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ABSTRACT 

We discuss the .Regge-eikonal calculational scheme within the 

context of quantum electrodynamics in the infinite momentum frame. 

Our formulation of high energy scattering enjoys a simple physical 

picture which is a realization of Feynman’s parton ideas. Armed 

with this clear physical picture, we derive the popular Regge-eikonal 

scattering amplitude, and clarify the assumptions underlying this 

model. Our calculational scheme suggests the presence of certain 

diagrams which are not included in the Regge-eikonal approximation. 

We present a detailed model calculation of a class of such graphs and 

find, on the basis of their rapid growth with energy, that they should 

not be ignored in a realistic calculation. We are led to conclude that 

the Regge-eikonal scheme does not provide a physically compelling 

picture of diffraction scattering. 
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I. INTRODUCTION 

Numerous authors, led in particular by H. Cheng and T. T. Wu, 1 have 

recently been attempting to understand the diffractive aspects of high energy 

strong interaction scattering amplitudes by studying field theory. The motiva- 

tion for undertaking such a prodigious project is the fact that field theory, as 

opposed to other models of strong interactions, respects the cherished principles 

of crossing, unitarity, and analyticity. However, since perturbation theory is 

the only calculational technique at ones disposal, it is difficult to see how one 

can obtain predictions from field theory which do not rely on the unrealistic as- 

sumption of weak coupling. One particular way out has been, of course, to sum 

infinite sets of Feynman diagrams. This procedure is, in general, mathematically 

unjustifiable but has been used with some apparent success recently in discussing 

the high energy limits of elastic and inelastic cross sections. 

In two previous articles2 (to be referred to as I and II), this author, in col- 

laboration with J. D. Bjorken and D. E. Soper, has developed an approach to 

these problems which seems particularly convenient and physical. In I we re- 

formulated QED in an infinite momentum frame. Although this theory was shown 

to be formally equivalent to QED formulated in a realizable reference frame, it 

possessed certain calculational and conceptual simplifications which suggested 

that it would provide a useful framework for discussing high energy scattering 

processes. This program was begun in II where we considered the scattering 

of energetic electrons and photons off an external field and found that a physical 

picture emerged which provided a concrete example of Feynman’s “parton” 

ideas. 3 In more detail, we found that a very high energy scattering process 

can be viewed in three steps: the incoming physical particle dissociates into a 
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long lived intermediate state of bare constituents; these constituents (quanta 

of the Schroedinger fields) interact with the external field and pick up eikonal 

phases; and finally, these constituents interact among themselves and compose 

a certain final physical state. Using the very convenient calculational techniques 

of QED at infinite momentum, we were able to obtain the high energy limits of 

many electrodynamic scattering amplitudes. 

In this paper we wish to continue the considerations of II. To begin, we 

will complete our study of multiperipheral chains (Fig. 7). Some of these cal- 

culations have appeared in the literature so the details of this work will be 

relegated to several lengthy appendices. We will, however, verify that the 

scattering amplitude given by the sum of single chain diagrams is a branch cut 

extending to the right of J = 1 and so violates the Froissart bound. It has been 

suggested4 that s-channel unitarity be restored by iterating the multiperipheral \ 

chain. We will see that our parton picture leads to such effects in a natural and 

physically lucid fashion. However, our physical picture also suggests that it 

may not be reasonable to treat multiperipheral chains as non-interfering, non- 

interacting units as has been done in the current Regge-eikonal calculations. In 

order to strengthen this claim, we calculate a class of diagrams which lie out- 

side the Regge-eikonal scheme and find that their energy dependence exceeds 

the energy dependence of the single chain graphs. Although these calculations are 

done in a simpler model than QED, it is argued that they posses enough of the de- 

cisive elements of the true QED problem to be indicative of the truth. On the 

basis of these arguments we are led to speculate that diagrams involving several 

several multiperipheral chains which interfere and interact with one another 

play an important role in diffraction scattering. 
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II. CALCULATIONAL TECHNIQUES 

QED at infinite momentum has been developed and applied in I and II. The 

reader is referred to I and Section II of II for a detailed account of the canonical . 

field theory at infinite momentum. We will, however, summarize those features 

of the formalism which will be used in the calculations here. 

. Recall that it is the *r-evolution operator, U( VT), which plays the central 

role in the calculational procedure and physical picture. It is defined by, 

U(?,T) = exp(ihOr’) exp(-i[hO+hI] [T’-T]) exp(-ih0-r) (II. 1) 

where h0 is the free particle infinite momentum Hamiltonian and h o % is the + 

full infinite momentum Hamiltonian for QED with no .external field present. The 

operator U( 0, -cc) relates a bare (eigenstate of ho) state, I a > , labelled with 

quantum numbers Ia’, to a physical (eigenstate of ho + hI) state, 1 i(a) > , by 

Ii(a)> = U(O,--30) Ia> W-2) 

A final physical state 1 f(b) > is then related to the corresponding bare particle 

state 1 b> by If(b)> = U(O,oc)(b> . We have shown in II that the S matrix de- 

scribing scattering of high energy particles off an external field aP(x) is then 

simply, 

< b/S(a> = Sba+<bjU(~,O)(IF - 1) U(O,-00) Ia> 

where F is the eikonal phase operator, 

(II. 3) 

(II. 4) 
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and, 

X(z) = eJdTa0 (7,x,0) 

P (9 = /~N~CO 7 x,,a) W(O) zt2) 

It is (II. 3) which leads to the physical picture as described in the Introduction. 

Although the formal derivation of (II. 3) does not rely upon perturbation 

theory, we will use perturbation theory to expand the physical states in terms 

of bare constituents. To this end recall the formula for the one particle state 

i(a) >, 

(II. 5) 

Ii(a)>= fia [,a>+- x’jnzH 
n 

lH < nl hIla>+ 
i- n 

-I- ) 1 
Lt n H-H cn, %. ‘m> 

1 mlhIla>+. . 1 
nm i n Hi-Hm ’ f 

(II. 6) 

where Hn is the infinite momentum energy of the bare state 1 n> and the sums 

C’ exclude the single bare particle state I a > . The wave function renormaliza- 

tion constant fia is determined by the unitarity of the r-evolution operator, 

<a 1 U(=,O) U(O,-00) 1 a’> =<ala’> 

To complete the perturbative calculation of the S matrix element, we must know 

the effect of the eikonal phase operator on bare particles. This is easy to compute 

and has been done in II (Section III). Recall that bare photons are uneffected by 

the external potential, but electrons and positrons acquire a phase, 

IF gft(O,,,$) IF-l = esix@) t$(O,,,$) 

IF W(O,_x>,-) IF -1 = eix@) tJ.f(O, x,3’) 
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Thus, a typical matrix element of (IF-l) between states of two electrons and 

one positron, for example, would read, 

[P9 q wi;-‘ll)] [(2792126(‘?;-12)] [(279 2v3 S(?tyq3)] x 
I 

(II. 9) 

where 
- 

(II. 10) 

