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1. Introduction 

Significant progress has been made in the last few years on several different 

fronts of hadron dynamics. In the purely theoretical domain, better understanding 

of the properties and limitations of dual resonance models has been achieved. ’ At 

the same time, new ideas have been applied to the phenomenological analysis of 

hadronic processes, and several new models have been proposed and compared with 

experiment. 2 It is somewhat unfortunate, however, that these two areas of develop- 

ment have remained largely disconnected from each other. Thus, certain lessons 

of the phenomenological work (such as the absolute necessity of cut terms or ab- 

sorption corrections) are often ignored in theoretical discussions of dual resonance 

models. On the other hand, several successful qualitative aspects of duality (such 

as the two-component conjecture or exchange degeneracy) are sometimes con- 

tradic ted by specific phenomenological models. 

It is therefore important to try to summarize the lessons that we have learned 

both from the work on duality and from the phenomenological studies, and to con- 

struct a qualitative picture of hadron reactions which will incorporate ideas from 

these two fields of investigation. In this talk we shall present such a picture. Many 

of the ideas used in our description are borrowed from earlier models but the 

picture as a whole differs from all previous models. We shall specify the differences 

between our approach and previous approaches when we discuss the experimental 

evidence for the validity of our ideas. 

We believe that the qualitative model presented here accounts for many 

systematic features of the data, and that it has a good chance of being an approxi- 

mately true description of hadronic two-body reactions. More quantitative work 

is obviously needed, however, and we hope that it will be done in the near future. 
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II. The Framework: Two Component Duality 

We shall use the usual assumptions of two-component duality, namely - 

we assume3’4 that the imaginary part of any hadronic two-body amplitude can be 

expressed as the sum of two terms: 

hnA(s, t) = R(s, t) + P(s, t) 

From the s-channel point of view, R(s, t) represents the contribution of s- 

channel resonances while P(s, t) is given by the nonresonant background, The 

resonance dominance assumption can be true in a local sense (in the neighborho& 

of the resonance energy) only for the imaginary part, while in the real part, 

distant resonances can be important. This is why we apply the two component 

assumption in its simple form only to the imaginary part of the amplitude. 

From the t-channel point of view, R(s, t) represents the contributions of 

I* ordinary” t-channel exchanges, namely - single pole exchanges as well as pole- 

Pomeron cuts. We neglect the contribution of double-particle-exchanges although 

at energies of a few BeV they may be appreciable. 5 P(s, t) represents the dif- 

fractive (Pomeron exchange) part of the amplitude. 

Among the many successful features of two component duality we shall mention 

only a few well-known results which will be relevant to our discussion. If R(s, t) 

represents s-channel resonances and P(s, t) represents the Pomeron we immediately 

get three classes of stmple predictions. 396 

(i) Imaginary parts of amplitudes which show no resonances should be 

dominated by Pomeron exchange. This is best illustrated by the well-known be- 

havior of total hadronic cross sections (Figure 1) which are more or less constant 

in energy for exotic s-channel quantum numbers while they decrease with energy 

when s-channel resonances are present. The t-channel description of the lYflatYf 
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total cross section for, say, K+p scattering, requires cancellations at all energies 

between the allowed lVordinarylf exchanges (p, w, f”, A2, etc.). This is the 

famous exchange degeneracy7 prediction of duality 63 . Since we allow substantial 

contributions of pole-Pomeron cuts, the exchange degeneracy between, say, p and 

A2 should be interpreted here as an equality between the combined contribution of 

the p -pole and the pC9P cut on one hand and the A2- pole and the A2BP cut on the 

other hand. In most simple models for the construction of pole-Pomeron cuts 

such an equality would necessitate separate equalities between the p-pole and the 

AZ-pole and between their associated cuts. However, for our discussion it is 

sufficient to assume the equality between the two combined terms. We shall use 

this form of exchange degeneracy throughout our description of the vector and 

tensor exchange contributions to two-body processes. 

(ii) Imaginary parts of amplitudes which have no Pomeron term should be 

dominated by s-channel resonances. A well-known example is the partial wave 

projections of the TN - TN scattering amplitude for a well defined t-channel isospin. 

