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ABSTRACT 

We discuss some of the theoretical arguments for the existence in Compton 

scattering of right-signatured fixed poles with polynomial residues. We show 

that if one could “switch off I’ the strong interactions then a fixed pole with residue 

linear in q2 (the photon mass squared) would be necessary for the consistency of 

the fixed q2 dispersion relation for vT2 (whose absorptive part vW2 is measured 

in inelastic electroproduction) . We show that if the above conjecture is correct 

then there must be some energy dependence in v W2 over and above the conven- 

tional leading Regge form (Pomeron plus f-A2). Evidence is presented for the 

presence of such “nonleading behavior tt in a similar process. In addition we show 
. . . 

why the on-shell atot could be compatible with the neglect of such a nonleading 

term. We find that a fixed pole with polynomial residue and the correct q’: + 0 

Thomson limit can be accommodated by the present data on v W2 at large q2. 

With the above assumptions on the fixed poles behavior, we predict the high energy 

behavior of v W2 and find that. asymptotically it must fall to a value substantially 

less than its present maximum magnitude. 



I. INTRODUCTION 

The amplitude for forward scattering of off mass shell photons on spin 

averaged nucleons can be written in terms of 

1 (1-l) 
which defines the structure functions T 1, 2(v ,q”) whose absorptive parts are W1 2. 

P-q ’ Here PF, gcL are the momenta of the nucleon and photon respectively, v = x , and 

M is the nucleon mass. 

In traditional Regge language T2 is considered to be described in terms of 

the Pomeranchuk P, and ordinary exchange degenerate Regge trajectories f, A2 

with intercepts at t=O of about l/2. However, as is well known, there may, also 

be a right-signatured fixed pole at J=O which contributes to the real part of T2. ’ 

For such a situation the following sum rule holds’ 

(l+q2/4M2) -’ 

+s 00 00 
s dv v W;(v , q2) 

ai- 

cl2 
dv i%!! - 

q2 q2 
P-2) 

‘TH 

where vTH = (2Mm, + rnz + q2)/2M, (q2 > 0 spacelike) and where Rp(q2) is the 

residue of the fixed pole. Damashek and Gilman and also Dominguez, Ferro- 

Fontan and Suaya3 have separately examined this relation at q2=0 assuming that 

the proton’s total photoabsorption cross section is well described at high energies 

by only a Pomeron and an f-A2 type term, and concluded that such a J=O fixed pole 

exists in the on mass shell Compton amplitude, It is therefore not improbable 

that there is a J=O fixed pole in the off mass shell amplitude, i. e. , that Rp(q2)#0. 
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Were we to take the limit of Eq. (1.2) as qL+ Qo and suppose that 

v W2(” > q ;i -+ F2(~,m) in this domain, 4 with w=2Mv /q2, then the following sum 

rule would result 

w 
Ori- 

dw=rM lim Rp(q2) /q2 
q2 -+cO 

E RpnM (1.3) 

(p,n subscripts and superscripts will refer to proton and neutron, respectively; 

whereas the combination pn will refer to proton-neutron difference data), 

where yi(~) s lim pi(q”, 
CQ-1 

q2+* 
(S2/2M) and the Born term is assumed to be 

negligible in the large q2 limit. Empirically the data5 appear to show that to a 

good approximation v W$ v , q 3 has become a function of the single variable w 

even for values of q2 > than about 1.5 (GeV/c) 2. 2. For such values of q , the 

Born term in (1.2) is negligible in size and so one might then write (1.3) to a 

good approximation even for q2 in the range 1.5 L q2 i. 00 (neglecting also the 

small q2 dependence in w threshold). Thus to the extent that one believes that 

F;tw,q~, or at least the combination of integrals in (1.2)) has in fact become 

independent of q2 by q2 = 1.5 (GeV/c) 2 one can write Rp(q2) s: q2R,, i. e. , Rp(s2) 

must be (nearly) linear in q2 for the entire range 1.5 i q2 5 QO i 

Without committing ourselves as to whether or not $(w,q 2, has in fact be- 

come a function of only w for q2 >_ 1.5 (GeV/c) 2 we can still examine (1.2) in 

that range assuming that the v W2 %calingft data5 is that appropriate for at least 

one value of q2 for which both the Born term and the errors invoked by approxi- 

mating the true w threshold by unity are negligible. 