Using the expansion (II. 6), (II. 3) and the properties of F, we can obtain 

perturbation theory rules which allow one to compute scattering amplitudes to 

a given order in the structure of a physical particle but to all orders in the 

external field. Similar rules were recorded in II, but a slightly different nota- 

tion is advantageous for the goals of this paper. Using the notation of I (Section 

III), we associate the following factors with the parts of a certain -r-ordered 

diagram : 

(i) wave functions u(p, s), lil(p, s), Cc(p, s), u,(p, s), and eh(p) for the ex- 

ternal lines; 

(ii) (I4 + m) = C u(p, s) iI(p, s) for electron propagators; 
S 

(-I$ + m) = -t u,(p, s) U,(p, s) for positron propagators; 
S 

Ge*(P)F1 eJjpjV for photon propagators; 

(iii) eyp for each vertex in Fig. la. 

e 2P vl 6, 63 ;5” . . . Yp...Yv . . . for each vertex in Fig. lb, where no 
0 

is the total n transferred across the vertex 

2 0 1 - for each vertex in Fig. lc; e yvy G q. 
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(iv) a factor (27~)~ 6 ( nout- ‘7.J a(~,,-pm) for each vertex; 

(9 a factor (Hf-H+ ie) -1 for each intermediate state; 
m 

(vi) an integration (279 -3 
J-J- dg d17 - and a sum over spins for each internal 

0 277 
line; 

(vii) an eikonal phase factor for a chosen intermediate state. 

III. SINGLE CHAIN 

In this section we wish to emphasize some of the physical features and I 
important formulas for the multiperipheral processes shown in Figs. 2-7. These 

processes have been considered in the literature, 4 so we relegate our explicit and 

lengthy calculations of the associated scattering amplitudes to the Appendices. 

The reader is, however, advised to familiarize himself with some of the main 

features of these calculations before venturing on. 

Our physical picture allows us to look at these scattering processes in three 

parts. First, the incoming physical electron dissociates into a state of bare 

constituents which in this case are e’-e- pairs. The scattering amplitude re- 

ceives its dominant (leading logarithm of energy) contribution from multi- 

peripheral chains which are strongly ordered, i.e., the ratios of the longitudinal 

momenta of successive virtual photons down the chain are small. So, to good ap- 

proximation the physical electron consists of a chain of e+-e- pairs whose longi- 

tudinal momentum decreases the further down the chain we move. The chain of 

constituents next scatters off the external field when the slowest es-e- pair picks 

up eikonal phases (Fig. 7). Finally, the scattered state of constituents recombines 

into the outgoing physical electron. 

According to (C. 10) of Appendix C, the scattering amplitude (forward direction) 

for this process reads, 

St1 cha’n)ts) = - (279(277) WP-77’) [NI(ri/q min) -11 (III. 1) 
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where 

and 77 refers to the incident electron and the functions f and C are derived in 

Appendix D . The minus sign in (III. 1) indicates that the scattering is pure 

absorption. The scattering amplitude can be understood more clearly by trans- 

forming it to the complex angular momentum plane. As discussed in Appendix 

C, the Mellin transform of (III. 1) reads, 

M(J) =A f”(P, 1) f(P, 1) 
1 

x2 J-($)2b?) 1 (III. 2) 

which possesses a cut over that range of J where the denominator, J- $ i 1 

2 
C(P), 

, 
can vanish. That range is, in fact, from J = 0 to J = 11 na2/32. As derived in 

Appendix C this implies that the energy dependence of the S matrix element reads, 

1 + l17ra2 
32 

(III. 3) 

This result has been obtained by Frolov et al. , 5 and disagrees slightly with the -- 

cut claimed by C heng and Wu . 4 We see that (III. 3) violates the Froissart bound 

no matter how small a! is. In effect, the multiperipheral chain has provided a 

mechanism whereby the two photons coming off the through-going electron line tend 

to attract one another. This effect elevates the energy dependence of the S matrix 

from q , characteristic of spin one photons, to 77 1 +(llrror2/32) . 

It is this violation of the Froissart bound which has caused several authors 

to consider diagrams of iterations of the multiperipheral chains as a possible 

mechanism for softening the energy dependence of (III. 3). The success of this 

scheme relies upon the observation that such diagrams have alternating signs 
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and hence tend to cancel when summed. This behavior is similar in character 

to the simpler and more familiar s-channel iteration procedures used in eikonal 

approximations. We will see in the next section that such s-channel iterations 

can be easily computed and understood from our infinite momentum point of view. 

IV. TWO-CHAIN DIAGRAMS 

In this section we will look in detail at the diagram in Fig. 8. The incident 

electron emits two photons which break up into two pairs which scatter simul- 

taneously in the external field before they each coalesce back into photons which 

subsequently land on the outgoing electron. In addition to the particular r- 

ordered graph drawn in Fig. 8 there is a graph for each other allowable T-ordering 

of the vertices. The crucial point, however, is that although a particular r-ordered 

graph is complicated, the sum of all the graphs is simple. 

To see this consider Fig. 9 which shows a particular -r-ordered diagram which 

contributes to the incident physical electron state. Each vertical line in the figure 

denotes a certain intermediate state and energy denominator. In addition to just 

this T-ordered diagram, there are diagrams for each of the 5 other permutations 

of the vertices (1234). There are two points concerning these diagrams we must 

make. First, to leading order in TIP, the vertices on the through-going electron 

line do not distinguish between the order of, emission of the various photons. This 

is so because the rl’s of all the photons are predominantly small compared to VP, 

and the photons couple to the electron line through Y” which behaves like 

ii@, s) r” u(P,S) = 243&= 2qp sss W.1) 
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Secondly, the infinite momentum energy of the through-going electron can be 

ignored in the energy denominators for each diagram. Using this simplifica- 

tion we will write down the energy denominator factors for each diagram. 

(1234) 

(1324) 

(3124) 

(1342) 

(3142) 

(3412) 

[u(k) [ H(p3)+Wp4)] [ W-O+H(p3)+H(p4) ] [H(P,)+H(P,)~H(P,)~H(P~)]] -I 

[o(k) [a(k)+w(q) ] ~J(~~)+WP~)+H(P~)] ~H(P,)+H(P,)+H(P,)+H(P~)]] -’ 

[w(q) [o(cU+w(k)] [WO+H(p3)+H(p4)] [H(P~)+H(P~)+H(P,)+H~P~)]] -’ 

{ GJ tk) [a (k)+W] [ o(k)+Wpl)+Wp2) ] CH(P,)+H(P~)+H~P~)+H(P~)] } -’ 

(a (cl) [a (q)+W9] [+J+H(P~)+H(P~)] [H(P,)+H(P~)+H(P,)+H(P~)]] -’ 

[WI) [H(P~)+H(P~)] [w(k)+Wpl)+(p2)] [H(~,)+H(P~)+H(P~)+WP~)]} -’ 

