## PROPOSED SOLUTIONS OF FOUR REFRIGERATION PROBLEMS RELATING TO SUPERCONOUCTING ACCELERATORS AND CFYOGENIC EXPERIMENTAL EQUIPMENT

F. F. Hall, Senior Staff Member, Stanford Linear Accelerator Center, Stanford University, Stanford, California (work supported by the U. S. Atomic Energy Commission)

Problem One - Operation at $1.85^{\circ} \mathrm{K}$
The Stanford Linear Accelerator (SLAC) at 360 pps @ $1.5 \mu \mathrm{~s}$ can operate at 22 Gev with a 0.0005 duty cycle. If converted to superconducting operation at or below $1.85^{\circ} \mathrm{K}$ the duty cycle at 20 Gev would be 1.0 and 0.06 at 100 Gev which would be useful to high energy particle physics experimenters. The conversion would require new klystrons, a new disk-loaded wave guide of superconducting material to impart energy into the electron beam and a number of large refrigerators of novel design. Existing utilities would be adequate if 16 or 32 refrigerators were used. The use of 16 units is feasible. Fewer units are rejected because 10,000 feet of cold $\mathrm{He}_{4}$ transfer lines would be needed and size of vaculum tanks, heat exchangers and helium vapor recovery pumps would be excessive. To reach $1.85^{\circ} \mathrm{K}$ where the $\mathrm{He}_{4}$ vapor pressure is 0.0195 atm requires vacuum pumping over the liquid surface. Pumping power is $2.503 \times \mathrm{Mol} / \mathrm{sx}$ In $\mathrm{P} 2 / \mathrm{PI}$ plus friction HP . plus heating of gas. Vacuum pumps should be of the hermetically sealed, internally oil mist cooled, rotary, helical lobed type with compression ratios of up to 17 , piston operated slide gates for $100 \$$ load modulation and $99.9999 \%$ or better oil separators and separate hermetically sealed lube oil pumps. Such units make it possible to use only 3 or 4 stages of compression. The first stage would require 3 units operating in parallel each handing 14,000 CFM. Each refrigerator would provide up to 930 W refrigeration at $1.85^{\circ} \mathrm{K}$. Full flow filters would be provided at $302.6^{\circ} \mathrm{K}, 43.5^{\circ} \mathrm{K}$ and $10.0^{\circ} \mathrm{K}$ to remove impurities. Gas return lines would heve automatic spring loaded soft seat check valves to prevent back streaming of oil. A full flow intermediate heat shield would intercept $\| \mid 41 \mathrm{~W}$ heat leakage from ambient: It would consist of aluminum plates and tubing for helium gas backed by 70 wraps of perforated aluminized mylar. Its maximum average temperature would be $44.7^{\circ} \mathrm{K}$ when heat leakage to the cold end is estimated to be 45 W . Expanders would be the single stage reciprocating type to insure maximum efficiency. Heat exchangers would be the multipass aluminum platefin type arranged for counterflow service to insure compactness, economy and maxdmum effectiveness Reynolds number would be held to 2000 or less to insure laminar flow and tolerable friction losses in vapor passes. Hot supply gas would be liquefied with $100 \%$ yield at the suction pressure of the top compressor stage and then subcooled to $2^{\circ} \mathrm{K}$. This will assure yields of 958 or better at the final expansion to 0.0195 atm . Pressure reducing valves would be standard types. A number of cycles using 3 or 4 stages of compressors and 2 or 3 expanders and various inter mediate and hot gas pressures were studied. Selected temperature differences were $0.150^{\circ} \mathrm{K}$ at the cold end of the subcooler, $0.100^{\circ} \mathrm{K}$ minimum inside the critical heat exchanger and $1.5^{\circ} \mathrm{K}$ at the warm end. Heet exchanger ef fectiveness would be 918 in the subcooler and 99\% at the warm end. Core lengths would be 7'-6" maximum to allow use of $8^{\prime}$ dia. by $12^{\prime}$ high vacuum tanks. Minimum input KW can be attained when hot gas pressure is close to 4 atm . At lower pressure total flow increases rapidly. At higher pressure total flow falls of $f$ but input KW increases. The most promising arrangement has 3 stages of compression and 3 expanders with pressures balanced to obtain reasonably low volume ratios through. expanders. Expander efficiencies are taken as $75 \% \pm$ I for the warm end expander where irreversible heat flow effects would be encountered and $80 \% \pm 1$ for cold end expanders where heat capacity of piston walls is 10 w . Pressures of 4.0 atm , $0.9 \mathrm{~atm}, 0.2 \mathrm{~atm}$, and 0.013 atm results in $10.5 \mathrm{Mol} / \mathrm{s}$ vacuum pump flow, 7.4 $\mathrm{Mol} / \mathrm{s}$ cold end expander flows, $4.0 \mathrm{Mol} / \mathrm{s}$ warm end expander flow and $21.9 \mathrm{Mol} / \mathrm{s}$ compressor flow. Brake KW would be 288.0 for vacuum pumps, 280.8 for compressass, 7.5 for oil pumps or 576.3 total per refrigerator. Brake $W / W$ performance would be 620 and input KW would be, 648. Electrical demand at Il0\% load would be 10,373 KW for 16 refrigerators estimated to cost $58,923,000$. Increesing the warm end temperature difference from $1.5^{\circ} \mathrm{K}$ to $5.0^{\circ} \mathrm{K}$ would increese compressor flow by $25 \%$ and electrical demand 1.2 MW . The additional power could cost more than 16 comr plete sets of heat exchanger cores based on $1.5^{\circ} \mathrm{K}$ warm end differential. Having the cold end expander discharge at $4.0^{\circ} \mathrm{K}$ results in good temperature differences across cold end heet exchangers. See Table 1 and Figures $I$ and 2.
(Presented at 13 th International Congress of Refrigeration, Washington, D.C., August 19'(1)