In evaluating the residue of the fixed pole Rp(q2)/q2 - Rd in the range 

1.5 5 q2 < 00 , we will for convenience refer to Eq. (1.4) below, in which (and 

in what follows) F;(w) is specifically taken to be the “scaling” data of Ref. 5 
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and the yi are the Regge residues appropriate to this data: 

ai- 
-C Yi W 

> 
dw = Rp nM (1.4) 

Rp in (1.4) could be either positive, negative or zero. However, returning to the 

sum rule (1.2) and considering the limit q2 + 0 while noting that 

lim v W2(v ,q2)/q2 = C(v)/47r2a 
2 

4 -0 
(1.5) 

with .c(v) the total photoabsorption cross section for on-shell photons of energy 

v , we obtain 

1 + -& [ WW -[F>. P,(O) vc+dv 

I ‘TH 1 

= nM q;FOR&q2)/q2 

(1.6) 

where v TH is the threshold for pion production and the 1 on the left-hand side 

results from the Born term. The authors in Ref. 3 found that the left-hand 

side of (1.6) is consistent with unity and so we shall assume that it is indeed 1. 

Hence we deduce that 

lim Rp(q2)/q2 = l/M?r 

q2+o 
(1.7) 

which implies that for small q2, Rp(q2) =q2Zp+ O(q4) where Zp=l/Mr. 

At this stage there is no reason to suppose that RP=Bp or that terms of 

O(q4) are not present in Rp(q 2, near q2=0. Indeed if one assumes that the data 

for F;(U) have already (w > 12 say) attained a maximum value and that F!(w) is 

asymptotically falling off to ~=a, with an A+Bw -l/2 behavior 6. then it is clear 

that the left-hand side of (1.4) is negative and that Rp < 0. This implies that 

Rp(42) at q2=0 and q2=1. 5 (q2 34)) have opposite signs. In Ref. 7 the sum rule 

(1.2) was tested directly for fixed q2 of 1.5 (GeV/c)2 and, with the assumption 
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that the v(w=2Mv/q2) behavior was of the form a+bv -l/2 
) ’ 

the fixed pole residue was 

indeed shown to have an opposite sign to that found in on-shell scattering. This 

would imply that the fixed pole residue changes sign between q2=0 and q2=1. 5 

(GeV/c)2, and scaling by q2=1. 5 would say that at this point the residue has be- 

come nearly proportional to q2. Whereas such a state of affairs is, in principle, 

not impossible, a dynamical origin for such a perverse behavior is difficult to 

imagine. 

Theoretical arguments have been made3 which suggest that the residue of 

the fixed pole may be a polynomial in q2. However the arguments of Ref. 8 

would fail in the presence of fixed poles in photoproduction amplitudes, (as has 

been pointed out in Refs. 1 and 9 , it appears that charged pion photoproduction 

over a broad range of t, has an energy dependence from 2 to 16 GeV which is 

compatible ,with fixed J=O poles playing the dominant role in the t channel) . How- 

ever, the interesting observation was made in Ref. 1 , and reiterated by Harari, 10 

that in the absence of strong interactions and to lowest order in CY on 
q 

would 

expect only the Thomson term to survive in (1.6) so that 2 
lim ‘+=A. 

2 11 ‘4 -,o 4 
This argument can be extended to all values of q . If we ‘turn off ff the strong 

interactions in (1.2) we expect that GM =lGE=l for all q2 with p=l (there being no 

anomalous moment to this order in a) . This procedure would then require 

Rp(q2) E q2/.rrM for all- q2 in the absence of strong interactions. If the fixed pole 

is purely electromagnetic in origin, then this would be true even in the presence 

of strong interactions’. 

