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ABSTRACT 

A formal study of quark models with interactions due to scalar, pseudoscalar 

or vector fields is presented. It is shown that all the results which have been 

derived in quark parton models in which the details of the nucleonls constitution 

are not specified can be obtained formally using naive canonical manipulations of 

operators. In the case that there is no vector field some new results are obtained 

which would provide an experimental measurement of the proportion of scalar or 

pseudoscalar gluons in the nucleon. 
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Introduction 

Some time ago we studied generalized quark parton .models and abstracted 

those results which might be true more generally’, In fact, we showed’ that the 

most easily tested consequences of the model could all be derived formally in the 

gluon model using the Bjorken limit with naive canonical values for the equal time 

commutators. In this paper we show that all the old results of generalized parton - 

models can be formally derived in renormalizable quark models. We also present 

some new results which depend essentially on the assumption that none of the 

partons travels backwards in the infinite momentum frame; it turns out that these 

results can be rederived formally if the interaction between the quarks is due to a 

scalar or pseudoscalar field but not if it is due to a vector field (the conventional 

gluon model)2. 
c 

In perturbation theory the formal arguments used in this paper are invalid 596 
c 

and scale invariance is broken by logarithmic terms. Although they are not ex- 

cluded by the data we shall assume that such terms are absent and that therefore 

arguments based on perturbation theory may be irrelevant. In this sense perhaps 

7 (‘Nature reads books on free field theory” . 

We will not dwell on the experimental implications of the results which have 

been reviewed elsewhere8. After completing this work we received an elegant 

preprint from Gross and Treiman’ who have independently rederived the rtold” 

parton results in the gluon model. 10 They have actually gone further and derived 

the explicit form of the light cone expansion in the presence of a vector interaction. 
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Formal derivation of all I1 old” parton model results 

Inelastic electron and neutrino scattering processes in which only the final 

lepton is observed are described by the tensors: 

4 
$$ eiqBx < P I 
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Ji (x), J: (0)] I P> 
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w = < PI 
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where v = q-P, J$ is the electromagnetic current, Jf (J- p p = (J;)+) is the current 
- 

which couples to the neutrino (antineutrino) current, x indicates an average over 

the spin states of the target and the states are normalized to 2E per unit volume. 

We assume the conventional Cabibbo current and work in the approximation BC = 0, 

i. e. our results apply to the structure functions for the production of non-strange 

final states. It is easy to generalize to the case BC # 0; the results are given in 

reference 8. With OC = 0 the isovector nature of the weak current gives: 

VP P 
Win = wip . (2) 
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Bjorken’s scaling hypothesis 11 , which we assume to be correct, is 

lim v - 03 Wl(v,q2) = Fl(“) 
w fixed 

lim v --co3 vwi(v’ q2) 
w fixed = Fi(W) 3 (i + 1) 

(3) 

(w = 2v/-q2) . 

The derivation of relations for the Fi starts from the scaling limitl’ of the 

Cornwall-Norton sum rules 12 : 

co t 

Ln/=2 - F1 dw 
1 wn+2 

(n=0,1,2,3...) 

co 

LZ, = 
1 

(2F1” -uFi)-$& (n=l,2,3...) 
w 

(n = 0,1,2.. .) 

(4) 
co 

Ltz = 
1 

(Fs” -wFi) -$& (n=l,2,3...) 
0 

Liz - L:. - LZz = 4 -ddw (n=1,2,3...) 

n-t1 r 
Ln = d4x 6(x0) < Pz 1 

8 nJ;(x) 

W L atn ’ J; (0) I Pz > 1 
where the upper (lower) sign holds for n even (odd) and 
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(5) 

In the electromagnetic case: 

(n =1,3,5,...) 

(6) 

When n = 0 equations 4 give all the sum rules which relate integrals over the 

Fi to numbers. l3 ,14,15 For n 1 1 we must specify the interaction Hamiltonian 

which we take to be a sum of renormalizable interactions: 

(7) 

We consider first the case gV = 0. The equal time commutators in Eq. (4) 

and (6) are formally constructed using ~8~. Only those parts which are components 

of tensors of rank n + 1 or higher can grow rapidly enough to contribute when we 

take the limit I Fl - 03. Using the fact that the equal time commutators never 

introduce inverse powers of the masses or fields it is easy to show (as we do ex- 

plicitly in Appendix 1) that the only possible tensor operators whose matrix elements 

-+ n+l grow like I P I and have the appropriate dimensions are 

(8) 
$0 a 

‘- l 

a 
cy!2 a3 on+2 

$ 
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where the second operator does not contribute if we consider spin averaged matrix elemen 

(there areno appropriate operators whosematrix elements grow faster than I Fl n+l). 