Problem Two - A Separate Heat Shield
When operation of SLAC at $1.85^{\circ} \mathrm{K}$ was first studied it was estimated that heat leakage from $300^{\circ} \mathrm{K}$ to $70^{\circ} \mathrm{K}$ would be 1100 W and from $70^{\circ} \mathrm{K}$ to $1.85^{\circ} \mathrm{K}$ would be 76 W . If the heat shield temperature is lowered below $70^{\circ} \mathrm{K}$ radiant heat leakage to the shield holds "constant" while conduction leakage increeses. If a heat shield has average temperature of $9{ }^{\circ} \mathrm{K}$ heat leakage from $300^{\circ} \mathrm{K}$ increases to 1280 W but leakage from the shield to $1.85^{\circ} \mathrm{K}$ reduces to 8 W . The economics for operation of an electron linear accelerator at $1.85^{\circ} \mathrm{K}$ make it impractical to consider a separate heat shield but this is not true for other applications at higher temperatures or for accelerators at $1.425^{\circ} \mathrm{K}$ or below. A single stage compressor is adequate for a $9^{\circ} \mathrm{K}$ heat shield. Using two stage compressors increases both electrical demand and initial cost while leakage only drops to 5 W . One KW over 10 years at $2 / 3$ load would cost $\$ 250$ at our present rate. A 2 MN reduction between alternate approaches could justify an additional $\$ 30,000$ per refrigerator. If a single stage compressor were used to obtain temperatures of less than $9^{\circ} \mathrm{K}$ total gas flow and compressor power increase rapidly. A refrigerator rated for 1280 W service at $9.0^{\circ} \mathrm{K}$ has a very simple cycle. The compressor would take suction at 1 atm and discharge hot gas at 8 atm . Hot gas would pass through a full flow filter, enter a single heat exchanger and be cooled to $14.3^{\circ}$, pass through a second full flow filter, and enter a single expander emerging at $7.0^{\circ} \mathrm{K}$. It would then pass through the heat shield, emerge at $11.1^{\circ} \mathrm{K}$ reenter the heat exchanger and return to the compressor via an automatic check valve. Expander efficiency is taken as $85 \% \pm 1$. One could lower the supply and return gas pressures and improve performance but the compressor size increases rapidly. The cycle described is close to optimum and requires 102.2 KW for the compressor, 1.5 KW for the lube ofl pump or a total of 103.7 KW per unit. Brake W/W performance would be 81 and input $K W$ would be 117 . Electrical demand would be 1872 KW for 16 units estimated to cost $\$ 2,068,000$. System components would be similar to those described under problem one. Flow per unit would be 14.5 $\mathrm{Mol} / \mathrm{s}$ or 760 CFM at 1.0 atm . Less than 16 compressors would be used to reduce cost about 30\%. See Fig. 3.
Problem Three - Refrigeration for Cryogenic Equipment
This applies to large pieces of electrical equipment to be operated at $4.224^{\circ} \mathrm{K}$ when electrical losses are small. A large dewar containing a oryogenic megnet might contain 9,000 of $\mathrm{LHe}_{4}$ at 1.0 atm . The heat shield load at $9.0^{\circ} \mathrm{K}$ is estimated at 128 W and the magnet electrical losses at 12 W . The $\mathrm{LHe}_{4}$ at $\$ 2 / \mathrm{L}$ would be $\$ 36,000$. A refrigerator is justified even if service is intermittent. A single stage compressor could raise $301.1^{\circ} \mathrm{K}, 1.0 \mathrm{~atm}$ return gas to $302.6^{\circ} \mathrm{K}$ and 9.0 atm at the outlet of the aftercooler. These temperatures are based on $75^{\circ} \mathrm{F}$ cooling water, a $10^{\circ} \mathrm{F}$ approach and warm end temperature difference of $1.5^{\circ} \mathrm{K}$ as is true for all cycles described. Supply gas would be filtered, cooled to $14.3^{\circ} \mathrm{K}$ in a single warm end heat exchanger, filtered again and flow would then split with $1.75 \mathrm{Mol} / \mathrm{s}$ entering a single expansion engine to emerge at 1.0 atm and $7.0^{\circ} \mathrm{K}$ and $0.16 \mathrm{Mol} / \mathrm{s}$ entering a small cold end refrigeration process. The expander flow would be split in turn using manual flow trimming valves to fur$\mathrm{nish} 0.30 \mathrm{Mol} / \mathrm{s}$ to thermodynamically balance the warmest of the small cold end heat exchangers and $1.45 \mathrm{Mol} / \mathrm{s}$ through the heat shield. These flows would recambine at $11.0^{\circ} \mathrm{K}$ and reenter the large warm end heat exchanger and return to the compressor suction via an autamatic check valve. A compensating dummy load would be used to prevent rise of liquid level within the dewar and obviate complicated controllers. The 12 W refrigerator and 128 W heet shield combination is estimated to cost $\$ 44,000$. Brake KW would be 13.8 for the compressor, 1.5 for the lube of l pump and 15.3 total. Input KW would be 17.2 , brake $\mathrm{W} / \mathrm{W}$ performance would be 1275 and compressor suction flow would be $1.91 \mathrm{Mol} / \mathrm{s}$ or 99.8 CFM. Liquid yield at $4.224^{\circ} \mathrm{K}$ is $91.3 \%$. System components would be similar to those described under problem one. See Figs. 4 and 5.
Problem Four - Operation at $1.0^{\circ} \mathrm{K}$ to $1.425^{\circ} \mathrm{K}$
According to accelerator planners the RF losses for a superconducting SLAC might be 12000 W at $1.85^{\circ} \mathrm{K}, 825 \mathrm{~W}$ at $1.425^{\circ} \mathrm{K}$ and 80 W at $1.0^{\circ} \mathrm{K}$. It will be shown that retrigerators for 1.0 to $1.425^{\circ} \mathrm{K}$ can cost less than units for $1.85^{\circ} \mathrm{K}$ service because of far lower RF losses. The need to investigate steady state refrigeration at very low temperatures is real. If we had to use only $\mathrm{He}_{4}$ it might be feasible down to $1.425^{\circ} \mathrm{K}$. At $1.425^{\circ} \mathrm{K}$ input KW for all $\mathrm{He}_{4}$ refrigerators and