The It = 1 amplitudes which do not allow Pomeron exchange are indeed dominated 

by the resonances6 (Figure 2). 

(iii) Imaginary parts of amplitudes which do not allow Pomeron exchange 

and show no resonances should vanish. 3 Any charge exchange process with exotic 

s-channel quantum numbers may serve as an example. The case of K 
+ 

n - K”p 

is particularly simple. The optical theorem together with isospin gives: 

Im(K”n + + 
-+K”P)t,oCC utot(K P)-otot(K n) . 

The experimentally observed equality (see Figure 1) between the total K+p and K+n 

cross sections teaches us that Im(K+n - K’p) N 0. From the t-channel point of 
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view this is, again, guaranteed by p - A2 exchange degeneracy (as interpreted 

above). 

Many other aspects of the two-component conjecture have been successfully 

compared with experiment6 and we need not repeat them here. The one outstanding 

difficulty is still the case of baryon-antibaryon scattering. 9 Since most of our 

presentation here involves meson-baryon processes we shall ignore this difficulty. 

We stress, however, that a convincing resolution for it is still missing. 

III. The If Elastic Puzzle11 and the ?‘Inelastic Puzzle?? 

An obvious challenge to any phenomenological theory of hadronic two-body 

reactions is the seemingly erratic behavior of dips in elastic and inelastic angular 

distributions. 

In elastic scattering several processes exhibit dips around I t I N 0.6 GeV2 at 

energies of a few BeV’s while others do not exhibit any such dips (Figure 3). There 

is a one-to-one correspondence between the presence of such dips and the presence 

of s-channel resonances in the same processes. 10 The explanation of these dips 

is therefore an obvious challenge to two-component duality. We will refer to it as 

the 11 elastic puzzle??. Another feature of elastic scattering which requires explana- 

tion are the polarizations 11 which exhibit interesting systematic features (Figure 4). 

In inelastic scattering, the I t I N 0.6 dips are even more strange, since they 

do not seem to follow any simple pattern or correlations. Processes such as 

7~ p- non, YTN- nh and yp- 7r op exhibit such dips while reactions like TN - nN, 

KN- KA, nN - wN do not show them. A coherent explanation of this I1 inelastic 

puzzle” is certainly required from any successful phenomenological description. 12 
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The dual absorptive model 13,14 that we shall outline in the following sections 

offers a simple qualitative explanation of all of these dip puzzles. 

IV. Duality and Peripheral s-Channel Resonances 

We have assumed that the first component of the imaginary part of the 

amplitude can be described either as a sum of s-channel resonances or as a com- 

bination of **ordinary ** t-channel exchanges. In all simple t-channel models, any 

structure in the angular distribution (dips, bumps) occurs at approximately fixed 

t-values at all energies. This follows from the fact ‘that the singularities in t 

control the amplitude in such models. If we now assert that the same amplitude 

can be viewed as a SUDI of contributions of s-channel resonances, we have to explain 

how a collection of such resonances is capable of reproducing a given structure at 

fixed t-values at all energies. There are several ways in which this can happen. 15 

We shall briefly mention here two different possibilities for the simple case of 7r~ 

scattering. 

The simplest way in which a sum of s-channel resonances can reproduce a 

certain structure at a fixed t-value at all energies is if every single prominent 

resonance produces such a structure by itself. This is, of course, an extremely 

strong assumption, but it is not apriori excluded by any theoretical principle or 

experimental fat t. In Figure 5 we see how this may happen in 7rr scattering. 

The p, f and g mesons have their first zero between I t I = 0.25 and I t I = 0.31. If 

the full ‘l~‘i~ scattering amplitude is actually given to a good approximation by these 

states, the differential cross section will have dips at a fixed t-value around I t I-0.3. 

A more accessible process is nN scattering in which every prominent N* actually 

exhibits zeroes at approximately fixed t-values (Figure 6), in both helicity 
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amplitudes. 16 These two examples seem to indicate that the simple possibility 

of demanding that every prominent resonance possesses the same structure in t, 

may actually occur in nature. 