Therefore that part of the equal time commutators which contributes in 

Eqs. (4) and (6) is the same as in a free field theory of massless quarks in the 

case g = V 0. Hence the structure functions are related in the same way as in free 

field theory. This gives the Callan-Gross relation uL/aT = 0, or 

2F1 = wF2 ’ 

I 16 since the quarks have spin 2. It implies that in the deep inelastic region the 

axial currents are conserved (chiral symmetry) so that: 

2F1 = F5 

(9) 

F4 = 0 . 

The first of these relations actually follows from Eq. (9) and the inequalities 

satisfied by the Fi. 8’17 (It is interesting to note that the inequalities imply that if 

either Eq. (9) or Eq. (10) is satisfied then the T violating structure function F6 

is zero17 . ) Furthermore, we obtain the two relations18: 

12 (FTp - F1Y”) = Fip - Fin 

F1 1 
‘p + Fvn 5 y (Fly’ + FIY”) . 

Previously we had derived these relations in the parton model and the moment 

I 
dw of them in models with the interaction in Eq. (7).l 
cd3 

In the case gv # 0 it seems at first that the previous argument might fail 

since the free field commutator 

(11) 

(12) 

.ts 
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- 

(13) 

can introduce inverse powers of MV which spoil our dimensional reasoning. That 

this is not the case is almost obvious since we know that the aPavA term in the 

propagator is irrelevant when we calculate Feynman diagrams because the vector 

field is coupled to a conserved current. In Appendix 2 we show that vector field 

theory can easily be formulated in such a way that the troublesome term in the 

commutator is absent. Therefore the operators which can contribute have the 

forms given inEq. (8) except that ao can anywhere be replaced by B . o! 
In calculating the equal time commutators the non-canonical operator B 

P 
must be replaced by canonical operators using the field equations (5 

P 
= V2BP + 

gv$ yP# ) whenever it is encountered. However, we note that the interaction gv 

can be set equal to zero in this replacement since it introduces terms involving at 

least four fields $ which cannot contribute in the limit I Fl -+ 00. Therefore that 

part of the equal time commutators which contributes in Eqs. (4) and (6) is the 

same as in a field theory of massless quarks interacting with an external massless 

C number vector field. This observation was also made independently by Gross 

and Treiman’ who used it to derive the explicit form of the light cone expansion 

in the case gv + 0. 

With gv $ 0 it is well known that Eq. (9) still obtains. 16,19 According to our 

prescription the effective parts of the equal time commutators are chirally sym- 

metric. This gives all the other results above except Eq. (11). However it is easy to 

show that this equation still holds when gv # 0, as we do in Appendix 1. 
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New Results 

We consider the explicit forms of two of the n = 1 sum rules of Eqs. (4) and 

(6) obtained using Eq. (7): 

I 
ydw = 1j-m 1 

F2 ;J” 
pO -dcQ 2Pi 

< I?~ I ? (O)(iyz 8z + gVyzBZ)Q2G (0) 1 Pz > 

(14) 

where Q, B and Y are the usual 3 x 3 SU(3) matrixes and Q2 = 2~/3 -I y/6 + 5/3. 

An important point in the following is that the matrices B, B-Y and 2B 4-Y f 213 

make positive semidefinite contributions whenever they appear on the right hand 

side of Eqs. (14)l (this was used in deriving Eq. (12)). If we call one of these 

matrixes A then we can consider a structure function F; defined in terms of 

q yphz,L just as Fi is defined in terms of T y,Qq . In the analogue of Eq. (14) 

for Fi , Q2 will be replaced by h2 a h . The left hand side is positive semidefinite 

(since F2 1 0) and hence the right hand side must be so also. In parton language 

this corresponds to the fact that the contribution of each type of parton to F2 is 

positive semidefinite. 