hybrid $\mathrm{He}_{3}-\mathrm{He}_{4}$ units is much the samed At $1.425^{\circ} \mathrm{K}$ the vapor pressure of He 4 is only 0.002 atm . If we should use 4 stages of compression the intermediate pressure might be 0.1 atm and the first stage suction CFM would be less than for $1.85^{\circ} \mathrm{K}$ operation because of the far lesser refrigeration load. Fortunately, we should not have to use $\mathrm{He}_{4}$ but should be able to use Hez aiso. We cannot use $\mathrm{He}_{3}$ in the heat shield or accelerator dewars. Hez is never a super fluid and heat removal might be inadequate. Also $\mathrm{He}_{3}$ has a 5000 barn cross section to thermalized neutrons. Thus we would have to locate $\mathrm{LHe}_{4}$-II to boiling Hez heat exchangers away from the accelerator behind earth radiation shielding. He ${ }_{3}$ refrigerators used together with separate $9.0^{\circ} \mathrm{K}$ heat shields should be quite practical. Although our information on $\mathrm{He}_{3}$ is less reliable than for $\mathrm{He}_{4}$, the principles are the same. Also the flows are so small that efficiency is not important and only one expander would be used. As of now it is not certain that operation at $1.0^{\circ} \mathrm{K}$ could be justified due to lowered RF losses. Accordingly the best bet would be 16 units rated for $75 \mathrm{~W}, 1.325^{\circ} \mathrm{K}$ service. The temperature difference across the $\mathrm{He}_{3}$ baller is taken as $0.1^{\circ} \mathrm{K}$. Three stages of compression would be adequate. Gas pressures would be $4.0 \mathrm{~atm}, 0.725 \mathrm{~atm}, 0.135 \mathrm{~atm}$ and 0.025 atm . Initial liquefaction with $100 \$$ yield would take place at 0.725 atm , the expander would discharge at $5.28^{\circ} \mathrm{K}$ and 0.135 atm , and vacuum pump suction would be about 0.025 atm for $1.325^{\circ} \mathrm{K}$ operation. Expander efficiency is taken as $78 \% \pm$ 1. Yield at cold end would be $96.5 \%$. It would be easy to operate the $\mathrm{He}_{3}$ refrigerator at lower temperatures. At 75 W of refrigeration compression ratios are about 6.0 per stage. If the ratio is increased to 8 per stage. the first stage pressure would fall to 0.0078 atm and the pressure over boiling liquid helium three ml ght be 0.012 atm . Thus $\mathrm{He}_{3}$ temperature would be $1.0^{\circ} \mathrm{K}$ and that of $\mathrm{LHe}_{4} \mathrm{II}$ in accelerator dewars $1.1^{\circ} \mathrm{K}$. Provision would be made to use spare heat shield compressors to pump over the $11 q u i d \mathrm{He}_{4}$ to reduce cool down from days to hours. Brake KW would be 71.2 for $\mathrm{He}_{3}$ compression, 102.2 for $\mathrm{He}_{4}$ compression, 6.0 for lube al l pumping and 179.4 tofal per refrigerator. Brake W/W performance would be 2,392 and input $K W$ would be 201.8. Electrical demend at $110 \$$ load would be 3229 KW for 16 refrigerators estimated to cost $\$ 3,942,000$. First stage $\mathrm{He}_{3}$ suction CFM would be 3635. The addition of a farth stage of $\mathrm{He}_{3}$ compression would allow operation of accelerator dewars at $1.0^{\circ} \mathrm{K}$ or less but this does not appear to be justified. See figs. 6 and 7.
Conclustions and Notes
Refrigeration heat shields would be evacuated to $10^{-7}$ Torr using existing sput-ter-ion type vacuum pumps. A check on the Kapitza effect at the refrigerantmetal interfaces revealed that it is a few thousandths of $1.0^{\circ} \mathrm{K}$ at $1.0^{\circ} \mathrm{K}$ due to the necessary surface area of cold end heat exchangers. To achieve maximum $\mathrm{LHe}_{4}$ yields at $1.85^{\circ} \mathrm{K}$ it would be necessary to subcool below the lambda point and exact performance is indeterminate in the absence of a working model but would not be much different from calculated values. Accelerator operating loads could vary from 0 to $100 \%$ while heat shield loads would be very steady. The cycles described can follow the wide load variation solely by varying flow through vacuum pumps and compressors. Temperature difference across the heat shield would increase from lest than $3^{\circ} \mathrm{K}$ at 100 l accelerator loed to over 159 K at os accelerator load. Cold end temperatures would remain essentially constant during load variation. It is concluded despite a myriad of possible cycle detail each of the problems discussed has its own rather unique solution for optimum simplicity, reliability and least cost. Reducing the number of stages of compression coupled with retaining reasonable expander efficiencies resulted in selection of 4 atm high pressure and an estimated brake $W / \mathrm{W}$ performance of less than 620 at $1.85^{\circ} \mathrm{K}$. The problem of a separate heat shield rushes one to the use of a single stage compressor and very low temperatures. To add a small refrigeration process at the cold end of such a system where electrical losses are small in comparison to heat shield load is easy and obvious. Finally, to include within the quite cold world of $9.0^{\circ}$ a $\mathrm{He}_{3}$ refrigerator for service at $1.325^{\circ} \mathrm{K}$ or below is also simple and clear.
Acknowledgement and References
The efforts of K. G. Carney, Jr. in reducing these solutions to computer programs is highly appreciated. These confirm that cycles described are subject to minor refinement and only new approaches could allow further improvement. August 1971 it should be clear whether we can do better. Some aspects of the accelerator refrigeration cycles were discussed in "Proposed Refrigeration

