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ABSTRACT 

We extend an earlier canonical formulation of quantum electrodynamics in 

the infinite--momentum frame by replacing the photons by massive vector mesons. 

The structure of the theory remains nearly the same except that a new term 

appears in the infinite-momentum Hamiltonian describing the emission of helicity 

zero vector mesons with an amplitude proportional to the meson mass. 
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1. Introduction 

Recently a canonical formalism for quantum electrodynamics in the infinite- 

momentum frame was developed by J. B. Kogut and the present author. 1 Since 

then, discussions of current commutators on the light cone in a quark-vector gluon 

model by J. M. Cornwall and R. Jackiw’, and by D. J. Gross and S. B. Treiman3, 

have made it seem useful to extend the canonical formalism of reference 1 by 

replacing the photons by massive vector mesons. The object of this paper is to 

provide such an extension. 

We find that the required generalization is quite simple if we consider in 

addition to the vector field AP a scalar field B in the manner of Stiickelberg’s 1938 

paper on gluons. 495 The results confirm the belief of Cornwall and Jackiw’ that 

terms in the vector meson propagator which might cause trouble in the infinite- 

momentum frame can be eliminated because of current conservation. 

The notation used here is that of reference 1 with two minor changes6 designed 

to facilitate calculations in perturbation theory. 7 In addition, we make free use of 

the results of reference 1 and devote most of our attention to the changes made 

necessary by going from massless to massive vector mesons. 

II. Equations of Motion 

The canonical theory of quantum electrodynamics in the infinite momentum 

frame’ was based on the Lagrangian 

where A’(x) is the real vector field of the massless vector mesons and \k is a four- 



-3- 

component Dirac field. In order to introduce a meson mass K > 0 and allow for 

mesons with helicity zero while maintaining gauge invariance, we introduce a real 

scalar field B(x) in addition to AP and !+. Then we begin with the modified 

Lagrangian 

(1) 
+-$ (KA’- aPB)(~AP- aPB) . 

Variation of the fields Q, v, A 
I-1’ 

and B give the equations of motion 

C avav + K2]Ap- ap[avAv+ KB] = Jc1 

K2apAp - K apa% = apf 

(iaP-eAP)yP-m 1 9 = 0 , 

(2) 

(3) 

(4) 

where we have defined Jc” = eT yP 9. (Notice that aPJC” = 0 as a consequence of the 

Dirac equation (4), and also that equation (3) is merely the divergence of equation 

(2). ) 

The reason for introduction of the seemingly superfluous scalar field B is 

that the gauge invariance of quantum electrodynamics is thereby preserved. 

Lndeed, the Lagrangian, and hence the equations of motion, is left invariant by 

the gauge transformation 
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-$ W - ApW + yw 

B(x) - B(x) + KA(X) 

Q 6) - exp (- ieA(x)) e(x) . 

We could, if we wanted, use this gauge invariance to choose the I’ Lorentz 

gauge 11 B = 0. In this gauge the equations of motion would take the familiar 

form (after some simplifications) , 

a 
V 

au +K~ 2 = Jc1 1 

[ Wp- “A&y ‘-m \k = 0. 1 
However, it turns out that it is very difficult to quantize the theory in the infinite- 

momentum frame 

Instead, we 

in this gauge. 

choose the I1 infinite-momentum gauge”, 

A’(x) = 0 . 

8 

(6) 

Then the /L = 0 component of the equation of motion (2) reads- 

+akAk+ KB 
I 

= -Jo . 

This equation can be solved for A3 as follows: 

A3 = 
I 

+$J’, 
rl 

where (Z/TJ) and (l/q2) are the integral operators’ 
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d5 l (x3- t )f(x’, x, < ) 

d5 I x3- < I f(x’, x, ‘$ ) . 

Thus if we regard A’, A2, and B as independent dynamical variables, then A3 is 

reduced to the status of a dependent field since it is determined at any rrtime’f x0 

by the other fields at that x0 according to the constraint equation (7). 

The equations of motion for the independent fields Ak and B can now be 

simplified by substituting the expression (7) for A” back into the equations of 

motion (2) and (3). From (7) we have 

a,A” = -KB - h Jo . 

Lf we substitute this into (3) and remember that aPJ” = 0 we get the equation of 

motion for B, 

bpap+K2]B = -iKi Jo . 

