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ABSTRACT 

It is shown that both small dimensional extremely low frequency 

resonant circuits, and long coaxial cables are unsuited to the setting 

of significant limits on the photon rest mass. 
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P. A. Franken and G. W. Ampulski’ have recently proposed that an upper 

limit on the photon rest mass be determined by investigation of the properties of 

low frequency resonant circuits. Furthermore, they have reported a measure- 

ment based upon their proposal which, even in its preliminary form provides, 

according to their interpretation, a factor 30 improvement over the previous 

limit. The authors emphasize the speculative character of their theoretical 

interpretation, and it is the purpose of this note to show that their reservations 

in this matter are, unfortunately, well founded. It is our view that their experi- 

ment yields no significant information on the photon rest mass. 

Goldhaber and Nieto2 have emphasized the uniqueness of the Proca equations 

for describing modifications to Maxwell’s equations implied by a photon rest 

mass. With the assumption of harmonic time dependence exp ik’ct these may be 

written 

V2~ + k2& = -l/c (1) ; V2V + k2V = -p 

VA + ik’V = 0 (3) ; V-j+ ik'p=O 

s= -XV - ik’A (5) ; Z=Y!XA 

Vx$= -ik’B, (7) ; k2 E ,fz-m /c2 i -q2 

Equations (1) and (2) can be integrated to yield 

9(r) = & /” * r3 e-qlr-r’l 
Ir-r’l dr’ 

V(r) = & 
o r e-qlr-rll /(’ Ir-r’l dr’ 

(2) 

(4) 

(6) 

(8) 

(9) 

(10) 

Equations (9,10) can be used to derive the quasi-static conventional lumped 

parameter or electric circuit treatment of electromagnetism. In the case of 

fine wire inductances, the distribution of the quasi-steady current is known and 

Eq. (9) allows a direct calculation of the self inductance via the usual defi- 

nition: Flux linked 3 A,* d& =,cLi. In the case of K=O electromagnetism one 
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sets q=O and asserts that the effect of time dependence is small provided qR is 

small, where R is some size parameter of the system. This condition sets the 

limit of the quasi-static approximation. For K f0 in the static limit, 3 we have 

q=K but the same remark applies. Thus L(K) M L(q) x L(0) to order KR or qR. 

For the case’of capacitance it is simplest if we confine our attention to a 

symmetric pair of conductors in the form of a parallel plateicapacitor with very 

small plate separation and carrying charge Q and -Q respectively. In this case 

we argue that the charge distribution will be essentially uniform for small qR 

or icR just as it is in the case of K =0 electromagnetism. From Q= C(V,-V,) 

we conclude the C(K) M C(q) x C(0) again to order KR or qR. 

We now imagine the inductance and capacitor connected together, apply 

current conservation Eq. (4 ,), and Faraday’s law< Eq. (7)) to obtain 

1. Q 
-L(q) Q = c(q) 

whence 

w 
*2 1 

(q) = L(q) C(q) 

(11) 

We emphasize that the K dependent corrections to 0’ are of order KR or 5 KR 

accordingly as k’ 6~ K or k’ >> K respectively. 4 

The theoretical conjecture of Ref. 1 is based upon an analogy with rectangular 

cavity resonators, for which it is claimed that the relation 

holds rigorously. Here koc is the resonant frequency for massless photons. 

In order to clarify the status of Eq. (13) and its. relation to the quasi-static 

situation, we have carried out a study of the theory of transmission lines, wave 

guides, and cavities for the Proca equation. We shall find that, while Eq. (13) 

holds for some modes of some cavities together with an analogue for some 
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modes of some waveguides, it has no general validity and indeed fails for all 

modes of the rectangular cavity case. Another particularly conspicuous and 

significant failure occurs in the case of the TEM modes of multiconductor trans- 

mission lines (such as coaxial cables). Propagation in such modes occurs at 

phase velocity c regardless of the magnitude of K 2 
. 

It is useful to begin with an incorrect derivation of Eq. (13). Inside the 

3: 
,. 

( 

cavity j=p=O. Equations (2 ) and (3 ) are satisfied by V=O, V* A=O. The van- 

ishing of F$ on the boundaries then requires &xi!i vanish on the boundaries. 