In any event, restricting the residue to be a polynomial in (1.7) and using the 

fact that the limit in (1.3) must be finite as q2 -+ 00 , we are forced to conclude that ” 
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which is the result obtained immediately in the above argument. The sum rule 

(1.4) would then become 
00 

s ( 
dw 

0 
F;(w) - FERegge(“)) = 1 . (l-9) 

If it is the case that the behavior of F:(w) for o 2 12 is simply an asymptotic 

decay of form A+B/& then the sum rule (I. 9j is not satisfied and the residue of 

the fixed pole cannot be a polynomial in q2. Conversely, if the residue is to be a 

polynomial in q2 then the functional form of F;(w) for w > 12 must be more com- 

plicated than the above. At present it is not possible to say which of these alter- 

natives is nature’s choice. We show in this paper that the latter situation, as 

represented by (1.9)) is a viable possibility. In particular we will find that an 

effective trajectory of intercept or 4 -l/2 contributing to $‘:(a) enables one to 

satisfy (1.9) and that there is evidence elsewhere, namely in pp and .pfi scattering, 

for the importance of such a term. 12 

We put additional constraints on such a trajectory’s contribution to F2(m) by 

examining its role in the difference of proton and neutron data F:(w) - F;(w) and 

by demanding 

1. that F;(w) - F;(w) satisfy the well known quark charge sum rule, i3 and 

2. that the neutron fixed pole residue Rn (defined analogously to R 
d 

be 

one of three fixed numbers 0, 2/3 or 1. An attractive choice might be 

zero at q2=0 which would imply that Rn(q2) =0 for all q2 if Rn(q2) is a 

polynomial. i4 

The resulting universal curves for F!(w) are then considered. 

For comparison to the assumption that F;(w) has in fact scaled in the data of 

Ref. 5 we examine an alternative viewpoint, nameiy we consider in Appendix C 

one of the possibilities proposed by suri and Yennie. 15 They propose that the 
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vW2 data presently available might not be close to the scaling limit but that ,F2- 

(v W2 minus a specified vector dominance contribution which is diffractive in 

nature) might be. That is to say that in (1.4) F;(w) and yi separately possess 

important q2 dependence. Nonetheless the polynomial residue assumption still 

demands that the integrated combination in (1.4) does @. The familiar VW;(W) q 2 ) 

data and their _Fi(w) lfdata” are plotted in Figs. 1 and 2 respectively. The a! N -l/2 

contribution plays a very important role regardless of what one believes the scaling 

function to be. It remains impossible to obtain positive or zero proton fixed pole 

in either of the scaling functions F2 or _F2-without it. 
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II. THE NONLEADING TRAJECTORY 

In this section we will establish the importance of a nonleading trajectory 
16 

of intercept a(0) near -l/2 in a process similar to y-p scattering. In particular 

we will look at otot @P) + a,,tiP) = (CT), h h w ic is related by the optical theorem 

to an amplitude with the same crossing properties and presumably the same 

leading Regge contributions as the corresponding amplitude for crtct(w). 

Both pp and pp scattering may be considered to have contributions from a 

Pomeranchuk type term, a rho-omega-f-A2 trajectory type term, and other non- 

leading terms. In particular, a possible model for nonleading terms might be 

that of Regge cuts for which there would be an RR cut, an RRR cut, and so forth, 

with intercepts 0, -l/2, . . . . Duality and exchange degeneracy put additional 

constraints on these terms; for example, the single Regge contribution to pp 

scattering must be purely real, which for a rho-omega-f-A2 intercept of l/2 con- 

strains the single Regge contribution in pp to be purely imaginary. Moreover, 

duality requires that the single Regge exchange yield a positive imaginary con-. 

tribution to pp, which in turn tells us that the single Regge exchange contribution 

to pp is real and negative. The resulting approximate multi-Regge cut phases in 

the forward direction are given in the following Table 1 17 
: 

Pomeron R R@R R@R@R 

PP i -1 i 1 

PP i i -i i 

~effto) 1 l/2 0 -l/2 

It is apparent that in such a model CT (which is proportional to l/v times an 

amplitude) might be adequately described by 17 

CT = 2a + b/h + c/v 3/2 
P-1) 
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where the l/v imaginary contribution from otot(pp) and atot(fip) have cancelled 

in the sum 2, since they have opposite sign but the same magnitude. 

