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ABSTRACT 

The relation between the multiplicity growth and the energy 

loss spectrum of an incident particle, as implied by Poisson emis- 

sion with a classical spectrum, appears to be obeyed experimentally 

in PP collisions. 
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The Brookhaven experiments’ on the behavior of the final proton in highly 

inelastic PP collisions at GeV revealed a spectrum of puzzling simplicity: to a 

first approximation the emerging proton can have any value of longitudinal 

momentum with equal probability, as long as that momentum is large, That is, 

the cross section do/dPL in P +P 4 P + (anything) for fast final protons is, 

aside from the narrow elastic and quasi-elastic structures at the maximum 

momentum, approximately independent of PL. (It is worth noting that this 

statement, or that of any power law behavior do/dPL I Pa, holds in all frames 

reached by Lorentz transformations leaving the proton moving relativistically 

in the same direction.) 

Subsequent experiments2 have confirmed these results. In Fig. 1 we show 

the CERN results at 19 GeV/c. Since that time, some preliminary understanding 

of the situation at very high energy, beyond the region where resonances and 

quasi-two body reactions dominate the scattering channels, has been achieved. 

The average multiplicity3 appears to increase logarithmically at very large 

energy so that, ignoring a constant term, 

N=CQns . (1) 

The constant C is approximately one if we multiply the experimental charged 

01 multiplicity of (0.7 k 0.1) by 3/2 to attempt to account for undetected r s. The 

multiparticle production spectra may be dominated by “soft pions, I1 4 whose 

probability distribution peaks for very low energy. These features are reminis- 

cent of a simple “bremsstrahlung picture, ” an idea entertained, with just these 

points in mind, at least as far back as 1942,’ and elaborated recently in the con- 

text of llscalingfl by Feynman. In “bremsstrahlung’! the abrupt acceleration of 
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the charge7 leads to a spectrum of radiated photons containing on the average 

equal amounts of energy per unit frequency interval: 

Ec.Lc ) 
do 

which in view of T(U) = ~(u)/w gives 

(2) 

which is the low energy peaking of the radiated particles. 

If we imagine giving the radiated “photons 11 a small mass, A, we anticipate 

that the spectrum of the energy radiated resembles Fig. 2. Then, since the 

upper end point of the spectrum must be determined by the energy available to 

be radiated, integration of Eq. (4) gives the logarithmic increase of multiplicity. 

From this standpoint the emerging fast proton in P + P-+ P 4 (anything) and pre- 

sumably leading particles in general may be thought of as initial particle slowed 

down by radiative energy loss much as the electron loses energy to photons in 

electron scattering. 

This “radiative tail” or 17straggling’f may be calculated if we can find the 

spectrum of energy fluctuations of the radiation field, since the energy in the 

radiation must be that lost by the incident particle. The energy in the radiation 

field, on the other hand, may be calculated from two simple assumptions very 

much in this general spirit: 

(A) The probability of N emission into a given frequency oi of the radiation 

field is given by a Poisson distribution 

P(Ni) = 
-q 

Ni! e 
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This is equivalent to assuming that emissions into different oi are statistically 

independent, which seems possible for soft radiation from a very energetic particle, 

as long as a large fraction of the initial energy is not lost. 

(B) The parameter fli characterizing the Poisson distribution is given as 

a function of frequency 0 by the 7qclassica17” relation Eq. (3); d??(o)/do= C/w . 

This may be taken as a reflection of the equal distribution of energy in the 

various momentum states of the radiation field, as Feynman’ puts it. 

Now the probability P(E) of finding an energy e in the radiation field is 

the probability of the various configurations N1, N2, subject to the constraint 

E =N1Wl+N2W2+... Or 

P(e) = c 6 ( +N1wl - N2W2.. .) P(N1)P(N2). . . 
N’s 

Introducing the fourier transform of the 6 function, using 

c 
N1 

tq 
N1 

N1! 
.-% =c 

N1 

-iw,t N1 
te ““1) 

N1! 

(4) 

and passing from the sum to an integral in the exponents leads to 

E -km Edw 
P(c) = 

$ 

dt ,iet e - (e c $“w” -iwt-q -c $ o 
e e 

--co 
. 

