
SLAC-PUB-939
(MISC)
AUGUST 1971

AN ON-LINE SYSTEM FOR INTERACTIVE PROGRAMMING

AND COMPUTER GENERATED ANIMATION *

Robert C , Beach, Mary Anne Fisherkeller and George A. Robinson
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94305

ABSTRACT

This paper describes an experimental graphics system at the Stanford

Linear Accelerator Center. This facility consists primarily of a Varian 620/i

computer and an IDII(i5M display console with the 620/i linked to an IBM

SYSTEM/360. Ln addition, a stereoscopic viewer has been constructed, and a

motion picture camera has been completely synchronized with the display.

Programming sys terns which have been developed include (1) a Graphic Sub-

Monitor with a complete text editing system and on-line access to most of the

facilities of the SYSTEM/360, (2) a package of PL/I procedures which may be

used to prepare highly interactive programs, and (3) an animation generation

system utilizing the compile-time preprocessor of PL/I. Animation sequences

may be viewed at the display console in either 2-D or 3-D, and may be recorded

directly onto motion picture film.

Key words and phrases: Computer Graphics, Interactive Graphics, On-line
System, Stereoscopic Viewers, Computer Animation

CR Categories: 3.80, 4.22, 6.36

(Submitted to Communications of the ACM .)

*
This work was supported by the U. S. Atomic Energy Commission.

I

1. Introduction

The Computation Group of the Stanford Linear Accelerator Center is engaged

in the investigation of new computer techniques and hardware. One area of in-

terest to the group is interactive systems that might aid a physicist in his data

analysis. In order to develop some experimental systems, the SLAC Graphic

Interpretation Facility, an interactive display which could be connected to an

IBM SYSTEM/360, was acquired in December 1968. It is described in Section

2. The initial effort was to produce an on-line programming system with which

to develop other capabilities. This system, the Graphic Sub-Monitor, includes

a page-oriented text editor and essentially all of the facilities provided by the

operating system of the IBM SYSTEM/360. It will be described in Section 3.

Using the Graphic Sub-Monitor, a package of PL/I subroutines was developed

to help a programmer prepare highly interactive programs. This package is

described in Set tion 4. Finally, in Section 5, a computer animation system is

described. The animation system is based on the subroutines described in

Set tion 4, and provides a means of viewing the animation on the display or

recording it on motion picture film.

2. The Graphic Interpretation Facility

The primary computing resource at SLAC is an IBM SYSTEM/360 Model 91

with 2048K bytes of storage, operating under @S/MVT with RASP.

The two basic components of the Graphic Interpretation Facility are a Varian

Data Machines 620/i computer II 3 1 with 8K 16-bit words of storage, and an

IDII@M display console c 3 2 with a 21 inch CRT made by Information Displays

Inc. When the display is operating, the 620/i memory contains a program for

the 620/i to execute and a program (display file) for the IDII@M to execute. These

two programs run concurrently with the IOII@M stealing cycles from the 620/i.

- 3-

Figure 1: The Graphic Interpretation Facility

-4-

The instructions (orders) in the display file may display characters, points, or

straight line segments, perform unconditional or subroutine jumps, count and

index, or interrupt the 620/i. Characters, points, and lines are positioned on a

1024 by 1024 raster unit grid on the face of the CRT. Characters may be plotted

in four sizes, either horizontally or vertically (rotated 90 degrees counter-clock-

wise). Lines may be drawn in any of four modes : solid, dashed, dot-dashed, or

dots. Displayed information may be in any of four intensity levels and may be in

either a steady or blinking mode. The 620/i instruction set includes, in addition

to the usual set for a modern small computer, instructions to start and stop the

IDlIQ)M in its execution of the display file, and instructions to read and reset

registers associated with the display operation.

Interaction at the console is by means of a solid state alphameric keyboard,

a light pen, or a function keyboard with 32 buttons. Under program control,

portions of the display file may be designated as light pen sensitive or insensitive.

When the light pen is pointed at a sensitive item on the CRT, the 620/i will be

interrupted. The coordinates of the lightpenned item, as well as its location

within the display file, are available to the 620/i interrupt routine for processing.

An interrupt is also generated by closing or opening a switch on the light pen or

at fixed time intervals (l/60 seconds) by a built-in timer. The latter feature

guarantees an interrupt within this time interval regardless of the size of the dis-

play file and may be used for urgent tasks such as light pen tracking. The function

keys generate interrupts on both the closing and the opening of the switch. Plastic

overlays may be placed on the function keyboard to identify the purpose of the

buttons and the 620/i may sense a code punched into the overlay.

The 620/i and SYSTEM/360 are connected through an IBM 2’701 Parallel

Data Adapter Unit. Data may be transmitted in either direction through this link.

-5-

The 620/i can interrupt the SYSTEM/360, and determine whether the SYSTEM/360

is trying to read or write; however, the SYSTEM/360 is not able to interrupt the

620/i. The back-up store for the Facility is provided by a Vermont Research

fixed-head drum with 480K 16-bit words of storage, and a magnetic tape manu-

factured by Peripheral Equipment Corporation.

In addition, the Graphic Interpretation Facility has two other unusual devices;

a 16 millimeter motion picture camera which can be synchronized with the display,

and a 3-D viewer. The 3-D viewer was constructed at SLAC by Charles Hoard,

and the interface between the 620/i and these devices was designed and built by

Michael Hu and Russell Matheson.

The movie camera is a Model 16M ARRIFLEX camera with both a standard

motor and an animation motor. The movie camera may be operated in either of

two basic modes. In the first, or “over the shoulder”, mode the camera uses

the standard motor and runs at its usual speed of 24 frames per second. As the

camera runs, the 620/i continually senses the shutter to see if it is open or closed.

When the shutter initially opens, the 620/i will start the display. After executing

the display file once, the display is turned off until the next time the shutter opens.