To explore the validity of the hypothesis of an effective trajectory we have 

examined CT in the region 2.00 GeV S plab _ < 50 GeV (using a smooth extrapo- 

lation of the pp data above 25 GeV) . l8 We have attempted to fit CT with the form 

2a +\b/& + c/v d 
(2.2) 

Taking a to be 38.35 mb (from the pp data) we determine the best values of b and 

c for various values of d and plot the resulting X2 of the fits in Fig. 3. 

There is a clear minimum in the X2 curve at d N 1.5. For a different value 

of a, say a=38.6, the best value of d was found to be about 1.45. For any magni- 

tude of a between 38 and 39 the same general features emerge; namely, a term 

c/v d is required with d between 1.3 and 1.7. A value of a larger than 39 is 

manifestly inconsistent with the trend of the higher energy pp cross sections unless 

there is some significant leading Regge contribution with negative imaginary part 

(such an object would be inconsistent with present theoretical ideas of duality, etc .) . 

The low energy cutoff used in making the above fits was plab of 2.75 GeV. 

In Table 2 we show the effect of varying the low energy cutoff in the data fitting. 

At first sight it appears that the higher cutoffs give better X2 per degree of free- 

dom, leading to higher power behaviors for our additional nonleading object. 

However, this is not really the case because these ‘better fits It do not extrapo- 

late at all well into the lower plab region. Our intent is to show that there is 

nonleading behavior in CT, and therefore we are looking for a term that is 

less significant at high energies due to its l/v d behavior. Therefore, in order 

to allow such a term to manifest itself, one should look for as low a cutoff as 

possible while avoiding threshold and/or resonance regions. Table 2 shows 

that one can reach a cutoff as low as 2.75 GeV/c before the solutions become 
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unstable due to the nearby presence of the threshold region. (Certainly there is 

no evidence of a need for a l/v type behavior, so that if nonleading terms are 

generated by multi-Regge iteration, the large lnv/v O approximation must be 

largely valid,) 

Therefore, at the very least, we see that there is definitely something in 

=T over and above the naive ?a + b/Jv leading behavior, and that it very probably 

has a l/v 3’2 dependence, 

To exhibit the quality of the parameterization (2.2) of CT we plot in Fig. 4 

the solution with the minimum X2 with 

a=38.35 b=41.3 c=121.1 

where v is in GeV and ET is in mb. The curve in Fig. 4 is seen to be extremely 

faithful to the data points. Further Consideration of the effects of nonleading con- 

tributions such as we have investigated here in pp and pp will be djscussed else? 

where z 

Thus it seems that a nonleading term of the form l/v 
d 

, with d in the region, 

of 1.5, could be of importance in .a process such as m scattering to which it should 

also couple. Such a term should also appear in crtot(K+p) + atot(K-p) and also 

otot(“+P) + otot (n-p). Unfortunately, resonance effects at low energies in these 

processes are more important than in pp and pp so that nonleading contributions 

such as we discussed become obscured. 



III. NONLEADING BEHAVIOR IN ELECTROPRODUCTION 

In this section we wish to consider the effect of an additional nonleading term 

of the form Cp/w d in the asymptotic behavior of F;(w) for w > some w*. In 

Section I we pointed out that F2 (w) for w > 12 cannot be simply A+ B/&J if one _ 

is to obtain a nonnegative fixed pole residue in virtual Compton scattering. The 

addition of such a nonleading term makes it quite easy to obtain a positive fixed 

pole residue and the problem becomes one of applying sensible constraints to 

restrict its contribution. With this in mind we make use of the inelastic e-p scat- 

tering data and the inelastic e-p and e-n difference data, for 1 i w 5 w* (w* we 

take to be 12 in this .paper13),by demanding that any curve representing the asymp- 

totic behavior of the scaling function F2(m) shall be consistent with the known data 

at u=u* and above. Hence we require 

F;(u) = A + 3B/& + Cp/tid 

and 

F;(w) - F;(w) = B/& + (Cp-Cn)/wd 

(3.1) 

(3.2) 

for o L a*, where A and B are the coupling strengths of the Pomeron and the f-A2 

trajectory to the virtual photon. We have assumed pure F coupling for the f-A2 

trajectory in writing (3.1) and (3.2)) this assumption being supported by the on- 

shell data 20 and favored by exchange degeneracy and universality arguments. 