The effective mass of the radiated particles has been taken to zero. The last 

term represents the probability of there being no radiation of quanta with energy 

greater than E , up to the maximum energy available, E. Introduction of the 

variables O/E and et leads immediately to 

P(E) - g - $ (E/E)~ (5) 
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(This is to be compared with the radiative correction formula for electron energy 

loss7 da a2 =+ ( E/E)aAe That the parameter C is in fact essentially the C of 

Eq. (1) may be seen by considering each of the incident protons separately in the 

center-of-mass system, for example. Each proton has a maximum energy hi- 

and radiates half the produced particles. Thus for proton 1, K 1 = C Qn El. It is 

significant that with the logarithmic multiplicity law this argument is not actually 

tied to the center-of-mass or any other Lorentz frame, as long as both protons 

are relativistic. In some other Lorentz frame proton 1 will have an incident energy 

Ei and an average multiplicity attributed to it due to its “bremsstrahlung endpoint’? 

at Ei. Ni = C Qn Ei, while the other proton has ci = C Qn E;. But since 

% + % = C Qn E’ El 1 2 12 z C Qns is an invariant, this language makes sense. This 

idea that produced particles are uniformly distributed with respect to the logarithmic 

energy variable, or rapidity, 6 is thus part of the consistency of the approach. 

Indeed, the idea that we may divide up the produced particles between the incident 

particles differently but consistently in various Lorentz frames, could be viewed as 

the reason l’why~~ the multiplicity is logarithmic. 

A precedent exists in the bremsstrahlung of an electron scattered in the coulomb 

field of a nucleus: In the rest frame of nucleus the electron is said to radiate because 

it is accelerated by the coulomb field. On the other hand, the process may also be 

treated8 in the rest frame of the electron by the Weizacker-Williams method, ac- * 

cording to which the field of the fast moving nucleus looks like a pulse of photons 

which scatter off the electron. In one frame we say the radiation comes from the 

electron, in the other from the nucleus, but it is the same radiation. 

In any event, with C z 1, Eq. (5) does give a flat energy loss distribution. It 

is amusing, as P. Tsai has pointed out to us, that in the radiation problem language 

we can say this is like the passage through an absorber of about one (actually .75) 

radiation length. 
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In Eq. (5) E really only serves as a convenient scale factor, small energy 

losses do not depend on the behavior of the radiated energy near the endpoint of 

the spectrum. The data, nevertheless, seems to be sensibly flat up to surprisingly 

large fractional energy losses. If we boldly assume that Eq. (5) can be approxi- 

mately taken all the way up to 100% energy loss, then we can get the average 

fractional energy loss for the leading particle 

2 C -= 
E 1-l-c ’ (7) 

giving g/E = l/2 with C N, 1, which is not inconsistent with suggestions from 

cosmic ray evidence. 9 

So far we have assumed that the pions actually observed are the primary 

emitted units. If the basic Poisson-emitted objects were always pion pairs, 

say, then we should take C in Eq. (1) at half its experimental value since we 

would want the multiplicity of pairs. Knowing the precise value of C is, of course, 

tied up with knowing the missing neutrals, but even in the extreme case that it 

were as small as l/2, Eq. (5) still gives a rather flat spectrum. What it is, 

if anything, that is Poisson emitted may eventually be determined from the 

multiparticle spectra themselves. 

A simple but nonetheless necessary experimental test of this general ap- 

proach derives from our implicit assumption that the proton slows down due to ’ 

radiation and not by transferring any energy to the other proton. This means 

that all the energy of, say, the forward proton must be found in the forward-going 

particles. Observation of frequent assymetric energy partitions between the 

forward and backward particles in the center-of-mass would be a strong mark 

against any picture of the type discussed here. 
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The agreement with experiment here must be regarded as very preliminary 

since the flat energy distribution for the first final protons has only been observed 

at relatively low total energies, where the logarithmic multiplicity law can hardly 

be regarded as fully in play. Furthermore, precise measurements of N(s), in- 

cluding missing neutrals, are still to come. It will be interesting to see if the 

flat energy loss spectrum persists at high energy, and to see results like 

P + P + N + (anything) at high energy. It will also be interesting to see if similar 

results are obtained with other beams. K mesons would be an interesting analog 

to protons in this regard, multiproduction of strangeness being small, the lead- 

ing particle should be readily identifiable in the final state. 

I would like to thank N. Kroll and D. R. Yennie for frequent discussions 

and help in these matters. 
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