Thus movies can be made of a person using the display console and the CRT will

not exhibit the flicker that is usually present in unsynchronized movies. The

flicker in unsynchronized movies occurs when the camera shutter and the drawing

of the image by the electron beam are out of phase. In the second, or animation,

mode the 620/i sends signals to the animation motor telling it to advance the film

and open the shutter. When the shutter has opened, the 620/i will flash the

picture on the CRT. The shutter will then close, either automatically or on a

signal from the 620/i. The advantages of equipment of this nature are low cost

and versatility. The usual film recorders cost substantially more than the movie

-6-

camera and do not have the option of “over the shoulder” filming. Film recorders,

however, usually generate higher quality images than CRT’s designed for direct

viewing.

The 3-D viewer is a device which contains a motor-driven rotating disk with

clear and opaque areas. When the user looks through this device, the left and

right eyes will alternately be blocked by the opaque areas on the disk. The 620/i

can sense when the left or right eye has a clear view through the rotating disk.

By presenting each eye with the appropriate display, it is possible to give the

user a stereoscopic picture.

Although the Facility can operate in a stand-alone fashion, most of our work

has been done using it in conjunction with the SYSTEM/360. The SYSTEM/360

provides fast computation and mass storage while the 620/i maintains the display.

3. The Graphic Sub-Monitor (GSM)

The Graphic Sub-Monitor [31 is a second-level operating system designed

to work in problem state on the SYSTEM/360. The purpose of the GSM is to

provide an environment in which a user can run any of a variety of jobs in an

interactive situation without the annoyances inherent in writing ever-changing

job control statements and with maximal flexibility in the sequence of operations

he may choose. Among the hundred or so commands in GSM’s repertoire, one

finds commands for (1) text editing on a page-oriented device such as the IDIIOM

(or alternatively, the IBM 2250 or IBM 2260); (2) invoking the language processors

(with special emphasis on assembly language, FORTRAN, and PL/I), linkage

editors, utilities, and other OS/360 processors; (3) executing user programs for

debugging or for interactive production runs; (4) submitting other jobs to be

placed in the system’s input queues; and (5) interrogating HASP or OS to obtain

and display information of interest to the interactive user.

-7-

I

The format of a GSM command is a key word, followed by arguments

separated by commas, and terminated by a dollar sign. Data sets that a user

wishes to edit are referenced by names he has assigned at the time they were

created. Within a data set, each line is assigned a sequential line number as it

is entered. When a data set is displayed, the lines will appear in their logical

order and not in the sequence in which they were entered. For example, let us

suppose that in Fig. 2 lines 133-134 were not present and the user wishes to

insert them. He might type in EDIT, EXAMPLE$, which would prepare GSM

to perform editing operations on the data set named EXAMPLE and would display

the first page (usually 40 lines) of that set. Then he could type ACCEPT,23$ to

indicate that the new text is to be accepted just before line 23. Suppose he then

types (not quite correctly):

CALL IDPOS(‘ABSL’, 120,1000, ELEMENT, I);

KALL IDTEXT(‘VLRG’ , ‘AREA-ARC LENGTH CALCULATOR’, ELEMENT, I);

As each line is being typed in, it appears at the bottom of the display page. Then,

immediately after the text terminator is entered, the line appears on the page

display in the appropriate place (in this case between lines 22 and 23). After

the last text line is typed, the user escapes from text mode by typing E$ or an

escape character. A typing error such as the one appearing on the second line

of text just entered will usually be detected by the user as it appears on the bottom

of the screen as he is typing it in, or as he reviews the entire insertion after it

is displayed in the appropriate place. Suppose, however, that this error escapes

such means of detection and that the user proceeds to compile the program by

typing CONKS&$ (to put the data set in a form acceptable to the SYSTEM/360

language processors) and PL/l$ (to invoke the PL/I compiler). When the PL/I

compiler has finished processing the program, the completion code returned by the

compiler and displayed by GSM would indicate a severity code unacceptable to

-8 -

I

I 1::
8003 affov
000s
oO$
0008
0009
0010
OOII
0017
0013
OOl’l
0015
0016
DOI7
001e
0019

:;lf

:o::
Dl3Y
0023
oazr

K:
OOZ?
ooze

oD”o’,i
0031
0032
0033

x00::

Dooo:s
0038

)E[LRRE Jt@I#lZcll FIJEB 8IlRRT STRTIC IaITIRLt
762.762*262l262*762~762~262,262,262,362,
662,662t762t7621i

2 STRIIG CItRRRCTCRt ‘41,
2 RRRATISI FIJtl RIIIARI:’

262,762,
362tu62,

#E[LRRE ELiRENT [il~i~t~Eail&ii -VliR~In~;
#ECLRRE t XRRRRT ,TRRRRTl I5001 FIJE) BINRRT;
RECIRRE t IRRRRT,RRRRRTl t I01 FIlE# BIRRRT;
)IcLRRE 573s CHRRRCttRf 351:
3ECLRRE tRRER~RR11~JllTl,J2,T21 FLORT BIIRRT;
~EcLRRE tICURVaIIJICl FIlEa BIIRRT:

CRLL IfOPElt IO~lsOl: 11 IIITIRLIZE THE #ISPLAT. #I
CALL I#Tt#ELt ISI; Ir SET PEN TRRCrIr[, PRRRRETERS. m/
::::E!:!~iTII’iRR”‘l:

