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Abstract 

We study the relation between the parton model and light cone analyses for 

highly inelastic leptonic processes. Results are displayed which follow from 

scaling laws in general, independently of specific parton model predictions. We 

conclude that the assumptions of the.light cone analysis of inelastic electron 

. . scattering arc supported by the parton model, However, the parton model 

matrix element for massive muon pair production is not light-cone dominated, 
_1 

nor does it have the same light cone singularity as inelastic electron scattering. 
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Many theoretical explanationshave been proposed to account for the exper- 
: - 

* 

imental observation of scaling in highly inelastic electron scattering. Although 

each of these, by design, predicts scaling behavior for electron scattering in 

the Bjorken limit region, the Hation of one approach to another is only poorly 

_ . 

. . 

understood at present. The subject of this letter is the relation between two of ’ 

the currently most popular of these approaches: the.parton model of Feynman’ 

and Bjorken’ especially .as developed by Drell, Levy and Yan3; and the study of 

light cone singularities prop&ed by Ioffe, Frishman, Brandt,4 and others. 

It is often noted that these two approaches achieve scaling predictions for 

inelastic electrpn scattering by assuming certain free field behavior: for the . .- 

commutators near the Qilt cone in the one instance, aild for the scattering 

amplitude in particular regions of momentum space in the other. In order to 

understand better the significance of this similarity, we explore more quanti- _ 

tatively the relation between these two approaches, first for the well-studied 
. - 

subject of electron scattering and second for the.production of massive lepton- 

antilepton pairs in high-energy hadronic collisions. Specifically, we display * -. . 
explicitly the coordinate space structure of the appropriate matrix elements 

which is implicit in the scaling laws’derived in the parton model, and further 

display the role of singularities near the light cone in determining this scaling 

behavior. Our techniques may be applied to scaling laws, derived independently 

of the parton model. For deep inelastic electron scattering we first derive our . 
. 

_. 

results from the scaling laws without discussing specific theoretical origins for 
.- . . 

the scaling, - Afterwards we outline the derivation of this csordinate space be- 

havior from the details of the parton model expressions for the matrix elements 

in question. This latter approach yields considerable insight into the physical 
. 

origin of our results. Finally we analyze massive lepton pair production with 

similar techniques. 
.’ 
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The results of our analysis rn5yhe sLunmarized as follows. ‘F&r highly 
5 : . 

inelastic lepton scattering, Bjorken scaling implies that the matrix element 

* has only free field singulakities on the light cone and is smooth enough away ., ,,, _* .. 
: 

from the light cone to support the usual arguments for light cone dominance. v 

From the viewpoint of the parton model, the light cone singularity appears as 

the propagator of the quasi-elastically scattered parton. 
. 

. 

In massive lepton pair creation, major differences between the light cone 

analysis and the parton model become evident. From the parton model scaling 

law of Drell and Yan’ we find that the matrix element of interest ha& high-frequency 

oscillations far away from the light cone which invalidate the usual arguments 

for light cone dominance; and moreover, the matrix element on the light cone 

doe’s not have the singularity that is present in deep inelastic electron scattering. 

In studying this process by light cone techniques, 7 one assumes not only that the 

light cone dominates but also that the leading singularity is that “measured” in 

inelastic electron scattering. The absence of this singularity in the parton model 

for this process is associated with the absence of an elastically scattered parton 
s - __.- 
in the final state. . 

To begin, recall that inelastic electron scattering is characterized by the _.C- 

. 

. well-known structure functions W1 and W2 defined by: 

whereP*q = Mv;q2= -Q2 S 0. 