Cycles for Superconducting Accelerators at $1.85^{\circ} \mathrm{K}, 1.425^{\circ} \mathrm{K}$ and $1.0^{\circ} \mathrm{K}$ " by the author for inclusion in the IEEE proceedings of the 1971 National Particle Accelerator Conference. $\mathrm{He}_{4}$ data is taken or interpolated from "Provisional Thermodynamic Functions for Helium 4 for Temperatures from 2 to 1500 K with pressures to $100 \mathrm{mN} / \mathrm{m}^{2}$ ( 1000 Atmospheres)" by R. D. MCCarty of NBS, Boulder Laboratories, Boulder, Colorado except the value of $3.99 \mathrm{~J} / \mathrm{Mol}$ liquid enthalpy of $\mathrm{He}_{4}$ at $1.85{ }^{\circ} \mathrm{K}$ was given verbally by R. D. McCarty and the value of $96.484 \mathrm{~J} / \mathrm{Mol}$ gas enthalpy at $1.85^{\circ} \mathrm{K}$ and 0.0195 atm was derived by the author. Hez data is taken fram AFML Report TR-87-175 "Thermodynamic Data of Heliumm" by R. M. Gibbons and D. I. Nathan or interpolated and extrapolated by the author. While specific paints of state for helium three are subject to doubt it is notilikely that the general conclusions reached are totally in error. Cost estimates are based on $6000 \times$ No. of units $x$ (Input KW per unit) 0.7 as published by T. R. Strobridge in the IEEE proceedings of the 1969 National Particle Accelerator Conference.