An alternative possibility of producing structure at fixed-t is offered by the 

Veneziano formula. 17 In this case, several (equally important) resonances con- 

tribute at any given energy. Every one of them produces zeroes at a variety of 

t-values but the sum of all resonances at any given energy is constrained to produce 

structure at a fixed t-value. In 7r7r scattering the Veneziano formula calls for a 

p+ CJ combination at the p-mass, an f + p* combinat,ion at the f-mass, etc. All 

of these combinations produce zeroes at I t I N 0.5. This possibility is perhaps 

less attractive from a simple-minded s-channel point of view, but that is, of course, 

not a sufficient reason the discard it. 

As indicated above, however, processes such as nN--nN and also YN - TN 

hint that the first possibility is approximately realized by nature. What constraints 

does this impose on the quantum numbers of the prominent s-channel resonances? 

The angle in which a given resonance produces a zero in the amplitude depends only 

on the spin of the resonance (and the spins of the initial and final particles). The 

t-value of the same zero is, of course, related to the angle by the resonance mass. 

Hence, a set of resonance zeroes at fixed-t at all energies must impose a relation 

between the spins and masses of the prominent resonances. Some trivial algebra 

shows that the relation is of the form: 

In the case of nN scattering it is actually true that the prominent resonances 

lie in the neighbourhood of a curve of the form I CC & (Figure 7). 
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We shall therefore assume here that the first component of the imaginary 

part of any hadronic two-body amplitude is dominated by resonances and that the 

prominent resonances obey a relation of the form B 0~ 6, thus enabling every one 

of them to produce a similar structure as a function of t. 

Since the resonances do not dominate the real part in a local way, it does 

not follow from our assumption that the real part is also dominated by the L ~6 

partial waves. The partial wave expansion of the real part at a given energy may 

show substantial contributions of Bs&partial waves, as a result of contributions 

of distant resonances. 

V. Absorption 

We now temporarily leave the subject of duality and briefly discuss some 

properties of the absorption model. The basic idea of the absorption model was 

first applied to hadron reactions almost ten years ago. Since then, many different 

versions of this model have been proposed, la, 19,20,21 with varying degrees of success. 

The fundamental idea of the model is, however, common to all of these versions. 

It states that inelastic hadronic two-body reactions are dominated by the most 

peripheral impact parameters within the interaction radius. The contributions of 

lower partial waves (or smaller impact parameters) are supposed to be small be- 

cause of the strong competition among the many open channels, which *‘absorb* 

part of the amplitude for these partial waves. If we assume that at energies of a 

few BeV the range of the strong interaction is of order rN 1 fermi, the absorption 

model tells us that impact parameters b N r or partial waves Q N qr (where q is 

the c.m. momentum) dominate hadronic two-body inelastic amplitudes (Figure 8). 

This condition (1 N qr) resembles the condition which we have deduced in 
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the previous section from the assumption that all prominent s-channel resonances 

must produce structures at fixed t-values at all energies. The only difference 

between the usual statement of the absorption model and our statement of the pre- 

vious section is this: All versions of the absorption model assume that the e - qr 

partial waves dominate the imaginary as well as the real part of the amplitude, 

while we concluded that only the imaginary part is dominated by the peripheral 

partial waves (because we reached this “peripheral dominance** through “resonance 

dominance** which applies locally only to the imaginary part). 

This conflict between the absorption model descriptions of the real part and 

our interpretation is interesting from another point of view. At asymptotic energies 

a well defined relation exists between the energy dependence and the phase of an 

amplitude. 22 In particular, if 

Im A(v) t) - LJ~(~) 
t fixed, 
1,--c* 

then 

ReA(v,t) - v q . 
/ tanq (for crossing-odd) 

t-fixed, \ cot 9 (for crossing-even) 
V--em 

These results remain true in the presence of logarithmic terms and we can 

therefore interpret o(t) as some I* effective** pole describing the phenomenological 

energy dependence of the amplitude, which is presumably due to poles and cuts. 

If ImA(v , t) is dominated by the I N qr partial waves, and if the relation 

between the phase and the energy dependence is obeyed, it is not always possible 

to have the B - qr partial waves dominate the real part! This point is ignored in 

most absorption models, but it should obviously be considered as a necessary 

constraint. 
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We shall therefore assume here that the imaginary parts of all inelastic 

two-body amplitudes (or more precisely - the first component R(s, t) of all 

hadronic two-body amplitudes) are dominated by the L- qr partial waves, while 

the real parts may or may not be dominated by the same partial waves. We 

further assume that the asymptotic relation between the energy dependence and 

the phase is obeyed. 