11 GENERRTE TITLES Rri CRIB. a/
CALL I~~OSi’R~SL’~l2D,l00O~ELERE~T.Il:
CRLL IjTt~tt tVIRGt, ‘RRER-RRC LErtTH CRLCULRTOR’,ELEHERT,Il:
CALL I~POSt’RBSL’~208,87S~ELERErt,fl;
[ALL IlTEJTt ‘aEM m ‘SELECT OaE OF THE f0LLO~IrG’,ELE~E~~~Il:
[RLL I~P0SI’R8SL’,JGRI~tll~TGRI~t Il,ELElElT,Il;
[RLL IjPTLUt’LIlE’,XCRI~,TCRIi,2Y,‘IO’~,ELERE~T~I1~
[RLL I#EPuTf IO, 113RR1,ELE1E~T1;
i~$&ifzl;;
CRLL IVOSI
CRLL IBTEJT
&;?!
CRLL I#&
CRLL IlTEJT
(R\L_I)EPUT

h ~EMERRTE Ettntwt 101. d
‘RQSL’,236,8~0,ELErEaT,Il:
t ‘IEM I ‘TERaIaRTE PROGRRR’,ELElElT~I
~IOI,‘RORR~ETC’,ELERE~~~;

/r GEIIERRTE ELcR@f! !p2. 11

I:

‘RBSL’~236,80S,ELE~E~T~Il:
1 ‘ffEiR’ , ‘[LERR SCREER’,ELEnE~T~Il:
tl02~‘IIDRn~ET[‘,ELERERTl;

ELEREal~“; /I GERERRTE ELEREUT 103. 11
CALL I~POSt’RtlSL’,236,77O,ELElE~T~Il:
ERLL 11TEJTt ‘JElR’ 8 ‘[OflPUTE fiREA Rllj ARC LEutTn’,ELE”E”*Il;

{LOUS O&l 03:Sfj LIJE :OOl)‘l PTRS~OOS CRR 3
5

, . , , . * . . 1933A2

Figure 2: A Page of Text Ready for Editing

-9-

the user. Then he could visually page through the compiler output listings on

the display using the VUELIST command, displaying each new page with a single

keystroke on the IDIIOM (or with slightly more effort if a less suitable terminal

such as the IBM 2250 model 2 or 2260 is used). If a printed copy is desired, it

may be obtained by using the PRINT command, Raving found the error on line

134 (the line number assigned to the second line of the insert by GSM) he could

immediately type EDIT, EXAMPLE$ and CHANGE, 134$ and the line in error

would be presented for change: After he has changed the erroneous line, he

could again type CONVSQ$ and PLl$.

When the user receives an acceptable completion code from the compiler,

he can then type PLINK$ to linkage edit the compiled program using the PL/I

subroutine library. If an unacceptably large severity code is returned by the

linkage editor, he can again use the VUELIST command to examine the linkage

edit map and diagnostics. Finally, he can execute the load module (in this case

also named ‘EXAMPLE’) produced by the linkage editor by typing EXECUTE,

EXAMPLE$ (or more briefly, G,EXAMPLE$).

For frequently used sequences of GSM commands, instead of typing in the

commands one-by-one as they are to be executed, one may use a “stored program”

approach by invoking a GSM procedure. For example, the sequence

EDIT, :l$

CONVSQ$

PLl$

PLINK$

EXECUTE, :l$

RETURN$

could have been generated using the same methods for editing text described above.

It could have been assigned the name PLlGO; then to invoke it, the user would

- 10 -

I

merely type INVOKE, PLlGO, EXAMPLE& In this case, ‘:l’ is a formal para-

meter in the procedure and would be replaced by ‘EXAMPLE’ as the procedure

was carried out. Since the GSM repertoire includes instructions for conditional

branching within or between procedures and for invoking procedures from pro-

cedures , considerable flexibility exists in writing and using GSM procedures.

For example, in PLlGO, instructions could have been included to test the com-

pletion code returned by the compiler or the linkage editor and inhibit the further

execution of the procedure if an unacceptably high value was returned.

The ability to execute any load module provides a convenient user initiated

extension to the GSM system. For example, one user load module named

ASMERR scans assembly output listings for error indications, extracts the of-

fending lines and the corresponding diagnostics, and prepares the information

for display. Thus it is unnecessary to actually page through the listing output

as described in the PLl example above,

It is important to note that the page+riented display features of a device

like the IDIIOM or IBM 2250 make the system incomparably more powerful and

efficient to use, from the user’s point of view, than it would be if a line-at-a-

time mechanical terminal such as a teletype or typewriter terminal were used.

The principal economic factor limiting wider use of such systems has been the

expense of such page-oriented terminals. It is hoped that the availability of

lower priced drum/disk driven TV-scan type displays will soon provide a page-

oriented capability at a more attractive price.

4. The IDII@M Scope Package

A package of PL/I procedures, the IDII@M Scope Package c4 1 , has been

provided for writing highly interactive programs without burdening the writer

with all of the details of programming the 620/i and IDIIQ)M.. The user of this

- 11 -

package can, by means of procedure calls, control the display console in

addition to having all of the facilities of PL/I available to him. Similar packages

are described in [5,6,7 I.

The basic items displayed by this package are called display elements.

Procedures are supplied to construct elements which will display information on

the CRT, and transmit elements between the SYSTEM/360 and 620/i. For example,

the titles and grid shown in Fig. 3 were generated by the statements:

DECLARE ELEMENT CHARACTER(1000) VARYING;

ELEMENT=’ ’ * ,

CALL IDP@S(‘ABSL’ ,120,1000, ELEMENT, I) ;

CALL IDTEXT(‘VLRG’ , ‘AREA-ARC LENGTH CALCULATOR’ , ELEMENT, I) ;

CALL IDP$!&(‘ABSL’,208,875,ELEMENT,I);

CALL IDTEXT(‘MEDM ‘, wm3c~ @NE OF THE F~LLQIWING’, ELEMENT,I);

CALL IDP@S(‘ABSL’,XGRID(l),YGRID(l),ELEMENT,I);

CALL IDPTLN(‘LINE’,XGRID, YGRID,24,‘10’B,ELEMENT,I);

The first line defines ELEMENT as a varying character string and the second

line assures that it is empty. The calls to IDP@S, IDTEXT, and IDPTLN add

positioning, text, and line display orders, respectively, to ELEMENT. The

first argument in these procedure calls selects a specific type of order from the

many possibilities; for example, the ‘ABSL’ parameter specifies that IDP@S is

to generate absolute (and not relative) beam positioning orders. The variable I

in these calls is an error flag which can be checked if there is a possibility that

ELEMENT has overflowed. The arrays XGRID and YGRID define the twelve line

segments in the grid.

