is a one to one correspondence 

between 0 and q. Since we will be interested in the fragmentation near one end, 

say 0 =0, the wee partons at the other end are not too important and we may 

identify 77 with 6. 

Since the string density near the ends varies as (sin8)-l the density in 77 

space also tends to the Feynman form dq/r). 
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The remaining degrees of freedom describing a parton at point 8 are its 

two dimensional transverse position Xi(O) and various discrete quantities. 

We shall assume that each parton couples to its nearest neighbor in 6’ or 77 

space with attractive forces which for small separations are approximately 

harmonic oscillator wells. Probably a more realistic idea is to think of Xi(O) 

as the course grained average of positions of several partons in an interval of 

rapidity of undetermined size 6 r and the force as an effective attraction between 

such clusters. 

The interval 6 r represents a limitation on our program since the averages 

of quantities such as charge and momentum densities are only defined for intervals 

larger than 6 r. It is only useful to conceive of a hadronic reaction as the frag- 

mentation of two strings if the available rapidity axis is many times longer than 

6 r. This in turn means log s > 6 r where s is the incident center of mass Mandel- 

stam variable. Thus we encounter the fundamental difficulty of parton models, 

namely, that high energy means not that s is large but that log s is large. 

Recalling the fundamental analogy between relativistic infinite momentum 

mechanics’ and two dimensional Galilean mechanics we identify the energy as the 

mass-squared of the entire system and consider a many particle Hamiltonian with 

kinetic and potential energies. The kinetic energy of a parton is 

K? - 
K. E. = 1 

217i (11) . 

and the potential energy we take to be 

P. E. = 
(xi-xi+l)2 

2rli (12 ) 
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Eq. (l2) is chosen because it represents an attraction with a smooth behavior near 

the origin which is expected to be the right thing for the interaction of two clusters. 

The factors of l/q in both Eqs. (ll) and (12) are present in order to give the 

infinite momentum Hamiltonian correct boost properties along the 2 axis. We 

can understand these factors as a consequence of time dilation. If two pairs 

have longitudinal momentum in ration ql/ n2 then the motion of the faster pair is 

time dilated relative to the slower pair by the same factor. Thus all things being 

equal the energy contained in the faster pair should be smaller by the inverse power. 

If we now identify 77 - sin 9 and take the limit of a continuous string, the 

energy is 

02) 

where 8 X/a 7 is the *lnon-relativistic” velocity and is equal to the momentum in 

the transverse plane. The time 7 is the usual infinite momentum dilated time 

t 
7 =- 

3?2< (13) 

conjugate to M2, 

Eq. (2) will be recognized as the Hamiltonian for a nonrelativistic harmonic 

string. Accordingly, we can deal with it using a conventional normal mode de- 

composition. 4 

Q max 

Xi( 9 ) 7) = XC*“* (0) + PC*IvI* 7 + $2 c 
a+(Q)eiQ7-a-(Q)e-UT cosQ e . 

Q=l Ja 
04) 
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The normal modes describing the point 8 range from a zero frequency mode 

describing the linear center of mass motion, X C.M. (o) + $.M. 7 to a normal mode 

Q max (8). The maximum normal mode3 Q max(8) is chosen to reflect that fact that 

in a region of the 6 axis where the spacing of partons is AB the shortest wave 

length which can propagate has wave length As. This means 

Q 
maxtw - &j l (15) 

Eqs. (12)~(l5) then define the motion of the parton string in the transverse plane 

and Eq. (lo) prescribes the longitudinal motion. 

III. Application to Transverse Momentum Spectrum 

Let us consider the average transverse momentum of a secondary string 

fragment by identifying it with the fluctuation of transverse momentum on the cor- 

responding string segment before collision. A fragment with small longitudinal 

fraction n is expected to originate from a point 19 = ?l c and have length A0 = r], 

where c is an experimentally determinable number having to do with the density of 

secondaries in rapidity space. To compute the momentum on such a fragment 

consider first the momentum density defined to be canonically conjugate to X(0). 