VI. The Rules of the Model 

We are now ready to summarize the rules of our model: 13 

1. The imaginary part of any hadronic amplitude is given by a sum of two 

terms: R + P. 

2. The R-component is dominated by the peripheral partial waves and is 
20,21,13 therefore given by a function of the form g(t) JAh(r&) where Ah is the 

total s-channel helicity flip and g(t) is a smooth function such as e at . 

3. The P-component has substantial contributions from all 1~ qr partial 
13 

waves and is given by a smooth function of t (say, of the form eCt). We assume 

that the P-term approximately conserves the s-channel helicity. 23 

4. The real part of the non-Pomeron component is unknown. At infinite 

energy it presumably reaches the form g(t) JA$rFtj tan? or g(t) JA#p) cot? , 

depending on the crossing properties. On the basis of empirical data we find that 

this asymptotic form is actually achieved at energies of a few BeV for Ah = 1 

amplitudes in the case of vector or tensor meson exchange. 13,14 We suspect that 

for Ah = 0 amplitudes in the same processes, the asymptotic phase is achieved 

very slowly (perhaps logarithmically), but for the purpose of our qualitative dis- 

cussion in this talk, this will not be very crucial. We shall therefore leave the 

real part of the non-Pomeron Ah = 0 amplitude as an unknown. 
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5. We assume that the real part of the Pomeron exchange amplitude is 

negligible. This is true at t- 0 but probably inadequate at large t-values. A 

detailed quantitative study should allow for a real contribution for the Pomeron, 

atleastfor Itl 2 0.5 Ge?. H owever, we believe that our qualitative con- 

clusions will not be affected by neglecting such a term. 

Our assumptions are summarized in Table 1, and the relevant functions 

are schematically shown in Figure 9. 

VII. Experimental Test: Elastic Differential Cross-Set tions 

13 Our first test of the model will be to ‘rsolve** the “elastic puzzle**. The 

elastic differential cross section has contributions of the forms P*P, P-R and 

R-R. At energies of a few BeV, the last term is presumably already small and 

we shall therefore assume that: 

do 

dt,l 
- P2 + 2P.R 

where P, R are respectively the imaginary parts of the Pomeron and non-Pomeron 

components of the Ah = 0 amplitude. (The absence of a significant real part or 

helicity flip in the Pomeron term is assumed. ) R should be approximately given 

by eatJO(rdq), while P is assumed to be structureless. 

In exotic processes such as K+p and pp elastic scattering, R+’ 0 and we 

expect a featureless differential cross section. In processes such as K-p, pp, 

n+p and r-p elastic scattering, s-channel resonances are allowed and R # 0. We 

therefore expect a dip around the minimum point of J,(rfl), namely - around 

ItI - 0.6. This is observed in the data (Figure 3) and explains the *‘elastic puzzle?‘. 

Furthermore, the fact that R decreases with energy relative to P, explains why 
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the dip structure disappears at higher energies. 

A comparison of the particle and antiparticle elastic differential cross 

sections is even more interesting. Consider the case of K+p and K-p. In our 

approximation: 

g (K+p) - P2 

$(K-P) N P2 + 2P*eatJo(r2/=Ej . 

The structure of Jo(rfi) (Figure 9a) predicts that at t = 0, g (K-p) > g (K+p); 

at I t I - 0.2 they become equal (the famous crossover phenomenon) ; around 

ItI N 0.6, g (K-p) shows a dip, $ (K+p) continues to be structureless, and the 

difference between the two curves is maximal; at larger t-values the two differential 

cross sections should again approach each other and perhaps show a second cross- 

over. 

All of these features13 are actually seen in the data for K-p and K+p elastic 

scattering, as well as in the pp and pp data. 