Formulated in this way the problem of determining the eigenvalues, k2, of 

Eq. (1) appears to be independent of K 
2 , .so that k2 has precisely the values it 

has for conventional, zero mass, electromagnetictheory. Equation (13) is an 

immediate consequence. 5 That this derivation is incorrect becomes apparent on 

noting that while the charges and currents vanish inside the cavity, there are, 

nevertheless, charges and currents in the cavity walls. Equation (10) then tells us 

that V cannot vanish. In the Proca theory the potentials as well as the fields are 

physical quantities, and it is necessary to construct solutions throughout space 

/ which are consistent with Eqs. (9,10). 
/ To proceed, it is necessary to properly formulate the boundary value prob- 

lem. As in the case of K=O electromagnetism, p and j will be no more singular 

than surface distributions. Equations (9,lO) then imply that V and A are 

everywhere continuous. Discontinuities in the derivatives of V and !+ occur at 

surface distributions of charge and current. 

We next discuss solutions in a medium of conductivity u . Equations (1 ) , 

(2 ) , (3 ) and (4 ) are supplemented by 

Writing 

j=crg=-u~V-ik’,o& * (14) 



with V*bT=O and 

s%Q - -TSV 

kQ 
(16) 

ki= kf2 _ ik’cK 
2 

U-t- &‘C 

we find that (1 ), (2 ) and (3 ) are satisfied if 

V2hT + (k2 - F) bT = 0 

V2V+k;V=0 

(17) 

(18) 

(19) 

In the limit u-+ab , kf=k I2 and AT=O. Thus we have 

b=hQ-k’ -u -L.vv (20) 

V2V -i- kf2V = 0 (21) 

Thus the potentials propagate unattenuated at the speed of light through a perfect 

conductor ! Equation (20) implies via (5) and (6) that E and B both vanish. Never- 

theless these potentials have physical significance. They carry energy and, on 

emergence from the conductor, will generate electromagnetic fields. 

For the discussion of cavities and waveguides the appropriate boundary con- 

ditions are: V, 4 continuous at boundary,Eqs. (20) and (21) inside the conductor 

((T = CO case) ; or V, 4, and derivatives of 9 continuous at boundary, Eqs. (15)) 

(16)) (17)) (18)) (19) inside the conductor (o finite). Outgoing wave conditions 
- . . ._ 

; are imposed at infinity. To avoid a multitude of boundaries we shall, at times; 

assume a uniform conducting medium extending to infinity. 
8 For the most part 

we take o =m. 

Wave Guides 

We assume a closed cylindrical boundary oriented along the z axis. The 

TM and TEM modes can be discussed in general. For both cases we may write 

(22) 



v = $q%Y) e -ihz 

Equation (1 ) , (2 ) , and (3 ) are satisfied provided 

The TM modes are obtained by requiring $ to vanish on the boundary. h=V=O 

outside obviously satisfies the boundary conditions. This condition, together 

with (24) and (25) are identical to the K =0 TM waveguide conditions. Hence Eq. 

(133 holds, viz 

kY2 = kzo + h2 + K2 

Two (or more) conductor systems support TEM modes. One may imagine 

a two wire system or a coaxial cable. For definiteness consider a two wire 

system. If $!J=O on both conductors then we are back to the TM case. Jf $#O, 

then V#O on at least one conductor. Since &is parallel to the z axis, Eq. (20) 

tells us that $ is constant inside the conductor. But then Eq. (21) requires h=k’ 
2 and hence kt=-K . As a check we note that the equation 

k;+K2 
h 

also requires kf=-K 2 if 9 is constant rather than zero on a boundary. The 

equation V2$=, 2$ with $ given by different constant values on two boundaries 

always has solutions. We see that TEM modes iiolate Eq. (13 ‘) and indeed 

2, propagate with velocity c independent of K . 

In order to become convinced that this result was not associated with an 

‘unphysical I* (+= 00 limit we have also examined the finite conductivity solution 

for the case of plane parallel geometry. The propagation now includes attenua- 
2 tion, but is still found to be independent of K . (In contrast to the C= 00 case 
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this result is not exact. It depends upon the assumption that both K and the 

attenuation constant are small compared to the inverse lateral dimension.) 

It is useful to recall that transmission lines are often discussed in the con- 

text of inductance and capacitance per unit length. It is easy to see, using the 

explicit solutions obtained, that corrections to these quantities are of order KR 

and appear in such a way as to precisely cancel in the LC product which deter- 

mines the propagation velocity. 

The TE modes can not be discussed with generality. However, they typically 

violate Eq. (139. As an example, we have studied the case of a circular cross 

section. One finds that the pure TE character is lost. The eigenvalue condition 

is found to be 

n2 
J’(kca) = - --- 

K 2 Jn(kcal k ‘2H(2) (k a) J (k n c nc a) 

(kca)2 K2+kf k2 Hf) ‘(kca) Jn(kca) - kf2Hi2) (kca) JA(k,a) 
(27) 

where n is the angular mode number. For n=O one gets the K 
2 =0 equation and 

hence Eq. (13 ‘) holds. ’ Otherwise it fails but the corrections are small. We 

find for the TEll 2 mode, Sk:= (-. 15+ .44i)rc . Note that this result implies at- 

tenuation, corresponding to radiation through the perfect conductor! 

