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Abstract

We stﬁd& the relation between the parton model‘ and lighf, cone analyses for
highly ineclastic leptonic processes. Results are displayed thch follow from
. scaling laws in general, ind_ependen_tly of specific parton model predictions;. We
conclude that the assumptions of the light cone analysis of inelastic electron
scattering are supported by the parton model. However, the parton model
matrix element for massive muon pair production is not light-cone dominated,

-

nor does it have the same light cone singularity as inelastic electron scattering.
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Many theoretical explanations/;;ve becen propqsed to account for the exper-
imental observation of scaling in highly inelas'tic electron scattering. Although
each of these, by design, predicts scalin:g behavior for electron scattering in
the Bjorken limit region, the rélation of one approach to another is only poorly
understood é.t present. The Subject of this letter is the relation between two of
the cu‘rrently most popul:J:.r of these approaches: | the parton model of Feynma.n1
~ and Bjorken2 especially as developed by Drell, Levy and 'Yan3; and the study of

1i~ght cone singularities prop_bsed by Ioffe, Frishman, Brandt:,4 and others. |
It is often noted that these two approaches achieve scaling predictions for
inelastic electron scattering by assuming certain free field behavior: for the
cofnmutatqrs near the 1ightlcone in the one instance, and for the scattering
ampiitude in particular_regions of momentum spaée in the other. In order to
ﬁnderstand better the significance of this similarity, ﬂve explore hore quanti-

tatively the relation between these two approaches, first for the well-studied

subject of electron scattering and second for the 'productioh of massive lepton-
antilepton pa’irs in high-energy hadronic collisiéns. Speqiﬁcally, we display

e:&plicitly the coordinate space structux_‘e of the appropriate matrix elements
which is implicit in the scaling laWs: derived in the paﬂ:on model, and further
display the role of singularities near‘ the light cohe in détermining this scaling
beﬁavior. Our techniques may be appliedlto scaling laws derived inciependently
of the par{:on model. For déep inelastic electron scattering we first derive our
results from the scaling laws without diécussing specific theoretical origins for
the scaling. Afterwards we outline the deriyafion of this coordinate space be-
‘havior from ?he deﬁails of the parton model expressions for the matrix elements
. in question. This latter approach yields considerable insight into the physical

origin of our results. Finally we analyze massive lepton pair production with

similar techniques.



The results of our analysis may be summarized as follows. 'For highly
inelastic lépton scattering, Bjorken sdaling5 impliés that the matrix element
has c;nly free field singula}ities on the light coﬁé and is smooth enough away
from the light cone to support the usual arguments for light cone dominance.
From the viewpoint of the parton model, the light cone singularity appears as.‘
the propagator of the quasi—eiastica'lly scattered partqn. a |

In maésive lepton pair creation, major differenc;és between the 1ight cone
aﬁ_alysis and the parton ﬁmdel beéome evident. From the parton model scalivng
law of Drell and Yan6 we find that the matrix element of interest has high;frequéncy
oscillétions far away from the light cone which invalidate the usual arguments
for light cone dominance; and moreover, the matrix clement on the light cone
dée’s not havé the singularity that is present in deep i’nélasfic electron scattering.
" In studying this process by light cone techniques,7 one assumes not only that the
light cone dominates but also that the leading singularity is that "measured" in
inelastic electron scattering. '}‘he absence of this singularait‘y in the parton model
for this process is associated with the absence of an elasticaliy scattered parton
'in the final state. B
| To b.egin, rec~all that iﬁelastic electron scaitering is characterized by the

well-known structure functions W1 a'nd'W2 defined by:
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where P-q = Mv;q =-Q < 0.
We restrict our attention to the contracted tensor Wz: the slightly more

complicated general case together with the simiiarly straightforward extension

(1B)



- to the current commutator will be handled elsewhere. 8 o
Inelastic scatfering experiments at SLA(;‘9 support the hypotheé m\tha;t in the

Bjorken limit (v, Qz—o 00; X = Q2/2 My finite) Wland vwzbecome functions of

- x alone:

Lim_ MW, (2,») = F, (x) and Lim v Wy(a?,v) = F, )

bj 1 bj

80 that:

LtmbjW’;(q »v) ='w'g(x>= -ﬁ-(-ﬂl({cﬂ 51; Fz(x))

Since x is kinematically constrained to be between 2er6 and one, we have:

1
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0 .
We now substitute into this tixe following identity:
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and P M is a four-vector satisfying: P: = mz; Pn- q= nMv . We obtain:
i iPp:
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Up to terms whose Fourier transfonn~vanishes in the scaling limit, the coordinate

space structure of the matr.ix element is then:
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We quote the analogous result for the current commutator:

1

0

The invariant functions A and A introduce free field singularities for the

‘ propagation of a particle of mass m on its mass shell. The apparent singuiarity ‘

in the 7 integral does not contribute in the scaling region as can be seen by
puttmg in a cutoff, performing the Fou_mer transform indicated in Eq. (1A) and
noting that the cutoff dependent terms vamsh for large q2 and v.