A recent beautiful measurement of -CC (tip) at pL = dt 5 GeV/c 24 ac tually 
el 

enables us to study our predictions from a slightly different angle. 25 Using our 

approximation we can extract the R and P amplitudes directly from the data. The 

R-amplitude is shown in Figure 10. P(t) (not shown) is featureless. We can ex- 

plicitly transform the R(t) and P(t) amplitudes to an impact parameter representation 

and see whether or not R is indeed dominated by the peripheral partial waves, and 

whether P is dominated by all Q 5 r waves. Figures 11 and 12 show 25 that this is 

actually the case, thus providing very strong evidence for the validity of our 

approach. 
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VIII. Experimental Test: Elastic Polarizations 

The polarization in elastic r*p and l?p scattering is given by: 

Since the dominant term in AAh =. is the Pomeron term P(t), we can use 

the approximation: 
do 

gz - P(t)-ReAAA =1 . 

Using our assumed form l3 for ReAAh=l (see Table 1) we predict: 

(Yg$+ +(pg)- - P(t).eat Jl(rfl) cot F 

=a@) P(t).eat Jl(r J-T) tan- 

( do’. where ,fl- dt)& refers to either I? p or n&p elastic scattering. Since P(t) is structure- 

less, the entire structure in the polarization sum or difference is given by ReAAh,l 

and the experimental values of these combinations of 9% should follow the features 

of Figure 9c, d. The data in Figure 4 are consistent with such a behavior. (In 

Figure 4 the combinations of polarizations rather than of 9% are plotted, but this 

does not change any of the qualitative features. ) 

IX. Experimental Test: I t l - 0.6 Dips in Inelastic Reactions 

A glance at Table 1 and Figure 9 reveals that, within the framework of our 

model, dips around I t I-O.6 in inelastic differential cross sections 12,14 are likely 

to be connected with the zeroes of the Jl function. When the dominant helicity 

amplitude is the Ah = 0 (or Ah = 2,3, . . . ) amplitude, no dip is expected at 
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Iti- 0.6 (unless the real parts of these amplitudes somehow produce such a 

structure). When A.h = 0 and Ah = 1 are equally important, the I t 1 N 0.6 dip in 

[Jl(rfi) 2 will be filled by the bump in J (r2/t) [o -3”. We therefore conclude that 

the only simple way of producing a I t I N 0.6 dip is when the AA = 1 amplitude 

actually dominates. But this is not enough. If this amplitude is even under 

crossing (as in the A2- exchange case) the dip will not be observed because of the 

coty factor in the real part (see Table 1). Only if the Ah‘= 1 amplitude 

dominates, and it is odd under crossing, we should expect a I t I N 0.6 dip. This 

situation is summarized in Table 2. 

What remains to be done in order to predict the presence or absence of 

ItI - 0.6 dips in an inelastic two-body reaction is therefore to decide which s- 

channel helicity amplitude dominates. This cannot be done in a model independent 

way. We will therefore use here several assumptions which are outside the scope 

of our dual absorptive description. Our predictions here are therefore less realiable 

and any failure may be blamed either on our model or on our additional assumptions 

(or both). We will return to this point in the next set tion. 

Our additional assumptions are: 

1. The exchange of I = 0 vector and tensor mesons (w and f”) tends to con- 

serve the s-channel helicity in the baryon vertex. There are several pieces of 

evidence for this - (i) In TN elastic scattering the f” term approximately con- 

serves the helicity. 26 (ii) In NN elastic scattering the CLI and f” terms seem to 

conserve the helicity. 27 (iii) The magnetic coupling of a vector meson to the 

nucleon is presumably related to the helicity flip. The isoscalar magnetic moment 

of the nucleon is small, and if we assume vector dominance - the w should be 

coupled to the nucleon mainly through the electric coupling. 20,21 
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2. The exchange of I = 1 vet tor and tensor mesons (p and A2) is dominated 

by helicity flip in the baryon vertex. This is supported by the following facts: 

(i) Inn-p-r’nandrp- nn a shoulder is observed in g at t - 0. This indicates 

that the Ah = 1 amplitude is larger than the Ah = 0 term. (ii) Vector dominance 

arguments indicate that the magnetic pNN coupling is somewhat larger than the 

electric coupling. 20,21 (iii) The same type of argument calls for a pNA coupling 

of the Ml type, 2892g corresponding to a single helicity flip between the N and the A. 