If we substitute (8) into equation (2) with h = 1 or 2 we get the equation of motion 

for A, 

[apaP t .2]Ak = J”-ii akJo . 

(9) 

(10) 

The equations for the Dirac field are changed very little from those developed 

in reference 1 for quantum electrodynamics. The two components *+ =* y y 3 O\k 

0 3 
are independent dynamical variables. The two components 9 = i y y \E are 

dependent variables, to be determined by the constraint equation 
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* 1 0 k =- 2rl y + m *+ ) 
3 

which follows from the Dirac equation. The equation of motion for ?I?+ is 

ia P - eA3$+ + 4 
C 
(ia,-e+)y k 

o+- +m y3* . 1 

(11) 

02) 

The only difference between this equation of motion and the corresponding 

equation in quantum electrodynamics is that A3 depends on B through the constraint 

equation (7). 

III. Equal- 7 Commutation Relations and Fourier Expansions of the Fields 

In order to make quantum fields out of the independent fields ?lr+, $, B we 

must specify their commutation relations at equal T. By analogy with reference 1, 

we choose 

= *+w, *+(o)) T=. = 0 . 1 
1 

(13) . 

Using these commutation relations we can derive the commutation relations 

among the creation and destruction operators appearing in the Fourier expansion 
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of the fields. Furthermore, the transformation properties of the fields under 

space translations in the transverse and a”- directions and under rotations in the 

(xl, x2)-plane determine the momentum and t’ ’ infinite-momentum helicity” lo of 

the states created and destroyed by these operators. Since the calculation is 

elementary, we only state the results. Let bt(q ,p s), [dt(q ,PJ, s)] be creation *c’ 
operators for electrons, [positrons] with momentum (7 ,pJ and helicity s (s =* $ ). 

Let a?(, , p A) be creation operators for mesons with momentum (q ,g) and helicity w ’ 
A(h = -l,O, +l). These operators have covariant commutation relations 11 

The expansion of 9+(x) at 7 = 0 in terms of b(p, s) and dt(p, s) is 

2i ‘I+(x) = (2n) -3/d! [g c i&f6 w(s)e-“‘%(p, s) + & w(-s)e+ ip’xdt(p, s); 
s =+ 

(15) 

where the spinors w(s) are 

(16) 

The expansion of h(x) at 7 = 0 contains creation and destruction operators for 

mesons with helicity + 1 and -1; the expansion of B(x) at 7 = 0 contains creation 

and destruction operators for mesons with helicity zero: 
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B(x) = (2~) -3Jdp [a (- ieWiPoxa(p, 0) + ie+ip*xat(p, 0) ) . 08) 

The vectors h(h) appearing in (17) are 

z(+l) = - 2+ (1, i) ~(-1) = + 2-+ (1, -i) . (19) 

IV. Hamil tonian 

The invariance of the Lagrangian under T- translations provides us, using 

Noether’s theorem, with a conserved canonical Hamiltonian 

where 

H = 
I 

Qd@W,g,8) (20) 

*= ‘;i;& i??oyo?J’ - (aoAcy)(a3ACr) - (aOB)(a3B) -9 (21) 

The first three terms in (21) cancel the terms in the Lagrangian containing a,, and 

we are left with 

$+f = -T 
[ 
(8 iTk- eAk) yk- m Q - T$ iy3 y3\k + eA3T y”* 

3 

- & (a3A3) (a3A3) 
k 3 kL 

- P3A ) (a@ ) + + (8 A )(a&) 

- 4 (akA’) $A,) - 3 KOALA, - 4 (akB) (akB) 

+ KA~(~,B) + KA~(~~B) . 

(22) 
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It is apparent that this form for the Hamiltonian is not very useful. However, if 

we substitute the expressions for A3 and !P- given by the constraint equations (7) 

and (11) into (22), then integrate the resulting expression to for.m H, and finally 

integrate by parts freely, we obtain a useful expression: 

(23) 

L 

++ c 2 1 
k = 1 

Ak(p2 +K~)A~++B$~+K )B . 
*‘( I 

Here p is the differential operator pk = iak and 7 = (rl, r2), ;‘. 1 ‘... 
By using the equal-T commutation relations (13), one can verify that the 

canonical Hamilton (23) actually generates 7 - translations in the theory. One 

finds, indeed, that [iH,,A] = a,$, [iH, B] = aoB and [iH, *+] = ao\k+, where 

the ~-derivatives of 2, B and !I?+ are given by the equations of motion (9), (10) 

and (12). 