- 12 -

mwwV?C LENCTH CRtCULRTOF?

SELECT ONE of THE ~OlLOMI~C
TERNIMRtE PROCRRH
CLERR SCREEN

FIRER= 8.89 RRC LENGTH= Ir.SS

Figure 3: A Simple Interactive Display

- 13 -

When an element has been created, it may be transmitted to the 620/i where

it will be added to the current display file. The previously defined element may

be transmitted to the 620/i by writing:

CALL lDEPUT(10, ‘NORM’, ELEMENT) ;

This statement defines the element as a “normal” element with an identification

number of ten. The identification number is used to manipulate the element in

other sections of the program. For example:

CALL IDM@DX(lO, ‘WINK’);

will put element ten into the winking mode. Procedure lDM@DX may also change

the intensity , line s true ture , or light pen sensitivity of an element, or delete it.

For the convenience of the programmer, elements may be grouped together into

sets. Sets may contain elements and other sets. A set may be manipulated in

the same manner as an individual element.

A programmer may create four kinds of elements. A normal element con-

sists of a sub-picture with which there is no interaction. A second type of

element is a sub-picture positioned relative to the tracking cross. The light pen

may then be used to move such an element around on the screen. A third type of

element is a keyboard input buffer. When the console operator types on the key-

board, the characters will appear on the screen and be put into the keyboard input

buffer. The final type of element is a light pen drawing buffer. When such an

element is present, the console operator will be able to draw free-hand curves

on the screen by moving the tracking cross with the light pen while depressing

the switch on the light pen. The display orders for the free-hand curves are put

into the light pen drawing buffer. The light pen may also be used to erase a curve,

or a segment of a curve. This filling of keyboard input buffers and light pen

drawing buffers is local to the 620/i, and this information will be transmitted

- 14 -

to the SYSTEM/360 only in response to an element read request. For instance,

a statement such as:

CALL lDEGET(50, ELEMENT, I, J) ;

will transmit element fifty from the 620/i to the SYSTEM/360. Procedures are

available to help the programmer interpret the contents of these buffer elements.

In addition, an element may act as a graphic subroutine. It will not be

displayed on its own but will be displayed only when it is invoked by another

element. Such an element will be in the display file once, but the picture it

describes may appear in several places on the CRT. The procedure IDEXELT

is provided to invoke an element as a subroutine. For instance the statements:

CALL IDP@S(‘ABSL’, 100,700, ELEMENT; I) ;

CALL IDEXELT(40, ELEMENT, I) ;

will cause orders to be inserted into ELEMENT. These orders position the beam

and invoke the element whose identification is forty. The beam could then be

re-positioned and element forty again invoked to place a second copy of element

forty on the screen. The program in the 620/i is responsible for the final

resolution of the call to element forty.

Procedures are also available to enable or disable interrupts from the 620/i

and IDIIQ)M. For instance the statement:

CALL IDEATTN(‘PFKM LPDT’ , ‘STQ)P’) ;

will enable interrupts from the function keyboard (PFKM) and the light pen

(LPDT). The second argument indicates that the display is to be turned off when

the interrupt is reported. After this statement is executed, the use of either of

these devices will cause an interrupt to be sent to the SYSTEM/360. In the

SYSTEM/360, the record of the interrupt may either be queued, or cause a pre-

selected PL/I procedure to be executed asynchronously. A procedure is

available to check the interrupt queue.
- 15 -

I

Some interrupts, such as those from the function keyboard, are generated

by hardware on the 620/i and, if enabled, are passed on to the SYSTEM/360.

Other interrupts are generated by the program in the 620/i. For example, an

interrupt may be generated each time the display has refreshed a specified

number of times. This interrupt has proven to be very useful in adjusting the

exposure of the motion picture film in animation mode.

Another important interrupt may be generated by the light pen in a special

mode. In this mode a light pen sensitive element will brighten when the light

pen is pointing at it. An interrupt is sent to the SYSTEM/360 only when the light

pen switch is depressed. The information made available to the PL/I program,

in addition to interrupt type, is : (1) the identification number of the element,

(2) the index of the display order within the element that generated the specific

character, point, or line at which the light pen was pointing, and (3) the X and Y

coordinates of that item.’

Fig. 3 illustrates a display produced by a simple program (the first part of

the program is shown in Fig. 2). The initial display included a tracking cross

and a third message “C@MPUTE AREA AND ARC LENGTH” under the “CLEAR

SCREEN” message. The console operator used the light pen to draw a closed

curve on the CRT, and then selected the third message, The program in the

SYSTEM/360 responded by reading the curve, computing its area and arc length,

deleting the third message and the tracking cross, and adding the message at the

bottom of the screen. The console operator may then either select “CLEAR

SCREEN” to return the display to its original state or he may select “TERMINATE

PRQ)GRAM”. The program which performed these actions consists of 122 PL/I

statements.

- 16 -

5. The Animation Generation System

As experience was gained with the procedures of the previous section, it

became clear that the task of writing programs to generate animation in 2 or 3

dimensions could be greatly simplified. In particular, a programmer should be

able to define a sequence of 3-dimensional scenes and subsequently view it on the

CRT in the usual manner or with the 3-D viewer. He also should be able to record

the sequence on film with the movie camera for projection as a 2-D or 3-D movie,

3-D movies are generated by putting left and right eye images on alternate frames

and then merging the film through an optical printer to obtain film which may be

projected for an audience wearing Polaroid viewing glasses. Multi-color animated

films may be made by recording each color on a separate black and white film

strip and then printing these film strips on color film using the appropriate color

filters.