The sum is computed efficiently if we combine the first three terms, then the 

second three terms and sum the results to obtain, 

(o(k) [H(p3)+H(p4)] } -’ { 0 (cl) [H(pl)+H(p2)] ] -’ (IV. 3) 

This important factorization property means that the two bare pairs in the 

physical state are independent of one another (in the region of phase space which 

gives the dominant contribution to the scattering amplitude). Using the ideas in 

this example, it is not difficult to construct an inductive proof of the factorization 

property for any strongly-ordered multi-chain graph. 
6 In fact, QED experts will 

recognize this factorization property as simply a slight variation on an argument 

familiar from bremsstrahlung and infrared problems. 
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We now return to Fig. 8, and write the scattering amplitude, 

mp-9p’) 
s 

M(“(p’-p-q) .Zt)&?‘-77) - -’ 

d~“dkldsyb4d”k 
1 

dr]pW (2’1)-2 (2’7k )-2 (27?l)-2 (2P4)-2 
1 

[oC~~,l-‘[wC~2~]-‘[~cP1)+(PZjl -‘c H(p3)+H(p4) -k ~(P’S’)Y”u (P’~‘)~(P’~‘)Y~~(P,S ) ] s, s1 

where 
!x2-$ = p’-T)-p’+_p 

_P2 = kl-_Pl = P-lJ-JJl, p3 = &z-p4 = P’-IJ’-p4 

and where we have identified the scattering amplitude for the “inner” loop and 

have used (A. 13). The factor of k occurs because when we sum over the . 

permutations of the vertices we effectively double count individual diagrams. 

We can further simplify (IV. 4) by noting that the 77’ integration is done by the 

6 function coming from the inner loop. Finally, identifying the scattering 

amplitude for the “outer” loop, 

s = ml 277pmp-~p’) $- . / 
dp’ - M (1) 

(W2 
@‘-pi yJ M (1) P-_P-p’+p;q,) (IV. 5) 

This convolution integral can be factored by transforming to &-space. Define, 

M(l+q. ,j, 
-’ 

eiq? $,,&l)(x.rl ) 
-’ P 

(IV. 6) 
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Then, 

which shows the beginnings of the expected “eikonalization.” 

Using the same techniques we can obtain the scattering amplitude for the 

diagrams indicated in Fig. 10. The result is, using the notation of Appendix A 

and B, 

s = 2 ?p(279 6 ( qp-qp,) J s2 M (1) PT ‘P’-P_;‘~~) M (2) (PI--p-p’+p; q - - P) 
(IV. 8) 

s = 2Tlp(27Q 6(rlp-T7p’) 
s 

&y ei(?‘-Ph M(1)(x _ -’ 
q ) ,t2) 

P (x,Y VP) 

In this case, when summing over the permutations of the vertices, there is no 

overcounting of diagrams. 

Continuing the argument to contain all two chain diagrams, as indicated in 

Fig. 11, we conclude that the scattering amplitude for this class of diagrams 

reads, 

S(2chain) = 271p(27q 6(q,-VP’) 
s 

& ew-9 ‘25 _ 

1 
2’ M(l) . c M(1)(s, 7 ) + Mt2) 

P 
(5, qp) + . . . 

IC 
(5, np)+ . . . 1 

(IV. 9) 

Identifying M (1 chain) (x, q as in Appendix C, we have 

s(2 chain) 
= m,P? 6( 77p- 77pd 

J 
dx e 

-ti(p’-IJ.x 1 12 
-i- 2. M(l chain+~, qp ‘1 

(Iv. 10) 
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V. THE REGGE-EIKONAL FORMULA - A CRITICISM 

The arguments presented in the previous section generalize straight- 

forwardly to diagrams which contain N chains scattering off an external field. 

Again, after summing over all -r-ordered diagrams, the chains become in- 

dependent (in that region of phase space which contributes the leading log to the 

scattering amplitude), and the amplitude reads, 

N 
S (N) (El-PJ = 2 np(27f)g( qp- 

C 
M(lchain) (5, np) I 

(V. 1) 

Summing over N, we find 

J [ 

Mtl chain) @, 
S(p’-I?) = -2 77,(2798( T]p-)Ipl) dg eitp’-p)‘15 1 - e 

q7p3 

I (V.2) 
which is the Regge-eikonal form for the scattering amplitude. 

(V. 2) has been investigated in detail for QED and hq3 field theories. 7 

The calculation for x #3 is particularly simple, and using the techniques of this 

paper or otherwise, it is easy to find that, 
6-l 

XL 

+Y(O)-1 - - 
M(lchain+x, qp) - - logP 77 

2low) log 77p 
e 

P 
FJ. 3) 

where a(O) and o’(O) are, respectively, the intercept and slope of the leading 

Regge trajectory. In the forward direction then, (V. 3) receives significant con- 

tributions only from ] of I<_ 0 (log qp), and leads to an elastic cross section which 

saturates, but does not violate, the Froissart bound. In QED one finds that 
M( 1 chain) 

(x3 ‘Ip) 
lln 

p ossesses a fixed cut at J = 1 t- - 32 a2 which is modulated 

by a complicated function of 5 which behaves like 7 -+I for lgl>>+ . So, as 

in the case of Xq3, although M(l chain) taken alone violates the Froissart bound, 
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the Regge-eikonal formula leads to a cross section which increases only as 

log2 7p. It is this phenomena which has led several authors to take the Regge- 

eikonal formula very seriously. 

However, from the point of view of the physical picture developed in this 

paper it is not even clear that the Regge-eikonal scheme is at all reasonable. 

In particular, (V. 2) assumes that the chains never interact among themselves. 

However, we have seen that the chains all scatter simultaneously off the external 

field, so they are really overlapping and crowded together in real space-time. 

So, even if the photons linking the pairs together were given a large mass 

(short range), such photons could easily propagate between two chains and link 

them up. The simplest example of such a process is shown in Fig. 12. This 

is an interference effect between a two-chain and a one-chain diagram. These will 

be studied in considerable detail in the next section. 

VI. INTERFERENCE EFFECTS 

We wish to consider the simplest type of interference graphs in some detail. 

These are the 2 chain-l chain graphs, an example of which is drawn in Fig. 13. 

As in previous sections we are content to calculate only the leading logarithms 

of each diagram. In this approximation the photons forming the right hand chain 

in Fig. 13 are strongly ordered in the usual sense. This fact then allows us to 

formally sum over the subsections indicated by letters A, B, and C in Fig. 13 

and replace them by their Regge form. This fact is stated pictorially in Fig. 14 

where we have a Reggeon, defined diagrammatically in Fig. 15, interacting with 

an elementary particle (massive photon) through the exchange of another elementary 

particle. Just as in the calculation of the single chain, this exchange gives rise to 

an attractive potential between the particle and the Reggeon. Figure 14 has the 

- 14 - 



- 

advantage of showing that this class of interference terms reduces to a quasi- 

two body calculation, and should, in principle, be solvable. 