Table L - Data for Helium Four Refriaerators
Some data is given for 3 or 4 stages of compression, 2 or 3 expanders and hot gas supply pressure to expanders over the range 2.5 to 6.0 atmospheres. It would appear that the 930 W Refrigerator arrangement is close to optimum for $1.85^{\circ} \mathrm{K}$ service.

| Evaporator rating, W. | 916.0 | 918.0 | 922.0 | 925.0 | 928.0 | 930.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compressor disch. pressure, atm | 4.0 | 5.5 | 4.5 | 6.5 | 7.5 | 5.5 |
| Nominal Heat Shield Pressure | 3.0 | 4.5 | 3.5 | 5.5 | 6.5 | 4.5 |
| Expander inlet pressure, atm | 2.5 | 4.0 | 3.0 | 5.0 | 6.0 | 4.0 |
| Initial liquefaction press., atm | 0.7 | 0.9 | 0.8 | 1.0 | 1.0 | 0.9 |
| Expander outlet pressure, atm | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 |
| Total Compression Stages | 3.0 | 3.0 | 3.0 | 3.0 | 4.0 | 3.0 |
| First Stage Vacuum Pump Casings | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Total Casings | 6.0 | 5.0 | 5.0 | 5.0 | 6.0 | 5.0 |
| Expander \#3 Efficiency, \$ | 77.3 | 76.4 | 78.4 | 70.5 | 70.7 | 75.4 |
| Expander *2 Efficiency, \$ | None | None | None | 74.3 | 79.8 | 80.6 |
| Expander \#1 Efficiency, \% | 83.2 | 80.4 | 83.1 | 74.8 | 81.6 | 80.4 |
| Average Heat Shield ${ }^{\circ} \mathrm{K}$ | 32.0 | 34.8 | 38.9 | 41.3 | 42.4 | 44.7 |
| Heat Shield Load, W | 1185.8 | 1174.4 | 1161.0 | 1154.0 | 1148.0 . | 1141.2 |
| Expander *I Discharge \% K | 4.0 | 4.0 | 4.0 | 4.0 | 4.5 | 4.0 |
| Base Refrigeration Load, W. | 805.0 | 805.0 | 805.0 | 805.0 | 805.0 | 805.0 |
| Heat Shield Leakage, W | 31.0 | 33.0 | 37.0 | 40.0 | 43.0 | 45.0 |
| Spare Capacity, W | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 |
| Expander $3 \mathrm{Mol} / \mathrm{s}$ | 6.0 | 5.4 | 4.8 | 4.7 | 4.4 | 3.9 |
| Expander ${ }^{\text {W } 2 \mathrm{Mol}}$ /s | 0.0 | 0.0 | 0.0 | 1.4 | 1.4 | 1.0 |
| Expander \#1 Mol/s | 11.9 | 7.9 | 9.4 | 5.6 | 4.8 | 6.4 |
| Total Engine Mol/s | 17.9 | 13.3 | 14.2 | 11.7 | 10.6 | 11.3 |
| Vacuum Pump Mol/s | 10.4 | 10.4 | 10.4 | 10.5 | 10.5 | 10.5 |
| Compressor Mol/s | 28.3 | 23.7 | 24.6 | 22.2 | 21.1 | 21.8 |
| Vacuum Pump Brake KW | 285.7 | 285.7 | 285.7 | 288.0 | 352.1 | 288.0 |
| Compressor Brake KW | 341.5 | 303.0 | 301.3 | 293.3 | 257.1 | 280.8 |
| Oil Pump KW | 7.5 | 7.5 | 7.5 | 7.5 | 9.0 | 7.5 |
| Total Brake KW-I unit | 634.7 | 596.2 | 594.5 | 581.3 | 618.2 | 576.3 |
| Brake W/W Refrigeration | 692.9 | 649.5 | 544.8 | 536.5 | 666.2 | 519.7 |
| Input KW-1 unit | 714.0 | 670.7 | 668.8 | 662.5 | 695.5 | 548.3 |
| Input KW-16 units | 11424.0 | 10731.2 | 10700.8 | 10598.4 | 11128.0 | 10373.4 |
| Estimated $\$+1000-16$ units | 9547.0 | 9138.0 | 9120.0 | 9058.0 | 9373.0 | 8923.0 |
| First Stage Section MCFM | 41.0 | 41.0 | 41.0 | 41.3 | 41.3 | 41.3 |