This animation system [8 1 continues the spirit of the system described by

Knowlton [9 1 in that an animation sequence is described by writing a program.

Other sys terns [10,11,12 I give the console operator the ability to define animation

sequences by typing commands and drawing on the CRT. There are two reasons

why we have not adopted this latter scheme. (1) These other systems tend to be

written with the professional film maker in mind. Our system was written for

scientifically oriented people who wish to visualize a mathematical theory of a

phenomenon, or study a large collection of data which measures a phenomenon.

(2) The Animation Generation System, in conjunction with the Graphic Sub-Monitor,

permits new programs to be written, and existing programs to be changed, in a

very easy and straightforward manner.

The system provides a programmer with a simple means of defining a

geometric figure in space. The geometric figure may be anything that can be

- 17 -

constructed from lines and points. For added realism, surfaces may be defined

and the hidden lines removed from the figure. To specify the animation sequence,

a conceptual camera is positioned in space pointing at the geometric figure, and a

picture is taken. Between successive pictures in the animation sequence, the

camera position may be changed, the geometric figure changed, or both may be

changed.

We have chosen to implement this system utilizing the compile-time pre-

processor of PL/I. This facility of PL/I is similar in concept to the macro lan-

guage supplied with most assemblers. They both may be used by the programmer

to extend the power of the base language within the confines of a fairly rigid syntax.

An example of a simple program written in this extended PL/I is shown in

Fig. 4. The two statements on lines 13, 14, and 15 are similar to the declaration

statements of PL/I. The ,-/oQ)PTI@NS= statement is used by the programmer to

optimize compilation and execution speed, provide for the loading of the proper

hidden line procedure, and other miscellaneous tasks. The %GEQ)METRY=

statement is used to declare the geometric variables to be used in the program.

The geometric variables are points, lines, surfaces, objects, and views. An

object is a collection of points, lines, and surfaces, while a view defines a

camera position. In general, the declaration of a geometric variable consists of

a keyword followed by all of the variables of that type. For instance the phrase:

PQ)INTS=PT(32),Q,R(3,4)

is a valid declaration of geometric points. The phrases for the different types

of geometric variables are separated by ampersands.

The animation system provides the programmer with a simple means of

asking the console operator to enter information with the keyboard or light pen.

The keyboard input request is made by putting keyboard input buffers on the CRT

- 18 -

,+**** STELLATED OOOECAliEOROh GENERATOR *a***/

RCBMLTZ: PROCEDURE OPTIONS~HAINI;

/* THIS PROGRAM PROOUCES AN ANlC1AtlOh SECUENCE
SHOhING A STELLATEO OOOECAHEURON ROTATING IN
SPACE. HlOOEN LlNES IN THE FIGURE ARE
REMOVED. A STELLATEO DODECAHEORCN IS THE
SCLIO FIGURt nH1C.H IS GENERATED BV EXTENDING
ThE FACES OF A REGULAR OOOECAHEOROh. l /

XINCLWE WEAOl;
tCPtICkS=’ MAIN C RHL=SOLlO ‘;
IGEGHEtRV=* POINtS=PtI32J .S LlhES-LNiPGI C

SURFACES=SUI601 C ObJECtS=Ob C VIEWS=VY ‘i
DECLARE PXOZJ FLOAT BINARY STATIC INITIAL1

0.2764,-o.laSb,-0.3416,-0.1056, 0.2714, 0.5528.
0.1708,-0.4472.-0.4472, 0.1708, 0.4472.-0.1708.

-0.5528.-0.1708, 0.4472, 0.3416, 0.1056,-0.2764.
-0.2764. 0.1056. 0.0000. 0.8944. 0.2764.-0.7236.
-0.7236, 0.2764; O-7236;-0.2764;-0.8944d.2764.

0.7236. 0.0000);
DECLARE PVI321 FLDAT BINARV StAlIC INltlAL(

0.2000. 0.3249, O.OOOO.-0.3249,-0.2008, 0.0000,
‘0.5257, 0.3249,-0.3249,-0.5257, 0.3249. 0.5257.
O.OOOO,-0.5257.-0.3249, 0.0000. 0.3249. 0.2006.

-0.2008.-0.3249, 0.0000, 0.0000, 0.8507. 0.5257;
-0.5257.~c.8507. 0.5257. 0.8507. o.aaaa.-0.8507.
-0.5257; &OOOOl;

OECLARE PZI321 FLOAT BINARV STATIC 1NItlALI
-0.4472,-0.4472,-0.4472,-0.4472.-0.4472, 0.1056,

0.1056, 0.1056. 0.1056, O.lOSb.-O.lOSb.-0.1056.
-O.lOSL,-O.l05b.-0.1056, 0.4472. 0.4472. 0.4472.

0.4472, 0.4472,-l.OOOOr-0.4472.-0.4472.-0.4472,
-0.4472,~0.4472, 0.4472. 0.4472. 0.4472, 0.4472,

0.4472, 1.00001;
DECLARE Lll90) FIXED BINARV STAIIC INITIAL1

5, 1, 2, 3, 4, 1, 2, 3. 4, 5, 6.11, 79121 8.131
9,14,10,15. 6, 7, 8, 9,10.16,17.18.19.20~21~21,

21,21,21,22,22~22,22.22,23,23,23123.24,24~24~
24,24,25,25,25,25,25,26,2b,26,2b~26,27~27~27~27~
27.2.9.28.28~28~2a.29.29.29~29~29~30~30~30~30~30~
31~31,31,31r31,32,32,321321i

OECLARE Lzi901 FIXED BINARV STATIC INITIAL(
1, 2, 3. 4, 5,11,12~13,14,15~11r 7.12. 8.130 9.