Although the single chain gives a fixed Regge cut in QED, there is no 

reason to restrict our considerations to just this case. We will, in fact, de- 

velop a formalism in which we can insert an input Reggeon (pole or cut) into 

Fig. 14, and then deduce some characteristics (energy dependence, at least) 

of the output Reggeon. In particular we will see cases in which Fig. 14 generates 

a scattering amplitude which grows faster with energy than the scattering ampli- 

tude corresponding to a single Regge exchange. Our method of analysis consists 

of several steps: first, write an integral equation which sums up diagrams of 

Fig. 14; second, specialize to the forward direction and obtain a simpler 

(Fredholm) integral equation; third, use variational principles to obtain lower 

bounds on the highest eigenvalue of the kernel; finally, relate the bound on the 

eigenvalue to a lower bound on the energy dependence of the scattering amplitude. 

We begin the analysis by writing the S-matrix in a more convenient form. 

We define a function W which is related to the S-matrix by the removal of the 

photon legs 1,2,3, and 4 shown in Fig. 14. So, 

s = (271(27-i) S(w?‘) J 
da d-pldeldgl W-P,~-~~-%~) z _ - - dp de dq 6 @-g-L-cJ 

s = (279(2f7)6(?-7’) 
s 

dpldel g 
d2@ 



The a and 1, integrals can be done, giving 

- 

t7 
s = (q(m) 6(1-77’) -;;- k (l&-p& WI&@ w + 

min > 

(VI. 2) 

where 

k@-p/l= dp_ J 1 ZZ 
[@-&-q2+ A21 &+ x”] 

ewi(.cl-@ * 5 K2 (p 1x1) 
0 - 

(VI. 3) , 

The function W now represents the propagation and interaction of the 

Reggeon and elementary particle in the t-channel. We can write an integral 

equation for W in terms of the Reggeon, the photon propagator and the inter- 

action between them. The integral equation is represented pictorially in Fig. 16. 

If we represent the Reggeon by the function R(_k, n/nmm), the integral equation 
. 

becomes, 

1 

A21 & A2, 
F@-E+ k-!.?) R@-_P~, ~h)JQl, h_-_pl) x 

w h_Y &h,;&p, p; -f- ( min > 

(VI. 4) 

where the function F describes the possible momentum dependence in the coupling 

between the Reggeon and photon. By iterating (VI. 4) one can verify that it indeed 

sums the diagrams of Fig. 13. Instead of discussing this integral equation in its 
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full generality we will specialize to a rather naive model in which F is momentum 

independent and R is a simple pole. The real situation in QED will be discussed 

at the end of this section. 

With these simplifications the integral equation now reads, 

where ,3 is the trajectory function of the input Reggeon. W is, of course, different 

from zero only for 77/n min > 1. It will suffice for the purposes at hand to consider 

the somewhat simpler integral equation for the function, 

‘I \ 
s 

01 
‘bnin = dp kt I&p_j) W 77 

> 
(VI. 6) 

min 

T satisfies the integral equation, 

17 ‘lmin =kt@-P1() > 

Care must be taken in writing the order of the first two arguments in T, because 

this ordering reflects the exchange character of the interaction between the Reggeon 

and elementary particle. This integral equation becomes much simpler if we introduce 

Mellin transforms. Recall the definition of the transform, 
00 

V&P, P4) = - - / 
T@-$~;Y) Y 

-J-I 
dY 

0 
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and its inverse, 

T(A-P, P;Y) = &- -we / 
T(A-p,g;J) yJ dJ ’ _ _ 

C 

where the contour is chosen to the right of all the singularities of T(A-Q, g;J) . 

It is an easy exercise to obtain the integral equation for the transforms, 

(VI. 8) 

e4 
s 

d!.! A2 

2P-l 3 k@ 2+ x2 ] [E;+ x2] [J-P(a_-~_ljl 
T(&, &&J) 

Consider this equation in the forward (h=O) direction. The driving term 

then depends only upon pt. T will inherit this symmetry, so the angular integral 

in the homogeneous term can be done. If we carry out this integral and define, 

the integral equation becomes, 

T&J) = 0 
[J+(t); ; t+ X2] T(t”J) 

(VI. 9) 

This one dimensional integral equation can be written with a symmetric kernel 

if we simply define, 

W(t;J) = J--P(t) /- /? T(t;J) 

and note that 

0 e4 
00 

Wtt’4 =&m + 4(21)~ o / 
K&t, t’) W(t’ 4 d (+) 

(VI. 10) 

(VI. 11) 
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where 

, (VI. 12) 

Since KS(t, t’) is a symmetric, real, square-integrable kernel, it must have a 

discrete spectrum of real eigenvalues. 8 It will become evident shortly that if 

we can obtain the highest eigepvalue of KS, then we will have found the leading 

energy dependence of the set of graphs of interest. Actually, we will be content 

to obtain a rather weak lower bound on the highest eigenvalue of KS and thereby 

obtain a lower bound on the energy dependence of the amplitude. 

In order to see explicitly the connection between the eigenvalue problem and 

the energy dependence of the scattering amplitude we go back to (VI. 2) and write 

it in terms of W(t;J). From (VI. 2) and (VI. 3) we have 

7 

S = (277)(2’1)6( ‘7-71’) 
1 

d_pl df k( In-&I) 
a 

‘l,in 
> 

(VI. 13) 

< min 

Then, introducing Mellin transforms and specializing to the forward direction, 

we have using (VI. 10) 

S = (271)(21) a(77 -7’) M (VI. 14) 

where, for large ~/rl,in’ 

=n / dt k(t) (VI. 15) 

where the contour C lies to the right of all the singularities of the integrand. 

Consider the integral equation for W and write it schematically, 

W=B+gKSW 
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where g = e4 
4(2~)~ ’ 

(VI. 16) has the formal solution 

W = (1-gKS) -’ B 

which may be written under appropriate circumstances8 as a series, 

Wt;J) = nco wtn) (t;J) = nto tg KS)@) B 

(VI. 17) 

(VI. 18) 

The nth approximate of W(t:J) is given by 

W(n)(t;J) = gn 
SJ 

. . . it,. . .dt, KS(t,tl) KS(tI, t2). . .KS(tn-I, tn)B(tn) 

(VI. 19) 

Since KS is a Fredholm kernel it has a discrete spectral decomposition, 
8 

KS(t,t’) = E 
n=l 

P&p $p’, 

where p, and f,(t) are respectively the nth eigenvalue and eigenfunction of KS. 