For the transverse components,P C.M. vanishes so that the fluctuating normal 

modes give the whole answer 

1 
PI(e) = - c [a’(Q) + a-(Q,]& cosQ0 

din- Q 

The momentum carried by a segment from 61 to o2 is 
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The integration will wipe out those contributions to Eq. (16) from modes with 

wave length smaller than 81- 2 6 so that a rough approximation is 

Q=fj- tJ2 477 
I ($- 02) 
din 

Qgl 4 (a++a-) cosQ8 = -!- q c 
J2 ?i- 

(a++a-) cosQ0 . (17) 

This is the momentum on the segment corresponding to the secondary fragment of 

longitudinal fraction n . Squaring and taking the expectation value gives 

2 7477 
< p2> = L 

lr2 c Q(c0sQ8)~- 0.25 . 
Q=l 

(18) 

The estimate is independent of 77 as long as 77 is small. 

Since for a harmonic system the ground state probability distribution is 

Gaussian for any coordinate or momentum we conclude that the transverse 

momentum distribution for low 71 pions must be approximately 

e-4 Pl” . 

The scale of momentum is of course 1 GeV or more precisely the inverse 

slope of Regge trajectories. This conclusion is-probably only sensitive to the 

postulated string-like nature of the hadron and to the approximation of round 

potential wells, i. e. , harmonic oscillators. 

A similar computation can be done for the transverse momentum correlation 

function. Define P (n) to be the transverse momentum of a fragment with fraction. 

The correlation function measures the degree of coupling and correlation between 
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fragments at different points on the string. We define the correlation to be 

W7$‘/2) = < P,oIl)‘P/72) > . 

Using the normal mode expansion of PL we find that the correlation function for 

small 771 and q2 behaves like 

or in rapidity space 

Wj, r2> - 
erl-r2 erl-r2 

(1 + e1‘1-r2)2 - (l_ “‘-‘22) 

(19) 

(21) 

From Eqs. (20) and (21) we see that F is a symmetric function of rl and r2 and 

depends only on rl- r2. 

Of course, the result should only be believed for rl-r2 larger than the coarse 

grain averaging sizes which define limitations on the string model. Specifically, 

we believe that the correlation is a symmetric function of rl-r2 which asymptotically 

behaves like’ 

F(r1, r2) - -e 
-I rl:r2 I 

(22) . 
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IV. Currents of Charges 

So far we have considered the distribution of momentum in a hadron and in 

a collision process. Similar methods will now be applied to the study of the charge 

distribution. For definiteness, consider the electric charge which we assume to be 

distributed with a density p (7). By definition p (q)dq is the total charge carried 

by partons in the interval dq centered around 77. 

Our method will be to relate p (7) to the electromagnetic form factor6 so as 

to establish a connection between the form factor and the distribution of charge 

among secondary fragments. 

If we consider a fast moving hadron miving along the 2 axis with an infinite 

momentum and localized at a transverse position which we take to be the origin of 

the transverse plane then an observer looking down the 2 axis will see a charge 

distribution c(b) where b is distance from the origin. The form factor of the 

hadron is the Fourier transform of c(b). 

Let us consider the contribution to c(b) from partons in the interval dq cen- 

tered at 7. The average charge of partons in this interval is defined as e(q). We 

shall assume that the distribution of such partons in the transverse plane is goverened 

by a density s(r], b). The contribution to (T is then 

% etrl)sP?,b) = a(<,b)dq . w . 

The factor dn/n is just the number of partons in the interval, e(q ) their average 

charge, and s(q) b) their density. Obviously, e(n)/q = p (7). 

Now in a harmonic system the distribution of any coordinate is always Gaussian 

so that we will assume ~(7, b) is of the normalized form 
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s(rl,b) = 
e-b2/f(rl ) 

f(T) 

where f(q) is the mean square distance of partons at r] from the center of mass. 

The result is 

a(b) = o(q,b)dq = P (7 ) m e -b%(q) dq 

The Fourier transform of this is clearly given by 

Wq2) = 
2 

pP?)e -q f(q)dq (24) 

Now f(q) is the expectation value of the squared distance of partons at 7 to the center 

of mass. Using Eq. (l4) and 

Q 1 N- 
max sin 13 

we readily compute that f(q)” -1og7) so that Eq. (24) becomes 
1 

Fts2) - 
2 

pP1)7;1 drl (25) 
0 

With the form of Eq. (25) for f(q2) we can try to ask what different assumptions 

about F(q2) mean for p (?J) and vice versa. For example, if p (7) is constant then 

the integral is 

The pole, characteristic of a vector meson of m2=1, is generated by the region of 

integration very near q = 0. The real electromagnetic form factor has poles at 

the position of the p meson and w meson which for simplicity we take to be m2 = 8 . 