14.10.15. 6.16,17.18.19.20,17.18,19,20~16. lr 2.
3. 4, 5, 5. 1,llr L,lS, It 2.12, 7.11. 21 3113,
8,121 3, 4.14. 9.13, 4. 5,15,10,14,16.17~ 7111~
6,17.18, 8~12, 7,18,19, 9,13, 8~19.20.10.14r 91

20116. 6,15*10s16*17,18,19.201~
DECLARE Sl(bOJ FIXED BlWRV StAlIC INItIAL(

1, 2, 3, 4, 5. 1. 6rlltZO,lO, 2, 71131121 6s 3s
8.15114. 7. 4. 9117.16, 8, 5.‘10,19,18. 9.11.12,

22,26,21~13,14,23,27,22,l5,16,24~28,23~l7,l8~25~
29~24,19,20,21,30~25,26,27,28~29r30)i

OECl*RE $21601 FIXED BIWRV STATIC INITIAL1
35.31.32.33.34.37.30.39,40,3b,42r*3r44r45,4~.47,
4~,49,50,46,52,53;54;55;51r57,5~.59160r56,b~,~3,
62~61~65,b9,b8,67,66,70,74~73.72,71,75.79.78.77.
76.80,84,e3.82.01.a5,e7,0~,09,90,~b~~

DECLARE $3160) FIXED BINARV STATIC INttIALd
3l.32~33,34.35,36,37,30,39,40,4lr42,43r44~45~46,
47r48,49,50.51,52~53,54,55,56~57.50~59,bO,b5.b4~
63,62,61,70.69,68,67,~,75,74,73r72171.80~79~70~
77.76~05,84,~3,02,01,06,87.88189r90)~

DECLARE EOBC CHARACtERIt. INltIAL(’ 9.00’);
CECLARE GSCR CHARACTERICI lNItlAL1’ lO.00’1;
DECLARE EVES CHARACtERI INITIALI’ 0.70’1;
DECLARE SCRI CHARACTER161 INltIALI’ 2.50’1;
CECLARE FPIC CHARACTER161 INITIALI’ 24’1;
DECLARE HPIC CHARACtERI INITIALI’ 240’1;
DECLARE RSTP CHARACTERI~J lNITlAL1’ 1.00'1;
DECLARE IXWIW,XOSCR,XEVES,XSCRZ~XRstPI

FLU1 BINARV. IXFPIC~XHPICJ FIXED BlNARV;

001
002
a03
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
a21
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
04b
047
040
049
050
051
052
053
054
055
05b
057
058
059
060
061
062
063
064
065
066
067
Ob8
069
070
071
072
073
074

LECLARE (VI,VZ.V31 13) FLOAT BINARV;
CECLARE IARG,S,CJ FLOAT BINARV;
OECLARE (1.~1 FIXED BINARV;
ZINCLUOE HEAOZ;

/= TmU INtERACtlVE OISPLAVS ARE CREATED TO
ALLO& ttit CONSCLE OPERATOR TO ENTER 061
PARAMETERS THROUGti THE KEVBDARO. THE FIRST a82
UISPLAV GIVES HlM THE OPtlCh OF WANGIffi 083
PARAMETERS ASSOCIATED hItn CAMERA POSItIONING OM
YHILE THE SECOhO DISPLAV LETS HIM CHANGE 015
PARAMETERS YHICH CONTROL THE NUMBER OF FRAMES 086

075
076
077
078
079
OIO

PRODLCED.
DsPl: DSPINIT;

OSPtEXtll90,700,CPARnrVLRGt
‘tNtEH CAMERA PARAMETERS’J;

LSPttXt(260.COO.VSPAC=-35,
‘AJIS~ANCE to CENTER OF CBJECT’,
‘DISTANCE TO THE SCREEN’,
‘EVE SEPARATION (STEREO CNLVJ’,
‘SCREEN SlLE’) i

USPKBR0~6M0~600..000C,USCR~EVES,SCRL):
CN CONVERSloh GO-10 OSPli
Gtl STRINGIOOBC~ LIStlXOt8CJ;
GET STRINGLOSCRI LlStlXOSCRI;
GET StRlNG(EVESJ LISTIXEVESJ;
GET STkINGI SCRLJ LISTIXSCRZJ i

iiSP2: DSPINl ti
CSPtEXl~l90,700,CPARH=VLRG,

‘ENTER MOTION PARAMETEPS’I:
LSPtEXt~ZbO,bOOrVSPAC~-35,

‘START/END FlXEO PICTURES’,
‘NUMBER OF MOVING PICTURES’,
‘ROTATION IOEGREES/PICtUREJ’I;

CSPKMRDlb0O.bOO..FPIC.MPIC.RStP~:
CN CONVERSlk GO-TO OiP2; -
GE1 SlRING(FPIC.1 LISTIXFPIC);
GET STRINGLHPICJ LISTIXMPICJ;
GEt STKlNG(RStP) LISt(XRSTP1;

I+ THE GtiOMEtRlC FIGURE IS NOW DEFINED.
CO I=1 TO ~0CUN01Pt.11;

v~I~J=PxIIJ: ~112l=PV~IJi VlI3I=PL~lli
P~INt~PtIII~rVlJi

ENC i
00 I-1 t0 HBCUNOILN.11;

LINE~LN~O.rPtlL1i1IJ,Pt~L2IIJ~J;
EhD;
CO 1-l TO HPOUNOLSUILI;

SIJAFAC.E~SU~IJ~~LNIS~~~II~LN~S~IIJJ,
LNIS3~1111;

OBJECT~O8~EXPANO.SU~ I I I :
EhOi

*/ 087
088
089
090
091
092
093
094
095
096
097
a98
099
100
101
102
103
104
105
106
107
100
109
110
111
112
113
114

l f 115
I16
117
118
119
120
121
122
123
124
125
126
127
126
129
130

l / 131
132

/* THE ANIMATED SEQUENCE IS NOh PRODUCED. THE
FIRST ANU LAST FRAMES ARE REPEATED XFPIC
TIRES.