Cavity Resonators 

In K 2=0 electromagnetism one obtains exact solutions of cavity problems by 

terminating waveguides with conductors. This procedure is no longer exact for 

K 2#0, although the presumption h = F is probably an excellent approximation, 

especially for large n. 
9 

In order to study a problem capable of exact solution, we have considered 

the case of a spherical cavity. Because of the m degeneracy of spheres it is 

sufficient to consider the m=O modes, (i. e. , invariant under rotations about the 

z axis). For the magnetic multipoles one may take V=O, &=$ $(r, 6). The 
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condition &=V=O outside together with $(a, 0)=0 satisfies all continuity conditions. 

Again the situation is identical to that at K~=O and Eq. (13) holds. For the electric 

multipoles an equation analogous to Eq. (27) has been derived. Hence Eq. (13) 

fails but the corrections to it are very small. For these modes the cavity 

radiates through the perfect conductor, and analogous to Eq. (27)) the eigen- 

value is complex, yielding a finite cavity Q. 10 

The fact that Eqs. (13) and (13 ‘) fail for TE and electric multipole modes is 

in satisfactory agreement with our quasi-static treatment, as it is these modes 

which 1’deform’f into quasi-static modes as the guide or cavity is deformed into 

a reentrant shape. 

We conclude with the general comment that photon mass effects appear to 

be of the order K Ror K CT, where R or CT is the shortest length which is relevant 

to the “apprehension” or control of the photon. This result is somewhat prej- 

udicial to table top experiments of less than exquisite sensitivity. 
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We note that Eq. (4) of Ref. 1 would seem to imply for zero resistance 

o ’ > wf (their notation), and hence nonexistance of static solutions. On the 

other hand the interpretation of the geomagnetic measurements is based 

upon static solutions. 

We have omitted in our discussion, the fact that for k’#O, p#O in the induct- 

ance and j#O in the capacitor. The error is of order k R. r* 
Since it is obviously possible to have a reentrant cavity with a capacitative 

gap of infinitesimal width and a resonant wavelength arbitrarily large 

compared to the spatial dimensions of the cavity, the above argument is 

in contradiction to the quasi-static argument. 

Compare with M. E. Gertsenshtein and L. G. Solovei, Zh. ETF Pis. Red. 

2, 137 (1969) (translation: JETP Letters 2, 79 (1969)). Our result agrees 

with theirs only in the limit o<< k’c. For typical conductors the opposite 

inequality always holds. While this difference has no effect on their con- 

clusions, it is crucial for us. Their result implies V, Am vanish for o--, ~0 . 

We would be unable to satisfy our boundary conditions if this were actually 

the case. (Their Eq. (5) for E, is incorrect.) 

For (+ finite, f must be finite. Hence there are no surface currents. On 

the other hand, for j*h#O there will be surface charges. Hence 8*VV may * 
be discontinuous. Not all of the specified boundary conditions are inde- 

pendent when one takes the equations of motion and the Lorentz condition 

into account. 
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8. 

9. 

10. 

The following “thin perfect conductor” boundary conditions also avoid a 

multitude of surfaces. Free space equations of motion are assumed on 

both sides of the boundary. Only V, A are required to be continuous 

(&* V(4.A) is then automatically continuous). In addition, one requires 

&E to vanish at the boundary. All of the “thick” perfect conductor prob- 

lems discussed in the text, have also been treated as thin conductor 

problems. The results for the interior fields and eigenvalues are always 
2 similar, and to first order in K , identical. 

Combining this comment with our discussion of waveguides we see that 

for rectangular cavity modes with mode indices (a, m, n) , Eq. (13) is 

inexact, but probably an excellent approximation for (1, m, n)fO. If, how- 

ever, any of these indices vanish the frequency is essentially independent 
2 OfK . 

H. Kendall (private.communication) has suggested that the fact that the 

earth-ionosphere resonance has been observed sets some sort of limit on 

/c2 . It is probable that Eq. (13) has substantial corrections for the lowest 

mode of two concentric spheres but not so large as to eliminate the possi- 

bility of a useful determination. The evaluation of the effect, especially 

with realistic conductivities is straight forward but more tedious than we 

were willing to undertake. 