Next we note that with our normalization: 

lim 1 
2 < pz 

PO” m 2P. 
I q(O) iy,a,B$ (0) I Pz > = I Pz > 

(15) 
= Q (I-E) 
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where 8 
I.lv 

is the energy momentum tensor, 6 g 
iJv 

the energy momentum tensor of 

a free gluon and .Z? the Lagrangian density. In Eq. (14) we used the fact 

< Pz I Ggz I Pz > 2 0 and E is actually the contribution of Bzz. 

Provided gV = 0 (i. e. the interaction is due to scalar or pseudoscalar fields 

only) we can combine Eqs. (14) and (15) to obtain 

E = 1+ 2 CFz”p + F;“) - ; (F;’ + F2’“,1* . 
cd2 

(16) 

This result has been derived independently by Fritzsch and Cell-Mann7 in the par- 

ticular case that there are no gluons at all and E = 0. 20 Using the SLAC-MIT data 

extrapolated to infinity assuming Regge behaviour and the value of the total neutrino 

cross section obtained at CER ?l Eq. (16) gives E 2 0.52 f 0.38. 

Eqs. (16) and (12) together give the absolute upper bound: 

(17) 

which is satisfied by the data (unless quite unexpected behaviour occurs at unex- 

plored w). We can also obtain the lower bound (still assuming gV = 0): 

This provides a possible test of the indication that E tr 0 which has the advantage of 

involving electromagnetic data alone. 
22 However, the left hand side is certainly 

> l/9 for the proton and very likely also for the neutron. 
20 

These results (Eqs. (16)-(18)) are true in any quark parton model in which all 

the partons travel in the same direction when the proton has infinite momentum 

and E is just the fraction of the proton’s momentum carried by the gluons 
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(they are therefore true in every particular parton model which has previously 

been considered but their generality does not seem to have been noticed before). 

We might be tempted to interpret the fact that we were unable to derive these 

results when g V f. 0 by saying that partons can travel backwards in this case. 

However, doubt is cast on this interpretation by the fact that the sum rules for Fl, 

F2 and F3 14,13,15 are independent of the interaction yet, in parton language, 

they depend on the assumption that certain combinations of quarks and antiquarks 

travel forwards. 

Conclusions 

From a practical point of view we have not progressed far beyond reference 1. 

Theoretically, however, it does seem remarkable that we can formally rederive 

all the old parton model results in interacting field theory. Neutral scalar and 

pseudoscalar fields play no role in the appropriate infinite momentum commutators 

(or, equivalently, in the leading terms in the light cone expansion). In this case we 

have therefore ‘*derivedI’ the parton model since the process is described by the 

same one body operator as in free field theory. The vector field enters in such a 

way that the old free field (parton) theory results are unchanged. 

The new results do depend on the interaction. They require that gv = 0 and 

are therefore untrue in the conventional vector gluon model. Unfortunately, they 

cannot be used to establish that gv = 0. However, we think it is interesting that 

we can obtain an absolute upper bound on the data in this case (IQ. 17)(it is unfor- 

tunate that this was not known before the data were obtained). Other results 

which depended on the interaction would be very interesting. 

The only other obvious application of these techniques is to the case of 

polarized targets. Bjorken derived a sum rule for the scattering of polarized 
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electrons from polarized targets some years ago. 23 It is easy to derive a 

similar relation for neutrino scattering from polarized targets and relations 

between the structure functions can also be obtained in this case. However, such 

experiments are so remote that it does not seem worth stating the results. By 

the time they are carried out the ideas discussed here will either be already 

accepted or long since forgotten. In fact neutrino experiments at NAL will not 

only be able to test the scaling hypothesis but also the quark algebra in the near 

l5 future since the predicted value of the F3 sum rule (which is the easiest sum 

rule to test) depends essentially on the nonintegral baryon number attributed to 

the quark fields (the value 6 changes to 2 in the Sakata or Fermi-Yang models; 

Eqs. (11) and (12) also depend critically on the quark algebra*). 
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Appendix 1 

In this appendix we prove some assertions in Section 2. We wish to find 

that part of 

0 = J[ I an$ w 
PV atn 

, J;(O) W0)d4x 

whose matrix elements 

< Fl opv I F> 

can grow like I Ir?rl n+l as I Fl - ~0. Note that 0 is not a second rank Lorentz 
PV - 

tensor despite its appearance. It is a sum of terms each of which is a component 

of a Lorentz tensor of the form: 

T ‘y1a2.. .g,. . . ?“I.. . = q(O)A a1a2... ICI PH(W 
8,. 