. 
We restrict our attention to the contracted tensor WL: the slightly more 

complicated general case together with the similarly straightforward extension 



to the current commutator will be handled elsewhere. * l 

Inelastic scattering experiments at SLAC’ support the bypothesis‘that in the 
4 ; 2 

“’ : - 
Bjorken limit (v , Q - ao; x = Q2/2 Mv finite) Wland VW2 become functions of 

x alone: 

I 

so that: 

LlmbjI$(q2, v) =.W;(x) = +Fl(x) + & F2 (xl ) 
., I 

/ Since x is kinematically constrained-to be between zero and one, we have: 

1 

w;(x) = 
/ 

dl’lb 01 -xl W; 01) 

0 

I 

: 

We now substitute into this the following identity: 

where 

and P 
P 

.-- 

is a four-vector satisfying: P2 
rl 

=m2;Pv*q= ?JMv. We obtain: 

Up to terms whose Fourier transform.vanishes in the scaling limit, the coordinate 

space structure of the matrix element is then: 
. 

4x2EP 
----<P~Jpor) M J%)lP> 

1 > 

[F2(‘1) - 6~Flm)lei ‘17’ y (2) 
7 
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We quote the analogous result for the. current commutator: 

,. . . . . 

The invariant functions A and A+ introduce free field singularities for the 
. 

propagation of a particle of mass m .on its mass shell. The apparent singularity 

in‘the q integral does not contribute in the scaling region as can be seen by 
\ 

putting in a cutoff, performing the Fourier transform indicated in Eq. (lA) and 

noting that the cutoff dependent terms vanish for large q2 and ZJ . 

The free field singularities in these expressions are’multiplied by a smooth 
_ 

function of P . y . Up to now, we have made no assumption about light cone dom- 

inance. However, since P l y remains fixed as Q2 and v become large, it follows 

that the rapidly varying exponential in Eq. (IA) damps all contributions relative -’ 

to the singularity on the light cone. For the details of this argument, we refer 

to the work of Frishman. 4 - Indeed, keeping only the leading light cone singularity 

‘of the A function in Eq. (3) we obtain the light cone representation of the matrix 

element bf Jackiw, van Royen and West. 10 

. . This result may be obtained, together with some insight into the origin of 

the coordinate space behavior, from the parton model expression for the matrix 
. . 

3 
element, which in an infinite momentum frame may be written : 

:’ 

WL; $$x )an,i~~d3~;~y,eiq’Y<Pi~jp~)lP~)~<P~lj~(o)~Pi> . (4) 

n,i . . 

1 
[an 

, 
i12 is the probability for finding parton i in constituent state n of the target. 

W’;: is the incoherent sum of the elastic scattering of partons by “bare” currents 

, 

-yEi- .’ 
_ . . 

..‘: 

.--. 

(3) 

. 



-- 
j’(y). For spin zeropartons: ‘. 

‘(Pi-P;)’ y, 

, 

where hfi is the charge of the scattered spin-0 parton. Spin l/2 partons yield- 

the same contribution multiplied by 12. In the Bjorken limit (Pi+Pf,2 L= Q.2; 

** 

. . 

the remaining Pi dependence in Eq. (4) combines to form the singular function 

A+ (y,m2). The free field singularity found formally in the preceding paragraphs 

clearly originates in the free propagation of the elastically scattered parton. 

Equatign( 2) may be now obtained’ from Eq. (4) by means of the parton model 

definitions of the structure functions F1(x) and F2(x). _, 

We now turn to the process P + P--p+ +p- + “anything”. In the limit of 

higli energy and large dimuon mass, Drell and Yan’ have derived a scaling law 

for this process from the parton model. The scaling law originates in the ob- 

servation that parton-antiparton annihilations, shown in Fig. la, will predominate 

over parton bremsstrahlung, shown in Fig. lb, in the above-mentioned limit. 
. 

‘The differential cross section for producing a dimuon of mass Q2. from incident 

particles of momenta I?’ and P ‘P 
.-’ 

and center-of-mass energy & is given by: 
. . .- 

da 4sa2 -=- (1 dQ2 iQ2 
s - (M+M’) 2])-1’2 ‘W(Q2,s) 6) 

,2 . 
ignoring the muon mass. W(Q , s) is given,by: : 

. 