3. The helicity flip in the meson vertex is unique whenever only pseudoscalar 

mesons are involved. It is also unique in the case of photoproduction. In the case 

of vector meson production it is apriori not unique but we shall assume that it 

follows the photoproduction pattern, and that the s-channel helicity of the produced 

vector meson is predominantly * 1 for vector and tensor meson exchange. 

These three assumptions are definitely not exact. They may even be wrong. 

However, without them we cannot proceed with our test. We therefore take the 

risk of making these assumptions, and apply them to 15 reactions in which we can 

isolate the contributions of vector and/or tensor meson exchange. Table 3 shows 

for every reaction the dominant helicity change in the baryon and meson vertex 

according to the above assumptions. On the basis of these, the answer to the 

question **does Ah = 1 dominate? ** can be determined for every process. Using 

the pattern of Table 2 we can then predict in every case whether or not we should 

expect a I t I - 0.6 dip. 14 In all 15 cases our prediction agrees with the data. 

A few remarks should be added here with respect to specific entries in the 

table. 

(i) The energy dependence of some processes in the table (mainly yN - nN 

and nN- VN) does not follow the simple v a(t) rule with or(t) = 0.5 + t. Our 
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assumptions on the real parts of these processes are therefore dubious, since 

we use the usual form of the trajectory, 

(ii) Our discussion of 7r’p - p’p assumes that we can isolate the w-exchange 

term. This can be done by eliminating r-exchange, as in the combination 

G$ (T+P - p+p) + ~(T-P - p-p) - g (r-l.3 - POn). 

(iii) The reactions yp - ?‘r+n, n-A+’ involve a large Z- - exchange term and 

a possible A2 exchange contribution. These may obscure our conclusion con- 

cerning the absence of a dip in the p- exchange term in these reactions. 

X. Discussion of the Experimental Tests and Comparison with Other Models 

The qualitative success of our experimental tests indicates that there is at 

least some truth in our description. It is extremely important, however, to try to 

analyze which of our assumptions or IT rulesll are really tested by the data, and to 

what extent. It is also interesting to see how our model is related to other pheno- 

menological models and how we can distinguish between different models. 

A superficial classification of all previous models may group them into two classes. 

The first (*‘class Iff) include the Regge pole model in its various versions and the 

**weak cutI* models 19 . The second (flclass II*‘) include absorption models such as 

the **strong cut*’ model 20 and the Dar-Weisskopf model. 21 

Our prescription is in qualitative agreement with class I models, on the 

imaginary and real parts of the Ah = 1 amplitude. We disagree with these models 

on mAAAro- Our prediction for the elastic differential cross section as well as 

for YP - 7 p are crucial tests which strongly favor our approach. Our predictions 

for yN - ?T*N, r&A and nN - wN, wA are also different from those of class I 

models, but here the possibility of other exchanges obscures the issue and a much 
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more detailed analysis is necessary. In particular, the density matrix elements 

for nN - UN and nN - WA could provide us with detailed quantitative tests of the 

various models. At present, it is possible to fit, but not to predict, these density 

matrix elements with our -model. It is not clear whether this will still be the 

case when better data are available. However, one must remember that in this 

processes, our rrrulesff of Set tion VI as well as our extra assumptions of Section IX 

are tested. We would first abandon the latter, in case of conflict, since they are 

less general. Regardless of any possible difficulty in nN - wN, WA we claim, 

however, that all class I models are ruled out in their present form at least by 

the elastic differential cross section. The “weak cut? model 19 could be resurrected 

if *‘overabsorption** is allowed, namely - if it will have If strong cuts** for Ah = 0 

amplitudes (without abandoning its exchange degeneracy and a-factors). 

Our model agrees with class II models on the imaginary parts of Ah = 0 and 

Ah = 1 but disagrees with such .models on the real part of Ah = 1. Consequently, 

the elastic polarizations as well as TN - r] N, VA, K-p - K’n, KA, and 

K+n - K’p, KA provide us with an opportunity to distinguish between our approach 

and these approaches. The data clearly favors our model. In addition class II 

models 20,21 do not assume exchange degeneracy. As a result, in spite of their 

ability to account for the difference between, say, K-p and K+p elastic scattering, 

they cannot explain the dips in K-p, **p and pp elastic scattering and their absence 

in K+p and pp elastic scattering. 