If we then approximate W @)(t;J) by withholding only the highest eigenvalue (/A,) 

of KS, (VI. 19) becomes, 

w(n)(t;g - !A( (4 fpl 
/ 

dt’ f&t’;J) B(P) 

where we have indicated explicitly that the eigenvalues and eigenfunctions can 

depend upon J. If we now introduce the Mellin transform of M ! 
co 

M(J)= rj- dtktt) $$===J= 
0 

we have from (VI. 21) that its nth approximate is, 

(VI. 20) 

(VI. 21) 

(VI. 22) 

M(n)(J) -gn/.?(J) 1 dt f1(t;J) 
J&j&Z 

] [ jt’ fI(t’;@3$‘] (VI. 23) 
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Therefore, summing over n, 

M(J) = E M(n)(J) = 
n=O 

(VI. 24) 

So, it is clear that M(J) will develop a pole at J=Jo where 

1 - g/-QJo) = 0 (VI. 25) 

By doing a simple variational calculation to obtain a lower bound on /AI( we can 

obtain estimates of the location of the solution Jo of (VI. 25). 

Recall the Rayleigh-Reitz variational principle which states that the largest 

eigenvalue of KS is given-by 

P1 = sup 
(f(t), KS@, t’) VT)) 

fCL2 (0 1 f(t)) 
(VI. 26) 

where f(t) is any square integrable function. So, if we choose f(t) at random,we 

can be sure that(VI.26) will give a lower bound on PI. We choose, 

f(t) = + Jm t-i-A2 emat d- (VI. 27) 

where rratl is a parameter which must be chosen such that f(t) is normalized to 

unity. From (VI. 12) and (VI. 27) , we compute 

tf,KSf) =$- 
/ 

.-a(t+tl) 

dt dt’ Jw (VI. 28) 

By changing the integration variables to t+=t+t’ and t =t-t’, it is not difficult to 

reduce (VI. 28) to a one dimensional integral, 

(f,K,$ =1 
2ah2 

e+aA2 f ,-y y-ldy 

(a A2/2) 

(VI. 29) 
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The relation between ftal’ and J is given in this approach by the normalization 

condition, 

(f,f) = 1 = I ~4 

6 

m[J-p(t)] [ t+x2] e-2at dt (VI. 30) 

We suppose for illustration that the trajectory is linear, /3(t) = PO-/3,t . Then, 

(f,f) =(J-PO) I2 + (J-P,+ P,h2) 22 2 + P,A2 ’ (VI. 31) 
t2aX ) PaA ) (2 aA2)3 

Two extreme cases of (VI. 29) and (VI. 31) are quite simple and illustrate clearly 

the mechanism at work. First consider (ah2)>>l. Then 

(f,K+ ’ 
(a XT” 

(f,f)- 
J-P, 

2(a A2) 
= 1 

Thus, 

plt4 
2 

>L J-P, r- 
(VI. 32) 

(VI. 33) 

Inserting this inequality into (VI. 25)) we find that M(J) develops a pole at 

Jo >Po+Q2 (VI. 34) 

which is further to the right on the complex J-plane than the input Reggeon pole 

which is located at J = PO. We cannot take this example too seriously, however, 

because it corresponds to strong coupling. However, we can consider another 

case which is closer to QED. Imagine that (a x”) is small and p,=O. Then, 

(f,K$ =I 
2aX2 

1 - , (fs4 = 
2( J-Q 

2ah2 (2aA2)2 

which means, according to (VI. 25)) that 

25 
Jo ? &) -I- 2 

(VI. 35) 

(VI. 36) 

in this weak coupling case. 
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These two very crude examples serve to illustrate the point that it is not 

difficult to find t channel exchanges which lead to stronger energy dependences 

than simple chains. The relation, however, of these model calculations to 

QED is more delicate. As we saw in Section III, the chain diagrams in QED 

generate a Regge cut, which we have written as a linear superposition of poles. 

In principle, we can treat this case because our integral equation is also linear. 

Another difference between QED and the model calculation is that the coupling 

between the Regge cut and the photon is actually momentum dependent. This 

fact could change the character of the integral equation, but it does not change 

the fact that the exchanged photons in Fig. 14 tend to bind the t-channel system. 

So, although the spectrum of KS(t, t’) may no longer be discrete, diagrams like 

Fig. 14 could still possess a stonger ener,T dependence than the simple chain. 

Potentially more interesting than the 2 chain-l chain diagrams considered 

here are the 2 chain-2 chain diagrams. We can give these a pictorial repre- 

sentation shown in Fig. 17, and recognize that they are iterated Mandelstam 

cut diagrams. Such diagrams have been considered in the literature and it 

has been conjectured that they generate Regge poles, although this point has not 

been verified.’ 

VII. CONCLUSIONS AND DISCUSSION 

Guided by a clear physical picture, we have accumulated evidence that 

graphs more complicated than simple multiperipheral chains might play a 

substantial role in diffraction scattering. One might now take the diagrams of 

Fig. 14 and use them as the input of the s-channel iteration procedure described 

in Section V. Since these diagrams have a stronger energy dependence than the 

single multiperipheral chains, they certainly give a significant contribution to 
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the S-matrix. We cannot, however, claim that they contribute significantly to 

the total cross section since this quantity depends upon the range of the graphs 

in the transverse Ix, 1 plane (which we have not determined) as well as their 

energy dependence. More importantly, however, we have argued that the 

s-channel iteration scheme is not a physically convincing procedure. So, we 

do not take this proposal seriously. It appears that present field theoretic 

approaches to diffraction scattering lack a compelling mechanism to enforce 

s-channel unitarity. Until this deep problem is understood more clearly, 

detailed perturbation theory calculations will not resolve additional really 

interesting and important questions in this field. 

The results of this paper suffer from the technical limitation in any leading 

logarithm calculation. It has been argued 10 that leading logarithm calculations 

are only accurate when the couplings of the particles are small enough. However, 

the spirit of this investigation is to obtain results which do not rely upon the size 

of coupling constants. It is the unspoken hope of this investigation that although 

the leading logarithm approach is not perfectly accurate, it remains indicative 

of the truth if the coupling constants become fairly large. One might argue, for 

example, that it would certainly be bizarre if the energy dependence of the in- 

terference terms decreased relative to the single multiperipheral chain as the 

coupling constant increased! One might also question the usefulness of perturba- 

tion theory in this entire program. We saw in Section III that the single multi- 

peripheral chain violates the Froissart bound by a power of the energy. The 

s-channel iteration procedure then reduced the energy dependence of the scatter- 

ing amplitude until it just saturated the bound. However, the success of this 

procedure relied upon the detailed cancellation among graphs, each of which was 

absurdly large. One might now ask whether this feat was profound or accidental. 

For example, are there other graphs which further reduce the energy dependence 
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of the final result? 

We have emphasized our space-time picture of high energy scattering 

throughout this paper. In particular ‘we have argued in Section V that it is not - 

unlikely for two particles in the physical state of the projectile to possess small 

relative subenergy and to propagate near one another. These conditions are, 

however, the ideal ones in which the particles are likely to interact significantly 

(e.g. , resonant). This is a problem which exists (and is often ignored) even 

in multiperipheral models in which only one chain of constituents is allowed. 