An examination of the Hamiltonian (23) shows that the theory is changed very 

little when the vector meson mass is changed from K = 0 to K > 0. One must, of 

course, introduce a helicity zero meson into the theory and adjust the free meson 

Hamiltonian frOm$2/2n to (s2 + ~~)/217. But the interactions among the electrons 

and helicity f 1 mesons are unchanged, and the helicity zero mesons interact with 

the electrons only through the very simple coupling - ieK& *:*+(1/g )B. As 

K - 0 this coupling vanishes - so that the helicity zero mesons are never 

produced. 
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We can illustrate the dynamics more vividly by writing out the rules for 

old fashioned (T- ordered) diagrams using the Hamiltonian (23). 12 

(1) A factor (Hf- H + ie ) for each intermediate state. 

(2) An overall factor - 2ni 6(Hf- Hi). 

(3) For each internal line, a sum over spins and an integration 

co 
(2~)-~ dp @ . 

JJ “0 27? 

(4) For each vertex 

1 
(b) a factor [2nlZ for each fermion line entering or leaving the 

vertex. (The factors [2n]& associated with each internal 

fermion line have the effect of removing the factor l/217 from 

the phase space integral. ) 

(5) Finally, a simple matrix element is associated with each vertex as a 

fat tor. There are three types of vertices, as shown in Figure 1. The corresponding 

factors are 

(a) 

@I 

((3 

for single meson emission (Figure la), a factor eM, where M 

is given by Table I; 

for instantaneous electron exchange as shown in Figure lb, a factor 

2 e /no if all the particles are right handed or if all the particles are 

left handed (otherwise, a factor zero); 

for the “Coulomb force11 vertex as shown in Figure lc, a factor 

e2 ta,)-2 6 6 
sls2 s3s4’ 
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V. Free Fields 

In this section and the next we will examine the question of whether the 

infinite-momentum formalism presented here is equivalent to the usual formalism 

for massive quantum electrodynamics developed in an ordinary reference frame. 

We begin with a short discussion of the free fields. 

If the coupling constant e is zero, the equations of motion for the meson 

fields ,b and B are simply 

(apap + K2)$(X) = 0 

(24) 
(8p(a’ + K2) B(x) = 0 . 

These equations can be solved exactly, given initial conditions at T= 0. If (17) 

and (18) are the Fourier expansions of A(x) and B(x) at time T = 0, then these *s+ 

same expansions will giveJ(x) and B(x) for all 7 if we put 

PO = WI>;) = (p," + K2)/217 

in the exponentials exp(& ipP#) inside the integrals. 

With the solutions for &(x) and B(x) in hand, we can write down A3(x) using 

the constraint equation (7). Finally, we recall that A’(x) = 0. Thus we have the 

complete solution (A’(x), B(x)) for the free vector meson field in the infinite- 

momentum gauge. We can use the gauge transformation (5) to transform this 

solution back to the more familiar Lorentz gauge. To do this, we let 

A;(x) = AI*(x) + aPA 

B’ (x) = B(x) + Kli(X) 
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be the fields in the new gauge, and require that B l(x) = 0. Then 

-1 
A;(x) = A,Jx) - K apB(x) . (25) 

(Note that this gauge transformation becomes singular in the limit K - 0. ) 

The free field A”(x) which results from these operations can be written as 

A”(x) = (27r) -3/dp[g $l(e’(p, A)e-ip*xa(p, A) +e’(p, h)e+ip’xat(p, h) i , (26) 

where the polarization vet tors @(PJ) are 

$l(p,l) = -2+ (O,l, i,[p1+ip2]/n) , 

ec”(p, -1) = +2-+ (0, 1, - i,[ pl- ip2]/r) , 

e’(P, 0) = ‘&I, P’, P2, H- K2/rl ) 

-1 P =KP - 6; K/?j . 

(27) 

The field AL(x) which we have obtained by canonical quantization in the infinite- 

momentum frame will be equal to the usual free vector field if the polarization 

vectors #(p, h) f orm an orthogonal set of spacelike unit vectors each orthogonal 

to p’“: 

e?p, A)” eJP, A’) = - dhh, 

A quick check shows that this is indeed the case. 

One can also show, just as in reference 1, that the free Dirac field obtained 

in the infinite-momentum frame is equal to the usual Dirac field. We will not 
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comment on this proof here except to note that the gauge change discussed above 

does not affect the Dirac field if e = 0. 