In summary - all previous models contradict our description in one respect 

or the other. However, many of our assumptions are actually borrowed from these 

models, and we suspect that we would not be able to construct the present picture, 

had we not enjoyed the insight provided by the previous models. We now believe 
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that the correct description of hadron two-body processes must incorporate 

(i) Duality (including exchange degeneracy), (ii) Absorption effects which are 

sometimes very strong, at least in the imaginary part of the non-Pomeron com- 

ponent, (iii) Correct asymptotic phase even at 

for Ah = 1 amplitudes. 

Consequently, if we are forced to choose 

intermediate energies, at least 

between “weak cut” models with 

Regge o- fat tors and tf strong cut” models without a-factors, we will probably 

prefer I! strong cuts ‘1 with a-factors, since we believe in strong absorption and 

in exchange degeneracy. We realize, however, that’we are still far from having 

a correct method of calculating the cut contributions and we suspect that using the 

Regge pole term as a Born approximation is unjustified and possibly misleading. 

XI. Open Problems 

We conclude by listing several problems which are still open. 

(1) We should probably move towards a .more quantitative approach in our 

model. However, it is not absolutely clear that this is already desirable at the 

present stage. There are several reasons for this. In the absence of a theory of 

strong interactions, all phenomenological models are necessarily approximate. 

They should not try to explain every single detail of the data since it is apriori 

clear that no simple .model will succeed in doing so. The purpose of the pheno- 

menological work, as we see it, is to search for simple principles which account 

for systematic features, and which can perhaps, one day, give us clues as to the 

substructure of hadrons or the properties of the strong interactions. This does 

not require that a successful model will account for all minor details of all pro- 

cesses. On the more practical level, it is clear that many effects (such as 
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double-particle-exchange) are ignored in our approach, but should not be ignored 

in quantitative work at energies of a few BeV. An overenthusiastic quantitative 

model may thus seem to fail because of minor effects which are perhaps irrelevant 

to the main goal of this kind of work. The ideal approach is, presumably, to try 

to use our model in data-fitting but to keep in mind the fact that it is more im- 

portant to give a description of all hadron processes within, say, 20% than to 

build a model which explains one or two processes within 5%. 

(2) We have used a value of r N 1 fermi throughout our discussion. Two questions 

arise here. (i) I s r different for different particles? We suspect that the answer 

is positive and that in GUT scattering r is smaller than in NN scattering. A good way 

of testing this would be a precise determination of the crossover point in elastic 

7r*p scattering and in elastic pp and pp scattering. We suspect that the asp cross- 

over occurs at a larger t-value. (ii) Is r constant with energy? Does it grow like 

log s? like (logs)’ ? The shrinkage of pp elastic scattering at high energies in- 

dicates that r grows. That may mean that crossover points and dips will ‘move 

towards smaller t-values. It will be extremely interesting to see if this is the case. 

(3) We assumed that the imaginary part of the non-Pomeron amplitude is 

dominated by the b - r impact parameters as shown schematically in Figure 8 and 

as exhibited by the K?p data in Figure 12. This b-dependence can be roughly 

characterized by three quantities - the radius r, the width A of the peripheral 

domain, and the strength at the maximum. How do these quantities change with 

energy? If r increases, does A increase? Is the A/r ratio constant in energy, in 

case that both increase? We hope to report soon on a detailed study of these 

problems. 30 



-2o- 

(4) The real part of AAh = o was left as a question mark in Table 1. We 

should be able to learn about it from K*-K** ex c h ange reactions in which Ah = 0 

dominates, and possibly from the polarization in 7r-p -L 7~‘n. 

(5) Finally, it is clear that all of the ideas discussed here must have an 

impact on the description of processes with many particles in the final state. 

Absorption effects must play an important role there; the impact parameter des- 

cription of such processes for different .multiplicities may be as useful as in the 

case of two-body reactions; duality and exchange degeneracy are certainly rele- 

vant; factorization of poles is probably not very relevant (although correct) 

because of the large cut contributions, etc. We are looking forward to the appli- 

cation of these and other aspects of two-body phenomenology, to the description 

of multiparticle final states. 
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Table 1 

The approximate form of the imaginary and real parts of the two com- 

ponents of Ah = 0 and Ah = 1 amplitudes. 11 Jol’, 1’ Jlll denote functions 

possessing the general characteristic of Jo(rfl) and Jl(rZ/x) at 

ItI< lBeV2 ( zeroes, minima, maxima, etc.). 
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Table 2 

Equal amount of Equal amount of 
odd and even odd and even 

The presence or absence of I t I N 0.6 dips in inelastic differential 

cross sections is determined by whether or not the Ah = 1 s-channel 

helicity amplitude dominates, and by its properties under crossing. 