However, this effect can reach extreme proportions for physical particle 

states consisting of more than one chain of constituents. For example, e+e- 

pairs on different chains are likely to overlap in bothmomentum and configuration 

space. These pairs will certainly interact and their respective chains might 

often be linked up in the process. A simple example of such a possibility is 

shown in Fig. 18. Unfortunately, perturbation theory is not an efficient tool 

for computing these effects. Perhaps the effective field technique from 

statistical physics provides a better calculational and conceptual framework for 

this problem. Anyway, in light of the complexity of Section VI, more 

theoretical effort is needed in deciding questions of this general nature than 

in the calculations of minute details of diagrams which just happen to be exactly 

computable. 

Acknowledgement 

The author would like to thank J. D. Bjorken for many helpful discussions 

and guidance during the course of this research. Conversations with D. E. Soper 

and the theory group at SLAC are also acknowledged. 

- 25 - 



APPENDIX A. SINGLE LOOP 

In this Appendix we will illustrate our calculational methods by extracting 

the leading energy dependence of the simplest graph in the class to be considered. 

According to our perturbation theory there are four diagrams (Fig. 2). However, 

if we recall that the infinite momentum polarization vectors satisfy 

it is easy to see that the four diagrams can be combined into one (Fig.3). Now, 

however, instead of associating a factor x*t. A(p)@ E ip’p with each internal 

photon we make the association with -g”‘/. Throughout this paper this 

simplification of our perturbation theory rules will be tacitly understood. 

Now it is straightforward to write down the amplitude for this diagram. 

Since this diagram has been studied previously in the literature by Cheng and 

wu4 , and othersj, we will try to use notation as similar to theirs as possible. 

Using the kinematics indicated in Fig. 5. , 

$1) = e4 

GWg 
dr)lta’l)-2(2~ k 

1 
) -2(2r71) -2(2q2) -2 

[HP “) -H(P’) -H(p3) -H(p33 -l ,C,,u(P’a) You@‘, s’) Z(P’, s’) YOU (p, s) 
, 

UlP, s) Y ‘u (P, s) tr [ tr$+W Y” M4+m) Yg (-$,+m) Y” (-$,+m.) y, ] 
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where 

(p_, 77) = (g-k, T]p--qk l) , t&2, $ ) = (g’-P’, r]p,-.?!‘) 
2 - 

Since we are involved in a leading log calculation, we should treat the external 

field perturbatively. Through fourth order the possible diagrams are listed in 

Fig. 4a and b. However, the diagrams in Fig.4a prove to be larger than those in 

Fig.4b by a factor of log 7 
P’ 

so we will limit our attention to them. Now 

expanding the eikonal factor in (A. 2) and withholding only the appropriate terms, 

(A. 3) 

Substituting this into (A. 2) we have, 

bW’) -H(P) -w(k$ ] -I [H(P) -H (P) -H (P,) -Htpz, 1-l [H(P’) -H(p’) -o(k2) 1-l 

kW”) -H(P’) -H(P3) -H(p4) ] -l s~s,qP’s~)y5qp~, s’) ~qp’s’)y”u(p, s)C(p, S)+ylLU(P, S) 
, 
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cp4-&dq 
1 1 

6 
- Es 

2 
+ X2] [@322-g 2+ A2l 

i 6@4-I9 S ds 
h2+ A21 c$4-13~-92+ A2 I i 

(A- 4) 

It is not difficult to infer from (A. 4) that the region ilk< < VP of phase space 
1 

gives the dominant contribution to the scattering amplitude. Furthermore, in 

this region of phase space the sum over the indices crandpreceive their dominant 

contributions from the values (T= Al. = 0 (upper indices!). This fact can be 

checked in detail, and can be understood fron the observation that Y” scales 

like 7 under z boosts (favoring large 7 in the through-going electron line), and 

$ scales like H under z boosts (favoring small 77 for the virtual photons). And 

lastly we can neglect H(P) and H@‘) in all the energy denominators since they 

are O(*). 
P 

These observations lead to simplifications of many factors in Sfi: 

u(p, s) YOu(P, s) = 2J?7p’rl ass “, 277P %s 

H(P) -H(p) - MkI) M -w(kl) = - 
2rlkI 

(A-5) 

2 2 2 
ih+m 

2 

H(P) -H(P) -H(PI) -H(p2> z - H(p1)-~(p2) = - 
,P2+m - 2rl 

1 
2 ~ 

2 

It will prove convenient to scale the v dependence out of the integrand, so 

introduce the dimensionless variables OL and 43, 

where 
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Now, 

[(l-p) t.pf+m2)+pt$+m2jJ [(l-p) (R~+m2J+l%&j+m 41 

1 S 
1 

- S$3-22) 2 ds 
[& A21 [ (p4-gyg2+x21 1 (A* 6) 

This expression becomes considerably more transparent if we change integration 

variables O First choose a frame such that 

P’ = -g N 

and define new integration variables q and $, 

Furthermore, if we introduce a function 



the scattering amplitude can be written in the form, 

s(l) = (2rn4)2Vp d(r7,-r),,) [pg)“+h”] -l [(p’+gj2+A2 3-l 

c (pqNI) 2+ A2 -1 
1 [ (E"S') 2+A2] -1 q g' ;g, s,'> (A* 8) 

We see from this expression that the function K describes the composition of the 

virtual photon as a bare pair, and predicts how effectively such a system scatters 

off an external field. This function has been obtained and simplified previously 

by Frolov et. al. 5, and Cheng and Wu. 4 Our analysis agrees with theirs, and -- 

after a lengthy Feynman parameter calculation we find, 

in the forward direction. 

We want only to observe at this time that K does not depend upon CY. 

Hence, the scattering amplitude apparently diverges logarithmically. However, 

an improved analysis of this process (our method, for instance, interchanges 

limits and integrations freely) shows that the a! integral should be cutoff at 

the point where the virtual photon is becoming “wee. If Such a procedure is 

physically sensible since the pair intermediate state is no longer long-lived 

once the photon’s longitudinal momentum falls to order unity. Thus, 

s dcY + S 
1 

a 
77 min 

77P 

(A. 10) 

The scattering amplitude depends logarithmically on the energy of the incident 

electron, - 30 - 



S(l) = - (8714 ~plW?p8(Tp-~p,) 6ss, S dq dq’ 
N N 
(W2 m2 [(pQJ)2+*2]-1 [(p_‘+qJ2+ Z] -l 

-1 
1 c 1 -1 

p$,2+ x2 Ktg’ ;p,, $j’, (A. 11) 

For later analysis it will prove useful to define 

&) = -e4 log ,J-) 6 S ds, ds’ [(p1-cJ)2+ A2l-l [(el+cJJ2+ x"]-l [(p_'-9_1) 2+ h2]-l 
p S’s (27iQ2 (27ij2 - 

2 2 
I 

-1 
(P’+q’) + x N N K tg.’ is, 3’) 

and write, 

(A. 12) 

s(l) = 271p(2n) s(7p-?pJM(1) (A. 13) 
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APPENDIX B. SINGLE CHAIN 