LEAUER;
00 1=1 tu XHPICi 133

ARl,=LI-lJ+XRStP; S-SINCIARGI ; C=CCSO(ARGJ i 134
VL~1J=-C+Ci v3111=s*c;
v2~2J-s+c+~1+sJ; V3(2I=C*C-S+S*S;
V213J=S*IC*C-$1; v3131=- S*C*Il*SJi
v1=-xoo8c+v2;
VIE~~VY,,VlrV2,V3,xEVES,XOSCR1XSCRL);
PICtUREiOB,VWrNGC&RHL=SOLIO~;
IF ~I=lJlII=XMPICJ rHEN REPEAtIXFPICli

EhD;
LEADER;

SINCLUDE TAIL;

EN0 RCWLTZ;

135
136
137
138
139

K
142
143
144
145
146
147

1933A4

Figure 4: A Complete Animation Generation Program

- 19 -

and waiting for the console operator to make any necessary changes. When the

console operator signals that he has finished, by generating a keyboard interrupt,

the modified character strings are transmitted to the SYSTEM/360 where it is the

program’s responsibility to process them. In figure 4, lines 88 through 96 generate

a display containing descriptive text and the four character strings in lines 66

through 69. The console operator may change these four strings and then generate

a keyboard interrupt. These four character strings are then read from the 62 O/i

into the SYSTEM/360 where statements 98 through 101 convert the strings to

floating binary numbers.

A point is defined by specifying its 3-dimensional Cartesian coordinates. In

lines 117 and 118 of Fig. 4, the X, Y, and Z coordinates of a point are selected

out of the arrays PX, PY, and PZ; and a point is defined. Line 121 shows a line

being defined by specifying its end points. The arrays Ll and L2 contain the

indices of the end points of each of the 90 lines in the figure. Thus, the first line

is the one between PT(5) and PT(l). The missing second argument of the POINT

and LINE statement may be used to specify a color code for color animated movies.

A surface is defined by giving a maximum of ten boundary lines which must

form a planar convex polygon. The more efficient hidden line removal algorithms

in this system, those that work on solid objects, require that the boundary lines

be listed in a counter-clockwise direction as seen from the outside of the figure.

Lines 124 and 125 show a triangular surface being defined using the arrays Sl,

S2, and S3 to supply the indices of its boundary lines. The first such surface is

the one bounded by LN(l), LN(35), and LN(31). The statement for defining a

geometric object may be used to re-define or expand (line 126) the definition of

an object.

- 20 -

I

The definition of a view (line 139) is not as simple as the other geometric

items. The form of the VIEW statement is:

VIEW(GVIEW,,R,V,H,e,d,f) ;

where GVIEW is the geometric view being defined. The parameters which define

the view (see Fig. 5) are:

R: A reference point which is, conceptually, a point midway

between the eyes of the viewer.

v: A vet tor in the direction that the viewer is looking.

H: A vector, perpendicular to V, defining the horizontal

direction of the projection screen. This vector is

optional; if it is not given, the system will generate a

vector parallel to the X-Y plane.

d: The distance from R to the projection screen.

e: The distance between the eyes of the viewer.

f: The size of the projection screen.

Other items of interest in Fig. 5 are the points P and Q. P represents a point

in the object being viewed and Q is the projection of P (from E) onto the screen.

For a stereo pit ture , the point P is projected twice, once from E and once from

E’. For a two dimensional picture P is projected from R. If P is between R and

the screen, then it will appear to float in space in front of the CRT or motion

picture screen when viewed in a 3-D mode. The mathematical details of how this

information is used are described in the Appendix.

The last step in an animation generation program is that of producing the

animated sequence . To do this, the statements LEADER, PICTURE, and REPEAT

are provided. In Fig. 4, the LEADER statement (lines 132 and 143) initializes

the system and produces a few frames of leader when the program is in a film

- 21 -

Q-

Figure 5: The Geometry of the VIEW Statement

-22 -

producing mode. The PICTURE statement (line 140) accepts as input an object,

a view, and a list of options; up to three such triples may be specified in a single

PICTURE statement. This statement causes the geometric data to be processed

and a picture to be transmitted to the 620/i. The options list is used to optimize

the computation and select a hidden line algorithm if hidden lines are to be removed.

In an animation sequence it is often desirable to stop the action for short periods.

The REPEAT statement (line 141) is provided for this purpose. It simply repeats

the last display generated by the PICTURE statement a specified number of times.

Three hidden line algorithms are currently available in this programming

system. They are selected in the PICTURE statement by coding RHL=CQ)NVEX,

RHL=S(dLID, or RHL=GENERAL. The first algorithm is very fast and efficient

but assumes that the object is a single convex body. It is based on the fact that

an edge of a convex body is completely invisible if it is a boundary of two back

faces, and is completely visible otherwise. A back face is one whose surface

normal points away from the viewer, otherwise the surface is a front face. Un-

fortunately, most objects of interest are not convex. The second algorithm

assumes that the object consists of a number of solid bodies; that is, the surfaces

define bodies with an inside and an outside. The object may also contain miscel-

laneous points and lines which will be processed by the hidden line eliminators.

Some efficiency is retained in this algorithm because only front faces need be

considered in determining how much of a line is hidden. In addition, an edge is

completely invisible if it is the boundary of two back faces, or the boundary of a

front and back face with the back face closer to the viewer. Fig. 6 was produced

from the program in Fig. 4 using this algorithm. The third hidden line algorithm

makes no geometric assumptions and can process any collection of lines, points,

and surfaces positioned arbitrarily in space. Since it compares each line or

point with every surface, it can be very time consuming.