VI. Scattering Theories Compared 

We have seen that massive quantum electrodynamics in the infinite- 

momentum frame is the same as ordinary massive quantum electrodynamics in 

the trivial case e = 0. We cannot demonstrate that the two theories are the same 

for e # 0 since we are unable to solve for the exact interacting Heisenberg fields 

in either theory. However, it is possible to show that the perturbation expansions 

of the S matrix in the two theories are formally identical. 

What we have to show is that the ordinary Feyrunan rules for massive quantum 

electrodynamics lead to the same expressions for scattering amplitudes as the rules 

for old fashioned diagrams given in Section IV. Since the same demonstration has 

been given for quantum electrodynamics in reference 1, we will indicate here only 

how the agrument can be modified to account for a non-zero meson mass and the 

contributions from helicity zero mesons. 

To that end, we examine the Feynman propagator for massive vector mesons 

DF(~)PY = (27r) -4 d4p exp(- ipax) c-g”” + p/“p”/K2] (p2- ~~ + ic )-’ . (29) 

One can show (by simple computation if necessary) that 

- $“” + ppp”/K2 = c 
h=fi 

e(p, A)Pe”(p, $ + 836u3 K2/q2 + 6; 6y$- K2)/q2 
(30) 

- (l/T)) 6’pv - (l&p’% ’ + p’“pv/K2 3 3 , 

where the vectors e(n, p, A) are the polarization vectors for helicity 6 1 defined in 
c* 
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equation (27). If one uses this expression in the numerator of the meson pro- 

pagator, the last three terms will not contribute to any scattering process because 

of current conservation. Thus one is left with an effective propagator 

DF(~)‘V = (2n )-4 d4p exp (- ipsx) e(p h)l.le*(p A)* + gcL 8 
’ ’ 

3 3 (p2-K2 + ie)-’ 
r 1 

(31) 

The H integral in the first term can be done by contour integration as in reference 1. 

In the second term, 2 2 2 2 (p -K )(p -K + ie) -1 --L 1 as E - 0 so that the H integral gives 

a factor 6( 7). Thus the meson propagator takes the form 

x 
[ 
O(T) exp(-ip,P) + 0(-T) exp(+ ippx?) 1 (32) 

00 
+ tm dv f2 exp(-i [w-p]) 

where 

PO = H = (;2 + K2)/217 . 

Note that this expression for the vector meson propagator is nearly identical 

to the corresponding expression for the photon propagator derived in reference 1. 

In particular, the “Coulomb force It term proportional to 6(~) remains unchanged. 

There are only two changes in D:’ , which account for the corresponding 

changes in the perturbation theory rules of SectionIV between K = 0 and K > 0. 

First, the free meson Hamiltonian is changed from H = 27211 to H = (p2 + K2)/2q. 
* 
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Second, a new term describing the propagation of helicity zero mesons is added 

to Div ; namely 

(P, *)‘e;l,(p, *)‘[O(T) exp(-ipax) + 0(-r) exp(-ip*x)] , 

where the “effective polarization vector” for helicity zero mesons is 

eeff(p, of = - (K/77) 6; * 

This is also the effective polarization vector for helicity zero mesons in the initial 

and final states, since e(p,O)’ = K 
-1 P p - (~/q) 6{, and the term K -1 I-1 p does not 

contribute to scattering amplitudes because of current conservation. 

From here on, one can continue the argument just as in reference 1 to show 

that the covariant Feynman rules are equivalent to the rules for old fashioned 

perturbation theory in the infinite-momentum frame given in Section IV. 
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Electron-Vector Meson Vertices 
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TABLE I 

Matrix Elements for Meson Emission 

% = 2-+ (p’ * ip2) 

S S' h M 

9 4 1 - q- hq + PI_ 117’ 

% + 0 - K/V 4 
4 fr -1 f q+/ rl - P+h q 
8 -- ; 1 2-+ m q,/qq * 

1 z -8 0 0 

8 -Q -1 0 

-$ 8 1 0 

-- i 9 0 0 

1 -2 8 -1 2-+ m qq/7jq’ 

1 1 
-- 2 -2 1 -s-/a, + P-h 

-- i 
1 

-2 0 - K/f7 
q 

-+ -- : -1 + 4,h - Pp? q 



(a) 