.- W(Q2,s) = - 4 E1E2(2x) 5 
J 

d4y A+(y~Q2)<P.P1~in)/JB0,) J’(O)lPP’(in)> (6) 
. . 

The scaling iaw ‘of Drell and Yan asserts that in the limit s-cc and Q2- co 

with T = Q2/s fixed, W(Q2,s) becomes a function of T alone: 
1 

.4-:. 

.. 
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1 1 

Lim W(Q2,s)=W(+ ‘Q2,s+ 00 (‘) 

T fixed 0 0 

FZa(fl) is the contribution to the inelastic structure function,F2(q),of the proton ., . . . I 
frcam partons of type a; and similarly Fig (q) for the antipartons , and Aa is the 

charge of parton a. 

To obtain the coordinate space structure of Eq. (‘7), observe the following 

identity : 

e 
i(P171 +pQ2)‘Y 2a 

= 7 iJ (“1’72 - T) 

Thi four vectors, Pql and P’02 are restricted to satisfy: 

( pvl + p’q2 1 s f terms which vanish as s,Q2-+ a. I 

In the center-of-mass, in which. P = t-,x) and Pi = (dm, -c) 

Pql and PTV2 

K- 

may be chosen to be: Pql =(iF, viz) and 

Pq2 = V;k2+M’2, Substituting this identity into Eq. (7), we obtain 

(up to terms whose integral against A+(y,Q2) vanishes in the limit): 

1 : 

1 

01 

d’72 
x .- 

112 
e 

iprlz;y .._ . 
F& (V2) (8) 

0: 
: 

. 
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The leading light cone singularity of the single particle matrix element of the . . . . ., 

. , . 

current product (cf Eq. 2) does not enter this matrix element. In fact, Eq. (8) 4 
11 

1 has no singularity at all on the light cone, unless Fpa or FhZ is far more I -. 

badly behaved than the overall structure functions appear to be (again the apd 

parent divergence at q = 0 does not contribute in the s,Q2+cc limit). As Q2 be- 

comes large, it is not possible to hold the .variables in this matrix element 

fixed as it was in inelastic electron scattering. ,The reason for this lies in the . - 

kinematic restriction that s must be larger than Q2. Moreover, as S-B-KI, the 

product of exponentials of oppositely directed momentum vectors on the right 
. 

of Eq. (8) develops high frequencies which compensate those of A+ ( y,Q2) and 

givesrise to contributions to W(Q2, s) from all parts of coordinate space. __ 

’ We do not expect this result to be seriously altered if the colliding hadrons 

exchange wee partons (equivalent to Regge exchange) before or after the annihi- 

lation, In this case, the term 
F 

c2 a F2a(V1) “8ZiP2) is replaced by an unknown 

function $ ( oI,??2,s). 
‘6 Because wee exchanges can carry only asymptotically 

small amounts of momentum 
l,$ and because exchange p‘rocesses seem to become 

. -- 
very smooth at Iarge s, we do not expect 3 

(, 
17 , q , s) to differ importantly from .l 2 

the factorized expression. 

Lastly we note that the lack of a singul@ty in the mat& element state is 

linked, as we would expect, with the lack of a scattered parton in the final state. 

.- 

Note that the bremsstrahlung diagram, Fig. lb, which in the parton model does _ 

not contribute in the scaling limit, does display the singularity which the anni- 

hilat ion diagram lacks. This completes the derivation of the results outlined 

earlier. * 

Clearly the techniques developed here can be applied to the many other 

processes for whi& scaling laws have been proposed: in the parton model 

-8- 
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these include” highly inelastic neutrino and antineutrino scattering, ese- anni- 

. hilation to a hadron plus anything, and hi&-energy photoproduction of massive 

amqng others. 
* 

muon pairs, .” :. .’ I 

We thank Professor Sidney Drell for his advice and encourageqent. . . 
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Figure Caption 

1. I Parton model diagrams for P +P-+++ /.L- + 

annihilation; b. parton bremsstrahlung. 
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t~anyt.hing” : a. parton pair 
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