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ABSTRACT 

The concentric spherical cavity is used as a vehicle for study of 

the complete breakdown of the ‘*relativistic particle in a box” formula 

for the photon rest mass effect. The results are applied to a deter- 

mination of the limit on the photon’s rest mass which can be inferred 

from the Schumann resonances. 

We consider a cavity consisting of the space between two concentric con- 

ducting spheres and study the dependence of its resonant frequencies upon an 

assumed photon rest mass for various values of the ratio of inner to outer radius. 

Our interest arises on the one hand from its relevance to a suggestion of 

H. Kendall, that the Schumann resonances in the cavity formed by the earth and 

the ionosphere2 be used to set a limit in the photon’s rest mass; and on the other, 

from its utility as a vehicle for exploring in detail the breakdown of the ‘rela- 

tivistic particle in a box” formula for the photon rest mass effect. 

For the case of a Klein-Cordon particle whose wave function is required to 

vanish at the boundary of a closed cavity, it is easy to show that the dependence 

of the energy upon the rest mass of the particle is given by the relation 
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for every mode of the cavity. In Eq. (1)) hkoc is the energy of a zero rest mass 

particle for a particular mode and 3k’c the energy of the corresponding mode 

for a particle with rest mass ?iK /c . We shall refer to Eq. (1) as the ‘Relativistic 

Particle in a Box” (RPB) formula. While it has been generally assumed3 that 

the RPB formula would also hold for photons in a perfectly conducting cavity, it 

has recently been shown 495 that it is not generally valid. For purposes of dis- 

cussion it is convenient to parameterize a corrected form of Eq. (1)) valid for 

(k 12-k$ /k; << 1, by defining an in general complex “mass sensitivity coefficient”, 

g, via the equation 

kt2 = k; + gK2 (2) 

The case of the spherical cavity was briefly discussed in Ref. 4, where it 

was pointed out that the corrections to Eq. (1) either vanish or are very small. 

Thus g z 1 for that case. The situation for concentric spheres can be expected 

to be different, however. This circumstance is due to the existence of a class 

of modes (“special” modes) for whichko remains finite when the inner (a) radius 

approaches the outer radius (b) . 6 Since this behavior has no counterpart for 

the RPB, there is no reason to expect any validity for the RPB formula. Indeed 

we expect on the basis of the discussion in Ref. 4 that g will vanish as a+ b. 

By studying the dependence of g upon the ratio a/b one can observe the full 

breakdown of the RPB formula in a situation subject to exact analytic solution. 

We assume exp ik’ct time dependence for all fields, use spherical coordinates 

(v, 0, $), and consider only $ independent modes. 7 

It was shown in Ref. 4 that magnetic multipole modes for a spherical cavity 

satisfy Eq. (1). By the same argument this continues to hold for the concentric 

sphere case. For all of these modes k. --reo as a-+ b so that all are regular. 
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Turning to the electric multipole case, we assume perfect conductivity for 

r<aandr>b. 8 Then with k’ = k2 -t K , we have 2 2 

V = VI = -i al j,(k’r) Pn (cos 19) 

A,=&=$JV 
r<a 

* 1 1 

V = V2 = -i 
[1 
o!!L j,(kr) + PI yn(kr) 1 Pn (cos 0) 

fiT = +4 ~,jn(W+PtYnW) [ 1 
dPn (cos 0) 

df) 

A=s2=AT+icVV uv k2- 2 

(2) V = V3 = -i 02hn (k’r) Pn (cos 0) 

1 

r>b 

A,=fi3= 

i 
a<r<b 

(3) 

(4) 

(5) 

In Eqs. (3)) (4), (5)) jn9 yns hL2) are the usual spherical Bessel functions, 9 and 

n is a positive Merger. The six constants (ac 1, a2, al, I$, at, k$) are to be deter- 

mined by the six boundary matching conditions Vl=V2, &=b2 at r=a, and V2=V3, 

h2=b3 at r=b. The six resultant linear homogeneous equations have nontrivial 

solutions only if the determinant, A, of the coefficients vanish. The condition 

A=0 thus determines the eigenvalues k. 10 

At K =0 the eigenvalue condition reduces to the familiar relation 

yJkoa) zntkob) - zn(koa) yJkob) = 0 ( 6) 

where 

w,(x) z 2 tx $Jx)) 
(7) 

z,(x) = -$ (x Y,(x)) 

The lowest root of Eq. (6) is, for each value of n, special. Indeed, k. decreases 

as a +~b, and the limiting value as a ---, b is given by2 

key= &G (8) 
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Thebehavior of kob as a function of a/b is shown for the n=l case in Fig. 1. The 

special modes are essentially TEM modes propagating in the narrow gap between 

the spheres. The remaining roots of Eq. (6) are all regular. 

At K #0 the eigenvalue condition is too complicated to be usefully written out 

explicitly. It is, however, clearly different from Eq. (6) and hence k differs 

from kg. It then follows that the RPB formula is violated in every 

case. To study this violation we assume K 
2 small and define g (a/b) by the 

relation 

P(i) = l+ Lim 
K2+0 

The quantities, g, kg, and k of course depends 

scrutinized. A lengthy formula for g has been 

the following limiting forms: 

k; -k2 

K2 * 
(9) 

upon the mode which is being 

derived (see appendix) . It has 

g(0) = 1+ 2ntn+ 1) (kg@ jn(kob) 
(kgb) 2 - n(n+1) 

(Yn(kob) + i j,tk,b) 
(10) 

= .9856+ .298 i ; for the first n=l eigenvalue 

For the special modes in the case a m b we have the linear approximation 

g(F) =a4 (1-t) (11) 

where 

g(n) = v3 j;(v) y:(V) + i j:(y) 1 (12) 
with v 2 =n(n+l) . The full behavior of g for the special n=l mode is shown in 

Fig. 1 and values of the constants g(n) are tabulated in Table 1. Evidently g 

does indeed vanish for each special mode as anticipated. For the regular modes 

g+lasadb. 
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TABLE 1 

Slope of the mass sensitivity coefficient at a/b = 1 for the first five modes. 