This can be accomplished by allowing p(q) to behave as q-’ near rj = 0. Since 
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in the interval A?j there will be A?j/?j secondary fragments, the mean charge of a 

secondary fragment in a high energy collision is predicted7 to behave like q8 as 

q - 0. 

This correlation between the way the charge distribution penetrates into the 

wee parton sea and the spectrum of mesons which couple to that charge is in our 

opinion very general and should be experimentally tested. 

Although the wee sea is expected to be electrically neutral on the average, 

the quantity of charge in a bin Ar very deep into the wee sea will fluctuate. The 

fluctuations are of interest because they give insight into the dynamical laws 

governing the charge distribution. Since the same dynamical laws are responsible 

for the spectrum of particles we expect some relations between the charge, SU3 

and Baryon current fluctuations and the spectrum of particles. 

Specifically we will consider the quantity of charge found in a bin of width Or 

centered around rapidity r as r - - ~0. The translation invariance of the rapidity 

axis due to longitudinal boost invariance should guarantee that very far from the 

endpoint of the r axis the properties of the charge flucturations are independent of 

r. However, the properties may well depend on the bin size Ar. We shall therefore 

consider the average of the square of the total electric charge found in the interval 

Ar. This quantity called 

<Q2(Ar)> - 

is directly measurable in very high energy production experiments in which the wee 

tail has sufficient length to include several smearing lengths 6 r. 

Consider first a model in which the rapidity axis is populated randomly with 

an equal number of positive and negative charges. Jn such a completely statistical 

model the average squared charge will grow linearly with the number of partons 
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so that 

as Ar increases. 
< Q2(Ar) > - Ar 

Now if the population is random we expect the mean charge of a hadron to be 

of order Jn where n is the number of partons. Another way to say this is that a 

random population is consistent only when the energy required to change the charge 

by an amount of order Jn is very small. Therefore, such a model would lead to 

the unphysical result of a spectrum of very high charge hadrons almost degenerate 

with the ground state hadrons. 

Let us consider the move physical possibility that high charges are not formed 

or more exactly that exotics are strongly suppressed. A convenient picture which 

we have previously discussed4 is that the matter contained between the two ends 

B = 0 and 6 = 7r is electrically neutral (exactly) and that at each end a quark resides. 

The quantum numbers would then certainly be nonexotic. That this theory is 

untenable follows from our previous arguments which demonstrate that the charge 

must be smeared with a (sin S)-+ density across the 0 axis. 

Let us, however, suppore that the hadronic string is composed of qq pairs, 

each electrically neutral and an extra quark and antiquark at each end. Let us 

further suppose that the string is polarizable so that the existence of a charge at 

an end slightly pulls the opposite charges toward it and repels the like charges. 

Let us consider one of the ends near 0 = 0 where we can assign each parton a 

rapidity log 8. The positive charges shift an amount 6’r and the negative charges 

an amount 6-r. The net charge at position r then becomes 

We shall assume that the charges shift just enough to cancel the extra “valence” 
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charges at the end leaving a charge density near the end given by 

lr p(r) = emZ 

1 
which is equivalent to q-3 = p(q). 

Now let us consider a point r deep in the wee sea and the charge contained 

in a bin 2Ar centered at that point. The total charge is 

r+A 

f pdr = 6(r+A) - 6(r-A) 
Jr-A 

and the mean square charge is 

< 6(r+A)2 + 6 (r-A)2 - 26 (R+A)6 (r-A) > . 

Now invoking the uniformity of the rapidity axis we set the first two terms 

equal to < 6 (-m) >2. The last term represents a correlation between points 

separated by rapidity 2Ar. If the chain is a near neighbor coupled system we can 

suppose that the correlation goes to zero as Ar grows so that 

< Q(A)2 > N 262 

where 6 is independent of r. 

Thus we are led to predict that Q(A)2 is independent of A for large A as well 

as being independent at the position of A. 

The main point we wish to emphasize is the close connection between statis- 

tical properties of the moments of p and the spectrum of hadrons. Since the 

difference between hadronic states involves the charges and quantum number dis- 

tributions, measurements of the moments of p (r) directly probe the dynamics which 

define the spectrum of hadrons. 
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