We wish to study the multiperipheral diagrams in Fig.6 and indicate the 

arguments necessary to obtain the amplitude for a chain of N e+e- pairs in 

Fig.7. In placing the eikonal vertices on just the second pair in Fig. 6 we have 

anticipated the fact that the external field will be treated perturbatively as in 

the previous section, and only the leading behavior of the diagram will be 

found. According to our perturbation theory rules the amplitude for Fig.Ga reads, 

sFs, g(Pf, S)Y”;;(p, s)U@, s)Y’u{P, str[~~+m)rP~4+m)~~(-~3+m)Y~-Id2+m)y~ 3 

-1 
dk,3+Q--sdx .Q5(27) 

3 % 
)-2(2115)-2(2V6) -2 [H(P) -W.P) -H<P2> -H(P4> --CL&~) ] 

b(p) -H(P) --Hb4) -H@d -H@,$ -H(P6) 1-l [H(P’) -H(p) -H(P2> -H(P4) -w@~) 1-l 

[HP’) -H(P) -H6?4) -Hcp2) -H&J -HQ 1 -Itr [@$+m) yo (I$+“) ;“cr (-%$+m) Y” (-i6+m)Yp ] 

The overall minus sign occurs because photon 3 attaches to an electron line 

while photon 4 attaches to a positron. Clearly S (2) is in general untractable. 

However, as we expect on the basis of the analysis of the previous Appendix, 
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SC4 receives its dominant qdependence from that region of phase space where 

This means, in the language of multiperipheral models, that only strongly- 

ordered diagrams contribute to the calculation. Furthermore, in this region 

of phase space we can set 

p=y=p=(T=o ( upper indices!) 

and approximate the energy denominators, 

HP) --H(p) - 4kl) = -wckl) 

H(P) --H&4 -Hb41 --HQo2) --He& -H(P~) z -H(P~) -Up6) , etc. 

The amplitude simplifies to read, 

s(2) = - e8 

(2d3 
‘hp-Tp,) s %ldp,dFkl d’ql(2Vk ) -2(2 Tl) -2(2q2) -2(2G9 -2 

1 

[ u(Q)]-1~(k2~] -’ [H&+W2f k@‘3)+H@4)]-1 

-2(275)-2(276)-2 
-1 -1 -1 

%3dE5dxgdqk dr/5(2qk ) 
3 -3 

[w&3)1 [wor4)l [H(Pg)+H@j$ 1 

C -1 
WP7)+WPg) 1 c tr 

-I 
g5+m) Y” (dg+m) 7 3(-z$+m) Y” (-d6+m) ?j3 1 
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Treating the eikonal perturbatively and introducing integration variables for 

the “lower” loop as we did for Fig.5, 

rl 
k3 

= Y?1, q5= 677 
k3 

= 6(vlp) 

we can identify a factor of -K coming from the lower loop 

-2 
-- 26 (qp- ~p’)~%ld&d”kl dq18(W?k )e(i,-tl, )t2’, )-2(2174-2(2q,) 

1 3 1 

t2a)-‘[‘d~,) ]-1[~(k2)]-1[Hcp3+HcpZ)l-l [H@3,~H~,,]-1scs,~~P’, S’) YOU (p, s)iY’(p, S,~‘IA (P, s) I 

tr[~l+m)~o~4+m)Y3(-$3+m)yo(-$2+m)~3] ydq’d$’ [(E’-cJ,‘)~+~~ 1 
-1 

[(p’+$+*+ [(p’-q”)2+A2 3-l [(P’+q”)2+h2 1-l K(~‘;$, $‘I (B-3) 

where the 8 functions enforce the fact that all the n’s in the diagram must be 

positive. If we now change variables in the “upper” loop in the usual way, 

6, = Jz+s El = p,‘+24-s,’ 

= cY?J ‘kl P 

and add in Figs.6b, c, d and compare to Fig.4a, we can recognize a factor 

K(E’ ;CJ, q’) emerging for the “upper” loop. Finally, N 
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S(2)=-(4?re4)-rl, s4-7$,) ss’sJ~2 -$g z2J; ; 0(1-a) e(a-y) 

K($g,, $) K(~‘;$‘, 9’“) (B* 4) 

The integrations over the r] -fractions of the photons must be cutoff from below 

in the same way as done in the single loop diagram, 

c1 s 
CYdh 

2 
A 

77 min 77 min 

S 
1 da 

(B-5) 

13 rl 
P P 

We have done enough analysis now to see that the scattering amplitude with 

N e+e- loops must be given by, 

dW = -(4?re4Ppst?7p-?7p,) Q’s ;I 1% 7” > + 
min 

I(N+l) (2’) (B. 6) 

where 

(B. 7) 

The crucial factors of logNVp and N! arise as they did for the 2-100~ diagram. 
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In particular, the amplitude receives a factor from the N strongly-ordered 

photons of, 

S 
IL dx 1 

xldx 

-S 2 
XN-l 

. . l 

x1 x2 s 
w 8) 

r7 min 

qP 

In the next Appendix we will see that we can sum all the StN) in the forward direction. 
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APPENDIX C. BRANCH CUT (m=A=O) 

We wish to study S 0 in the forward direction. For g’=Np=O, we have 

stw (Np=O)= -(47re4 VP d ( VP- VP’) $ logN( 17,)I(N+1) (FO) . 

where 

and we have defined, 

We can solve for I(N) explicitly, and sum the amplitudes S (N) in the case 

m=h=O. (However, A must be held non-zero in the first and last propagators 

on the chain in order to avoid a spurious infra-red divergence.) We might argue, 

instead of setting m=h= 0, that we are integrating only over that part of phase 
2 2 2 space for which & >>rn , A . In that case we will obtain here at least a lower 

bound on the “reall’ scattering amplitude. 

Recall from Appendix B that when m=O, 

where 

B@k$ = 1 dy x(1-x)+y!-y) -5x(l~x)Y(l-Y) 

x(l-x)_k1+Y(I-Y)k2 

(C-2) 

and we have averaged over the free angle Q*b, already. Substituting this 
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into (C . 1) , we have, 

dk dk -2”’ -N-l (C-9 

-2 It will prove convenient to scale the (momentunj dimension out of B. To do 

this we change variables, 

41 =Ke ,*., = rte 5N 

and note that, 

(1 5 
B(Ke 2, 

5 42 
,Ke = Ke2B(e ,e ) 

then, 

N-l 
1 1 

e4(tl+.sN) 
-- 
(271)~ K2 21 

e 
2G2+ t3+*. .GNel) 

B(ec1,ei2~~e~2,e~3)...B(~N-1,~N) (C.4) 

Notice that, 

is a function only of the difference ( tl- t2). We should, therefore, change 

integration variables, 

rl =t 1 1, u2=t1- t2, q3= t2- t3,. . . , ?N-l=SN-2-EN-1’ vN=SN 
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The resulting convolution integral is factored upon introducing Fourier transforms, 