Exchanged 
Particle 
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Table 3 

AhB 

Does Ah = 1 
Ah dominate? 1 tl - 0.6 

M Crossing dip 
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Figure Captions 

Fig. 1: Total cross sections for K+p, K’n, pp and pn scattering are more or 

less Itflatfl as a function of energy while those for K-p, K-n, pp, pn, 

r*p and n-p decrease with energy. Flat cross sections correspond to 

exotic s-channel quantum numbers (and hence R = 0) while decreasing 

cross sections correspond to nonexotic processes (and R # 0). The 

Pomeron term itself may have some logs factors which are not yet 

seen below 30 BeV. It is clear, however, that the asymptotic Pomeron 

dominance starts earlier in the exotic processes. 

Fig. 2: s-channel partial wave amplitudes for nN - nN with well defined t-channel 

isospin. The It = 1 amplitudes do not involve Pomeron exchange. They 

are strongly dominated by resonances and show relatively *lcleanll circles 

in the Argand diagram. The It = 0 amplitudes show resonance circles 

superimposed on a substantial nonresonant background, presumably cor- 

responding to the Pomeron contribution (from reference 6). 

Fig. 3: Schematic presentation of the main features of the elastic differential cross 

set tions for $P, T*P, PP and PP. Exotic s-channel quantum numbers 

(K+p and pp) correspond to 1? smooth” g. Nonexotic channels (K-p, 

**p, pp) show structure somewhere around I t I - 0.6 BeV2. This 

figure was prepared on the basis of data compiled in reference 10. 

Fig. 4: Sums and differences of polarizations in elastic I?p and r*p scattering 

(data from reference 11). While the n+p and n-p polarizations do not 

resemble the K+p and K-p polarizations (not shown here), their sums 

and differences are suprisingly similar. 
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Fig. 5: The t-dependence of the p”, f” and go contributions to n+n- elastic 

scattering at the energy values of these resonances. The first zero of 

the amplitude is always around I t I N 0.25 - 0.30 BeV2. 

Fig. 6: A rlmapll of the zeroes of the prominent N*- states in nN - nN for both 

s-channel helicity amplitudes. The helicity non-flip amplitude shows 

zeroes around I t I - 0.2 while the helicity flip amplitude has zeroes at 

ItI - 0.5. A slightly different versionof these observations has already 

been made by Dolen, Horn and S&mid in reference 16. 

Fig. 7: The same “prominent (I nucleon resonances of Figure 6 are shown on a 

Chew-Frautschi plot. A curve of the form J + $ = qr where q is the c. m. 

energy and r = 1 fermi is also shown. This is, presumably, the 1 a fl 

curve mentioned in the text. 

Fig. 8: All versions of the absorption model assume that contributions from impact 

parameters b N r are dominant in inelastic amplitudes while b < r con- 

tributions are largely absorbed. 

Fig. 9: Schematic presentation of functions of the types mentioned in Table 1. 

(a) I1 JoIt (q/% (b) flJlll (r2/-t), (c) rrJlrl (rfl) tan? , (d) 

If Jill (rm) coty . r N 1 fermi; a(t) - 0.5 + t. 

Fig. 10: The non-Pomeron component R(t) determined from the l?p data of 

reference 24. The figure is taken from reference 25. 
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Fig. 11: Partial wave projections (or impact parameter representation) of the 

function of Figure 10. The dashed area between the two cruves represent 

the uncertainties in the data. This figure is taken from reference 25. 

Fig. 12: Partial wave projections (or irnpac t parameter representation) for 

P(t) = JFp) and P(t) + R(t) =dr (K p). The difference between the 

two curves is consistent with the curve of Figure 11. This figure is 

taken from reference 25. 
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