- 23 -

1933A6

Figure 6: The Si;~l.lated Dodecahedron

- 24 -

I

Other algorithms could also be added to this system. One which is efficient

requires that the programmer break the object up into smaller convex bodies.

While such a scheme puts a greater burden on the programmer, it results in an

algorithm with most of the good features of the RHL=SQ)LID algorithm in addition

td the ability to recognize an edge as being fully visible very early in the algorithm.

Although the animation generation program in Fig. 4 appears to generate the

animation sequence only once, this is not the case. A part of the expansion of

the SINCLUDE TAIL statement (line 145) is a C@ To statement which transfers

control into part of the ‘?&INCLUDE HEAD2 statement (line 78). The expansion of

the %INCLUDE HEAD2 statement contains statements to put an initial display on

the CRT. This display gives the console operator the ability to change certain

parameters and select the mode in which the animated sequence is to be run.

Thus, an animation sequence may be run through many times, perhaps in different

modes, during one execution of an animation generation program.

Appendix : The Projection Matrix

One of the basic repetitive operations is the operation of transformation of a

point (X,Y, Z) in the model space into screen coordinates @ ,v).

the data supplied to the VIEW macro is first used to construct a

This matrix has the property that the coordinate transformation

out by:

In this system

3x4 matrix M.

may be carried

- 25 -

If equation 1 is expanded into three scalar equations, these equations will define

xp, XV, and A. If the first two equations are divided by the third, the result

is a pair of rational expressions for ~1 and v . Alternatively the transformation

can be carried out by a single matrix multiplication and two divisions. In Fig, 5,

U is a vector which defines the upward direction of the screen. In the following,

the vectors V, H, and U are assumed to be unit vectors. The variables 5 and

77 measure distance, along H and U respectively, of the projected point Q.

From Fig. 5, it is evident that E and Q may be given by:

E=R+;H

Q=R+dV+e H+r)U

where (5 , r)) is related to (p , v) by:

jj= f
1024 (p-512)

(2)

(3)

f
’ = 1024 (v -512)

When working with the left eye projection of a stereo view, it is sufficient to

replace e by -e in equation (2) and all following equations. For a simple 2-D

projective view set e to zero. Since E , P, and Q lie on a straight line, the

vectors (P-E) and (Q-E) are parallel, and therefore are proportional.

X (Q-E) = (P-E) (4)

Substituting equations 2 into the left hand side of equation 4 results in:

h (t - 5) H+q U+dV 1 = (P-E) (5)

- 26 -

I

Equation 5 may be rewritten in the form:

= (P-E) (6)

Ml = WI T-J/V)

where the columns of Ml are H, U, and V. Since the 3x3 matrix Ml is ortho-

gonal, its inverse is equal to its transpose. Thus, multiplication of equation 6

by the inverse of Ml gives:

A ii:‘) =M2(P-E) M2 =(,i) (7)

where the rows of M, are H T, UT , andV T . Now substitute equations 3 into
h

equations 7 to obtain:

/

= M2(P-E)

(8)

To simplify future computation, replace the indeterminate X by 1024 X/f.

When this is done, equation 8 becomes : When this is done, equation 8 becomes :

x x = M2(P-E) = M2(P-E)

(9) (9)

- 27 -

The column vector on the left hand side of equation 9 may be written as:

(10)

Now multiply equation 9 on the left, by the inverse of the 3x3 matrix in

equation 10. The result of this is:

P
x v

0 1

= M3(P-E)

f+e
2d

f
2d M2

f
1024d

(11)

Finally, the first of equations 11 may be written as equation 1 where:

M = (M3
I (-M3E))

Equation 12 states that the first three columns of M are the same as those

of M3 and the last column of M is the column vector -M3E.

- 28 -

1.

2.

3.

4.

5.

6.

7.

8.

9. Knowlton, K. C. A Computer Technique for Producing Animated Movies.

Proc. AFIPS 1964 SJCC Vol. 25, Spartan Books, New York, pp 67-87.

0. Talbot, P. A. et . al. Animator: An On-Line Two-Dimensional Film

Animation System. Comm. ACM, Vol. 14, April 1971, pp 251-259.

- 29 -

REFERENCES

Varian Data 620/i Computer Manual. Bulletin No. 605-A, Varian Data

Machines, 2722 Michelson Drive, Irvine, California 92664.

IDIIQ)M Technical Description. Information Displays, Inc. , 333 North

Bedford Road, Mount Kisco, New York 10549.

Robinson, G. A. Preliminary GSM-3 Command Manual - Computation

Group Technical Memo #122. Stanford Linear Accelerator Center, Stanford,

California 94305.

Beach, R. C. The SLAC Scope Package for the IDII(bM - Computation

Group Technical Memo #80. Stanford Linear Accelerator Center,

Stanford, California 94305.

Graphic Subroutine Package (GSP) for F@RTRAN IV, C@B@L, and PL/l.

Form C27-6932, IBM Programming Systems Publications, Poughkeepsie,

New York 12401.

The SLAC 2250 Scope Package - F@RTRAN Version, Library Program No.

KO-59. Stanford University Computation Center, Stanford, California.

The SLAC 2250 Scope Package - PL/l Version, Library Program No.

KO-110. Stanford University Computation Center, Stanford, California.

Beach, R. C. A Programming System for Producing Computer Generated

Motion Pictures on the Graphic Interpretation Facility - Computation Group

Technical Memo. #123. Stanford Linear Accelerator Center, Stanford,

California 94305.

11. Baecker , R. M. Interactive Computer-Mediated Animation, Ph. D. Thesis,

MIT, Dept. of Electrical Engineering, Cambridge, Mass. , June 1969.

12. Grater, F., Blasgen, M.W. Karma: A System for Storyboard Animation.

Computer Graphics - A Quarterly Report of SIGGRAPH, Vol. 5, Winter-

Spring 1971, pp 2 6-36.

- 30 -