Then, 

N-l 

/ 

e it 71- qN)p dfl 
3(q1+‘7N) 

1 e 
(271) 2 

(27f)NK2 

[ I &p, N-1 drllON 

Introducing the function 

We can write finally, 

(C.6) 

(C.8) 
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The properties of the functions f andC are derived in Appendix D. From 

( D. 4,6,10) , we have 

3 
Z(O) 1x E’(0) 0, E”(O)= l17r3 = = - 27 , 32 c 7r2 12 - & 1 (C-9) 

Having calculated I W we can return to the scattering amplitude and note 

that c” S(W is just an exponential series, 
fi>l 

a,,” (P) c” log VP 
-1 1 (C. 10) 

If we imagine letting q +q,we can evaluate the leading part of the integral 

straightforwardly, 

(F) 
2 

l 

e 
($ [e(p)-C(O)] 1% 77p 

(C. 11) 
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I 

s(l chain) ~ 

f*to, l)f(O, 1) / 
d/3 e 

-; (9 ) 2 I&’ (O)l log np . p2 

(2702A2 

- 

s( 1 chain) ^N 

~I - -. 
The factor log 2, 

P is indicative of the square root character of the branch 

cut responsible for S (1 chain). We see also that the branch cut extends to 

ll?r 2 J=l+ ($&O)=l+ 32 2 , which shows that the single chain multiperipheral 

diagrams summed alone violate the Froissart bound, 

In preparation for a subsequent discussion, consider in more detail the 

structure of this cut singularity in the J-plane. Rewrite (C. lo), 

s(l chain) 
= -P71j (2 vp) St vp-‘i$) 

where 

(C 0 13) 
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The e-function simply states the trivial fact that the S-matrix is different 

from unity only when qp > Vmin. To discuss the behavior of the scattering 

amplitude from the complex angular momentum point of view, we turn to the 

Mellin transform of M(J). We easily compute from (C. 13) that 

M(J) = f*(& l)f(&l 1 

J-($) 2e(fl) . 

Therefore, M(J) possesses a cut over that range of J for which there is 

a solution to the equation 

J= (+j2E(@ 

We recall from Appendix D that C(@) is an even, positive function with a 

maximum at /3=0, and decreases monotonically to zero as /3 increases. 
117r 2 Therefore, the cut extends from Jmin=O to Jmax=($) 2C(o)=~ ci . 

The discontinuity of M(J) across the cut is, 

Disc M(J) = - W/t?, 1) d [J-(+12~$9,3 

(C 0 15) 

(C .16) 

(C. 17) 

Since the high energy behavior of the scattering amplitude is controlled 

by the behavior of Disc M(J) near Jmax, we shall obtain the right hand side 

of (C. 17) explicitly in this region. To do this it suffices to solve (C. 16) for ,8 

in terms of J near the endpoint p=O. (C. 16) reads, to second order in p, 
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so, 

where 

J= (%)2 [E(o)+ ; E”(o)p2] 

Finally, for J less than but near Jmax, 

r 

Disc M(J) z - L 
I 

dp 
x2 (27r)2 

f*<p, wp9 1) 

(C. 18) 

where we have substituted the numerical value f(0, l)= 5 . (C. 18) shows the 

square root character of the cut. Furthermore, it is easy to take (C .18) and 

invert the Mellin transform 

I 
J 

WY) = -$ 
max 

yJDisc M(J) dJ 

0 

and rederive (C. 12). 
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APPENDIX D PROPERTIES OF f AND C 

In order to complete the discussion of the branch cut we should simplify 

the functions 

c(t) = 
/ 

tidy 
x(1-x)+y(l-y) -5x(1-x)y(l-y) 

+f x(1-x) e +Y (1-Y) e 
-4 

P 2) 

which were introduced in Appendix C. 

Consider the function f(a,p) first. It is easy to see that the function’s 

dependence on /3 can be scaled out. If we define a new integration variable y, 

we can rewrite (D. 1) as, 

f(q) = 8-(1+iCL)f(cY, 1) 

CQ 

/ 

2-ia 
f(a, 1) = dy -VT 

0 (Y +I) 

Furthermore, f(a, 1) can be identified as Beta function if we change variables 

in the integrand to, 
1 u=- 

y2+l 

then, 1 -- l+ia 1 ia - --- 
f(c!$l) = ; du u 2 2 (l-u)2 2 
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which is just, 

Our determination of the character of the branch cut relied upon the 

nonvanishing of f(0, 1) . In fact, 

f(O,l)= r(i) r(i) =$ 

Now we turn to the function C(t). We wish to compute its Fourier 

transform, 

e(p) = 
/ 

deeBiP5 C(e) 

(D. 3) 

(Da 5) 

P. 6) 

Using the transform, 

1 T 

(1-x)ef+y(l-y)e-( 
72 

2 cash (f/3) 

we have, 

E (Pl= T 

2 cosh&3) 

/jxdy[k(l-x)] '+i ' [ y(l-y)]- ' -i'+ 

P 

I I 
x(1-x) 

-$+is 

c 1 
’ - i& 

y(l-y) - z 2 -5 [x(l-x)]~+i~ [,,,]ii/ (D.8) 

which we recognize as the sum of products of Beta functions. SO, 

- 45 - 



2 cosh( ;fi) t T(3+ifl) r( l--$9> 

-5 [ r(i+ig)]2[r(g-i$]2 j 

i 

r ( 3 -ip)r(l+ip) 

r(3+ip) r( 3-i/j) 

Furthermore, if we use various gamma function identities such as the 

l’Reflection formula”, (D. 9) can be written in the final form, 

sinh t I@ 

cosh2( $9) 

P. 9) 

(D. 10) 
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FIGURE CAPTIONS 

1. Electrodynamic vertices at infinite momentum,. 

2. Dominant single loop diagrams. 

3. One single loop diagram to represent the sum of diagrams in Fig. 2. 

4. Single loop diagrams which a. contribute a leading logarithm, and b. 

do not contribute a leading logarithm. 

5. Convenient kinematics for the single loop graph. 

6. Double loop graphs. 

7. Single chain graph. 

8. Simplest double chain graph. 

9. Simplest double chain graph contributing to the physical electron state. 

Numbers l-4 label the vertices, 

10. Double chain graph. 

11. The class of double chain graphs. 

12. Simplest 2 chain-l chain interference diagram. 

13. The class of 2 chain-l chain interference diagrams. 

14. A simplified visualization of a 2 chain-l chain interference diagram. The 

labels l-4 denote the photon legs. In passing from Fig. 13 to this diagram 

we have untangled various photons for visual clarity. 

15. Diagrammatic definition of the Reggeon appearing in Fig. 14. 

16. A visualization of the function W and the integral equation it satisfies. 

17. Iterations of Mandelstam cut diagrams. 

18. A type of diagram with possible relevance to diffraction scattering. 
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