The free ficld singularities in these expressions are multiplied by a smooth

functlon of P-y. Up to now, we have made no assumptlon about light cone dom—

inance. However, since P .y remains fixed as Q and v become large, it follows

that the rapidly varying exponential in Eq. (1A) damps all contributions relative
to the singularity on the light cone. For the details of this argument, \\}e refer
to the work of Frishman. 4 Indced, keeping only the lcadmd light cone singularity
‘of the A function in Eq. (3) we obtain the light cone representation of the matrix
element of Jackiw, van Royen and West. 10
This result may be obtained, together with some insight into the origin of

the coordinate space behavior, from the parton model expression for the matrix

- P : N
element, which in an infinite momentum frame may be written :
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2 is the probability for finding parton i in constituent state n of the target.

la §
n,il
W is the incoherent sum of the elastic scattering of partons by "bare" currents
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i#(y). For spin zero partons:
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where 7\2 is the chargeA of the scattered spin-0 parton. Spin 1/2 pziftons yield
the same contribution multiplied by - 2. .In the.Bjorken limit (Pi'i-Pi)2 o Qz;
the remaining P ; dependence in Eq. (4) coxhbines to form the singular function
A +(y,m2). The free field singularity found formally in the preceding paragraphs
clearly originates in the free propagation of the elastic;illy scattered parton.
Eqdatign(:Z) may be now obtained8 from Eq. (4) by ﬁeans of the parton model
definitions of the structure functjons Fl(x) and Fz(x).

We now turn to the process P + P——; p+ +p‘ + "anythi‘ng”. In the limit of
hig}i energy and largé dimuon mass, Drell and Yan6 ﬁave derived a scaling law
for thié process from the parton model. The scaling law originates in the ob-
servation that parton-antiparton annihilations, shown in Fig. la, will predominate
bver parton bremsstrahlung, shown in Fig. 1b, inthe abow}e—mentioned limit.

“The differential cross section for producing a dimuon of méxss Qz, from incident

. o . ! ’ -
particles of momenta P and P ¥ and center-of-mass energy Js is given by:
2 r ~1/2° | .
stf_z = 4?"‘2 ([s —(M+M')2] [s —(M—M')z]) W(Qz,s) - (5)
aQ 3Q° . , _ :

ignoring the muon mass. W(Qz,s) is g.'iven,by:

w(a®,s) - ~4E, B, (2n)° / a*y A+(Y§Q2)<Pr5'(in)|:r,,m Holerryy (@)

The scaling law of Drell and Yan asserts that in the limit s—o0 and Qz—-» o0

with 7 = Qz/s fixed, W(Qz,s) becomes a functibn of T alone:
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Fy a‘(77) is the contributién to the Jinelastic structure fmction,Fz(n); of the proton
frem partons of type a; and similarly Fég (n) for the antipartons, and )’a is the
charge of parton a.

To obtain the coordinate space structure of Eq. (7), observe the following

identity:

S
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" The four vectors, Py, and Py, are restricted to satisfy:
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In the center-of-mass, in which P = ('J k2+M2 s k) and P' = ( 1{2+M 2, —k)

P')1 and P"lz may be chosen to be: P’h =( /'U?k2+M2 . ni_lz) and

] — . , -
' P772 ( /n§k2+M 2 —772 ) Substituting this identity into Eq. (7), we obtain

(up to terms whose integral agamst A (y Q ) vanishes in the limit):
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The leading light cone singularity of the single particle matrix element of the -
current product (of Eq. 2) does not enter this matrix element. In fact, Eq. (8)
has no s-‘ingularity at all on the light c'one,11 unless FZa or F'ZE is 'f;r inore . |
badly behaved than the overall structlire functions appear to be (o.gain the ap~
parent divergence at = 0 does not contribute in the s,Q2—>oo limit). As Q2 be- ’ |
comes large, it is not possible to hold the .variables io this matrix element
| fixed as it was in inelastic electron scattering. The reason for this lies in the
kinematic restriction that s must be larger than Qz. Moreover, as s—»00, the
product of exponentials of oppositely directed momentuxh vectors on the right
of Eq. (8) develops high frequencies whioh compensa;fe those of A +(y,Qz) and
givesrise to contributions to W(Q-.Z,sr_) from all'pa.rts of coordinate space.

e We do not expect this result to be seriously altered if the colliding hadrons
exchange wee partons (equivalent to Regge exchango) before or after the annihi-
lation. In this case, the term; 7\ Za(nl) ) oM a(nz) is replaced by an unknown

function & (’71' n 2’S) . 6 Because wee exchanges can carry only asymptotxcally

small amounts of momentum and because ex.change processes seem to become
very smooth at large s, we do not expcct T (7)1, No» s) to differ importantly from
| ‘the factorized expression.

Lastly we note that the lack of a singular-ity in the matrix element state is
hnked as we would expect, w1th the lack of a scattered parton in the final state.
Note that the bremsstrahlung diagram, Fig. 1b, Whlch in the parton model does
not contribute in the scaling limit, does display the singularity which the anni-
hiiation diagram lacks. This completes the derivation of the results outlined
earlier. : - |

- Clearly the techniques déveloped hefe can be applied to the many other

processes for which scaling laws have been proposed: in the parion model
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these include12 highly inelastic neutrino and antineutrino scaétering, e+e" anni-
hilation to a hadron plus anything, and high-energy photoproduction of massive

muon pairs, ameng others.

We thank Professor Sidney Drell for his advice and encouragement.

Fipure Caption

1. Parton model diagrams for P+P—+u++ B~ + “anything": a. parton pair

annihilation; b. parton breinsstrahlung.
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