Mode Number n Im 2 (n) Re g(n) 

1 .4362 .0689 

2 .7204 . 1734 

3 .9550 .2777 

4 1.1623 .3778 

5 1.3515 * 4734 

We now turn to an exploratory consideration of the bearing which our results 

may have open the possibility of setting a limit on the photon rest mass by means 

of the Schumann resonances. The observed Schumann resonances are approxi- 

mately twenty percent lower in frequency than the values predicted by the 

infinite conductivity formula and the Q’s are of the order of five. It is evident 

that the finite conductivity of the ionosphere has an important effect. There are 

additional complications arising from the effect of the earth’s magnetic field 

upon the conductivity, and the asymmetry introduced by the diurnal variation 

in ionospheric properties. A reliable assessment of the effect of a photon rest 

mass could be obtained by repeating the elaborate analyses which has been per- 

formed with a rest mass included. We shall, however, confine ourselves here 

to a crude approximation which consists of applying Eq. (2) using for g the value 

determined in the infinite conductivity limit and using for the ionospheric height 

a nominal 70 kilometers. We thus obtain Re g = .00486 for the first mode. We 

note that the correction to the RPB formula degrades the efficacy of this means 

of setting a rest mass limit by a factor 14. 

The results of measurements of the Schumann resonances by a number of 

observers have been summarized by Madden and Thompson. 12 Their results 
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are given in the first two lines of Table 2. For any assumed value of the rest 

mass parameter, K , one can use Eq. (2) and Table 1 to determine what the 

resonant frequencies, fo, quality factors, Q. would then be in the absence of a 

photon rest mass. It is these values which should then be compared with the 

predictions of a theoretical treatment of the earth ionospheric system based 

upon Maxwell ‘s equations. The third and fourth lines show f-f0 and $ - & 
0 

expressed in terms of 6fl=f-f. for the first mode. The last two lines show f. 

and Q. for an assumed 6fI= 1 Hz. Finally we note that Eqs. (2) and (11) imply 

1 -z~pP-&z 8.3 x lo7 cm 
K 

hq- 
(13) 

P 

On the basis of the theoretical analyses of Ref. 1 we judge (to a precision appro- 

priate to our crude analysis) that 6fI > 1 Hz is inconsistent with existing knowl- 

edge of the ionosphere 12 and hence that Xp > 8.3 x 10’ cm. This limit (which 

might, for the present, be halved, to be more conservative about 6fI and to take 

account of uncertainty in g) is a factor 100 poorer than the current best limit, 

which is based upon geomagnetic measurements. 13 On the other hand, it is 

about twenty times better than any other determination in which wave propagation 

properties play a role. 14 

The author is indebted to H. Kendall, M. Baker, and T. Madden for helpful 

discussion, to B. Tice for assistance in computing g(a/b), and to the SLAC 

Theoretical Group for its hospitality. 
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APPENDIX 

For the interested reader we exhibit the complete expression for g. To keep 

the expressions to a reasonable length we define a number of auxiliary quantities. 

u = koa , v = kob with u and v related by 

untu) z,(v) - w,(v) z,(u) = 0 

Antu, v) = jnW Y,(V) - jnW Y,(U) 

BJu, v) = jnW y#9 - Y,(U) j$v) 

C&b v) = jnW I, - y,(u) z,W 

Dn(u, v) = B,(u, v) jh(u)/jn(u) - Bn(v, u) hf’ ‘@)/h:)(v) 

Nn (u, v) = Dn(u, v) + 
A&u, v) -c,(u, v)+cn(v, u) 

[- 

$!pl hr’ ‘(v) 
u j,(u) ’ v h,(v) - 

c,(u, v) -c,(v, u) 
uv A,(u) v) 1 

A,+ q -C,(u, v)+CJv, u) j ’ (u) 
MJv) = D,(u,v) - uv - A,(v) n 

h(2) ‘(v) 

j (u) hT2)(v) n n 

and finally 

g-l = 
2n(n+ 1) A,@, v) N,(u, v) 

u2-n(n+l)) C,(u, v) - (v2-n(n+l)) Cn(v, u) 1 
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TABLE 2 

Summary of information for assessing the limit on the photon rest mass which 

can be inferred from the Schumann resonances. 

Mode Number n 1 2 3 4 

Measured frequency f (Hz) 8.0 14.0 20.0 26.5 

Measured Q 4 5 5 6 

6f = f - f. 6fl .96 6fl .88 Sfl .82 6fl 

Q-l - Qol ,042 Sfl .030 6f I .028 6fl .022 6fl 

f. * 7.0 13.0 . 19.1 25.7 

Qo * 4.8 5.9 5.8 6.9 

* 
Assuming 6fl= 1 Hz. 

FIGURE CAPTION 

1. The mass sensitivity coefficient and resonant frequency of the lowest fre- 

quency mode of a concentric spherical cavity as a function of the ratio of 

radii (a/b) . 
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