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In recent papers, Eden and Kaiser 192 have obtained bounds on the near- 

forward scattering amplitudes that violate the Pomeranchuk theorem3 and 

correspond to asymptotically constant total cross sections. The purpose of the 

present note is to apply the techniques of Refs. 1 and 2 to the class of amplitudes 

that saturate the Froissart bound. 3 For our purposes here, we will consider 

the symmetric scattering amplitude 394 

F(S,O) =--CI(-is) [ln(-iS)-j2 w (1) 

We use the following assumptions: 

(a) Scattering amplitudes have the analyticity and the asumptotic 

growth properties that have been proved from axiomatic quantum 

field theory. 5 

(b) Spin effects are neglected. 

(c) The forward elastic scattering amplitude is given by Eq. (1). 6 * 

We list below the properties of the amplitude in Eq. (1). We follow as J 

closely as possible the notation of Refs. 1 and 2. 

I. Forward Scattering Amplitude 

From Eq. (1)) we obtain for large S 

F(S, 0) - 7rClS 1nS + iClS(lnS)2 0 (2) 

The total and differential cross sections are 

‘,ts) N Cl(lnS)2 , (3) 

da 
dt N 

I t=o 
(4) 

Note that the differential cross section in the forward direction increases as 

(lnS)4. Since, Del F T, the width of the forward peak must decrease at least 

as fast as (lnS)-2. See Section V below. 
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II. Bounds on the Elastic Cross Section 

Using the fact that the partial-wave series can be truncated after 

L (L=CS l/2 lnS) terms with negligible error as S + OQ , if It I < to, where to is 

the nearest singularity in t, 7 
we obtain the following bound on the elastic cross 

section, 
2 

1 0 c1 
16n 

c2 
(lnS)2 s oel(S) L cl(lns)2 l 

III. Upper Bound on the Modulus of the Amplitude 

Let 

We obtain the following bound on f(S, t) for it I < to, 

‘f(S, t)’ 2 4C,t11’21nS 
2 C3 e , 

(5) 

. 

where 

IV. Zeros of f(S,t) 

We find that f(S,t) has no zero when Itl < 

when Itl I rl(S), 

ro(S) (lnS)2 = C4 , 

where 

rlW) (J-W2 = C5 , 

ro(S) and has at least one zero 

(8) 

(9) 
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and 

Likewise, we can show that for any finite integer N, there exists a constant 

DN, such that there must be N zeroes of If(S, t)l in the range8 

C4 I t(lnQ2 I DN . (10) 

The number of zeroes in the circle It I = b < to has the bound’ 

N(S,b) <_ C e(Ch) 1/2 &2 &Y . (11) 

V. Width of the Forward Peak 

Let A(S) denote the width of the forward peak. The following bounds are 

obtained on A(S), 

-’ 5 A(S) (knQ2 < = . 
c1 

(12) 

The author wishes to thank Leroy Murray for helpful discussions. 
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