zcI(O)TC 6.. 
l * Yl’ * - 

The highest rank tensor which can be built from the y matrices is u 
/JV 

so that in 

the cay gv = 0 T has the symbolic structure: 

T - (+/‘JN(yJR(av? MQ 

N? 1, 2NZRz 0 

PI 0, Qz 0 

(MQ i MS 
quark MLalar M;-scalar $; @;-s-T-u-v; S, T, u, V 2 0). 

gluon gluon 

The indices are positive semidefinite because the commutation relations and field 

equations never introduce inverse powers of the masses or fields. 
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We consider the tensor T after any explicit factors E 
PM 

and g have 
IJV 

been removed so that the rank r and dimension n + 3 are given by 

r =R+P 

n+3=3N+P+Q 

r =R+n+3 - 3N- QS n+3- N- Qg n-f-2. 

Note that (J 
PV 

can give at most one power of I FI to that the only two solutions 
- n+l with r 2 n +1 whose matrix elements grow like 1 P 1 are: - 

W)y a a 
al o!2”’ %+l 

AC+ (0) 

q(o)0 a a 
o$a2 a3”’ an+2 

f* (0) l 

In the case gv # 0, the only change is that derivatives ao? may be replaced 

by the vector field B . 

We now wish to show that Eq. (11) obtains if gv f 0. A necessary and suf- 

ficient condition is that 

< p[~~“‘,J~~)]l p> - < nl~‘“) ,Jz(O(ln> 

= & <p ~~;“‘,J--(0)]lp :aT 

where here and below the symbol M indicates that the terms in the spin averaged 

matrix elements which may grow like I Fl nt-1 when pd 00 along the z axis are 
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equal. The only part of anJF/atn which can contribute is a bilinear in $ which 

we write as ?Aiha$. Using the chiral symmetry, the necessary and sufficient 

condition may now be written: 

W h 
[ 
yOAxp yoyx q (0) M 

I 
-?Q +P) 

[ 
YOAyY YoY,y5] + (0) 

where we have chosen Ai to correspond to the n th time derivative of the vector 

current. In constructing the part of Ai which contributes (using the Dirac equation 

for massless quarks) we may put ax = ay = Bx = By = 0 since F -+ 00 along the 

z axis. Therefore each term in the effective part of Ai has either the Y matrix 

structure N yi or wy.y y 1 0 z’ The necessary and sufficient condition is satisfied 

in the first case (trivially) and in the second Q. E. D. 
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Appendix 2 

In this appendix we prove some almost obvious’ properties of theories with 

neutral vector fields coupled to conserved currents. Although many related dis- 

cussions are contained in the literature (see e. g. reference 24) and our results 

may be well known, we could not find the theory formulated anywhere in exactly 

the desired form. 

We consider the Lagrangian density 

MT 
L2?= - 4 ‘apBv )(a/*B’ ) + -$ BP”” - gvBclJc’ 

which gives 

(0 + M;‘BP = gvJP . 

This is entirely equivalent to the usual equations of motion in the case 8 J = 0 
PP 

provided we impose the subsidiary condition: 

Proceeding to quantise this theory in the traditional way the free field commutation 

relations 

BP(X), Bv (x’) 1 = - igPv A(x-xf , I? v) 

or, in momentum space: 

indicate that we are faced with a theory with an indefinite metric. It is convenient 

to introduce the *‘vector” and H scalar” operators: 
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kp (k-b) 
sp = - 2 

MV 
which satisfy 

Since k. 2 MV we may associate a positive metric with the creation and anni- 

hilation operators VL and Vi but we must associate a negative metric with SP. 

The subsidiary condition ensures that the negative metric part of the Hilbert 

space never enters into the calculation of physical quantites. In exact analogy 

with quantum electrodynamics, the subsidiary condition restricts the states I $ > 

allowed in the theory which are required to satisfy 

i i 
apBP(x) - I $5 > = 0 

or 

Spiyl q > = 0. 

(The separation of aPBP into positive and negative frequency parts is relativistically 

invariant since ( 0 + v ~ %I? )a BP = 0. ) Having imposed this condition initially, transi- 

tions to states for which it is not satisfied are impossible since current conservation 
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ensures that 

It is easy to see that the energy is positive for the allowed states. We therefore 

have a consistent theory (which is equivalent to the usual one) in which the various 

components of BP commute with each other and with $ at equal times. 
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