## TERMS USEO IN THE FIGURES



[^0]

Fig. 1 T-S DIAGRAM FOR A $330 \mathrm{~W} \mathrm{HE}_{4}$ REFRIGERATOR FOR $1.85^{\circ} \mathrm{K}$ SERVICE


Fig. 3 T-S DIAGRAM OF A I28OW He 4 REFRIGERATOR FOR $9.006^{\circ} \mathrm{K}$ SERVICE


Fig. 4 T-S DIAGRAM OF A I2.OW REFRIGERATOR FOR $4.224^{\circ} \mathrm{K}$ SERVICE


Fig. 6 T-S DIAGRAM FOR A 75.0 W He 3 REFRICERATOR TO OPERATE AT $1.325^{\circ} \mathrm{K}$ AND MAINTAIN SUPERFLUID He4 - II AT I. $425^{\circ} \mathrm{K}$. SEPARATE HEAT SHIELD IS SHOWN IN Fig. 7.


Fig. 5 SCHEMATIC DIAGRAM OF A I2.OW REFRIGERAIOR FOR $4.224^{\circ} \mathrm{K}$ SER: CE.



[^0]:    Fig. 2 SCHEMATIC DIAGRAM FOR A $930 \mathrm{~W} \mathrm{He}_{4}$ REFRIGERATOR FOR $1.85^{\circ} \mathrm{K}$ SERVICE