We write Cn=xCp, where x is related to the effective F value of the nonleading term 

by 

F = (x-4)/10(x-l) (34 

and so for F=l we have x=2/3 (F is the antisymmetric octet coupling coefficient 

defined so that F+D=l) . 

- 11 - 
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If we believed our l/wd object to be a triple Regge cut then d would be 

approximately 3/2. Support for such an intercept was found in Section II. 21 The 

effective x of the exchanged object would then be (Z/g3 = 8/27 which corresponds 

to F - 0.5, in the absence of coupled channels. Coupled channels might tend to 

increase the value of x. 

In addition to the constraints (3.1) and (3.2) we invoke two sum rules. The 

first relates to the fixed pole (Eq. (1.9)) . With the asymptotic form (3.1) we 

obtain from (1.9) 22 

1 = yw*) - ‘Aw* - 6 B&o* I- cp/(d-1) CLI*(~-~) (3*4) 

J- 
cd* 

$(u*) = F;(w) da 

1 

The second sum rule assumes the validity of the quark model result 13 

w* 

4 ( 
$ F;(u) - E;(w)) = l/3 

Using (3.2) for w > w* and substituting into (3.5) yields 

(3.5) 

-l/2 $,(W*) + 2B(w*) + Cp(l-x)/dw*d = l/3 (3.6) 

where Hpn(” ) = * --l”*g (F:(U) -F;(W)) can be computed from the known data5 - 

see Fig. 5. Hereafter, when referring to Eqs. (3.1) and (3.2) we assume them 

to be written for w=w*. We take IJw*) =3.32 and Fp(w*) = 0.35 for w*=12. 

Finally we write the equation for the residue, Rn(q2), of the fixed pole in * 

the electron-neutron inelastic scaling function, F;(u). 

R,o 
_I 

Rn = lim w - = Ip(w*) - Ipn(w*) - Aw* - 4B(w*) + cp/(d- 1) 0 *(d-l) 

q24xa q 
2 

(3.7) 
rl 
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where Ipn(a*) j”* = 
1 

(F;(u) - F;(w)) dw. If one believes that the charge of the 

particle determines the fixed pole residue then one should find R,=O. There are 

however other “reasonable I1 possibilities. 14 Hence we also explore the possi- 

bility of the values Rn=2/3 and Rn=l. 

Unfortunately there is considerable leeway in the proton-neutron difference 

experimental data. It is obvious from (3.6) and (3.2) (evaluated at w*) that’ 

Fr(w*) and Hpn(w*) determine the quantities B and Cp(l-x) . However the experi- 

mental error bars for Fr are quite large. It is easily possible to imagine that 

H 12 
pn 

might be as small as 0.13 or as large as 0.23 with similar sorts of vari- 

ation allowed for I 
Pn 

and Fr . We have thus investigated the solutions as a func- 

tion of $,(w*), Ipn(w*) and Fr(w*) within-the possible extremes of variation. 

Once Cp(l-x) and B have been determined we may use Eqs. (3.1) and (3.4) to 

determine Cp (and hence the effective x) and A. 

In Tables 3 through 6,we list the values of A, B and Cp which result from a 

sampling of values of H 
pn’ 

FjlnandI pn (all assumed evaluated for 0*=12) all 

within the extremes of the neutron-proton data. Each table corresponds to a 

different choice for the neutron and proton pole residue. In Appendix A we dis- 

cuss the sensitivity of the results obtained to the value of d as well as the trends 

exhibited in the tables, and explain in more detail the criteria for choosing the) 

preferred solutions which we shall shortly present. Basic to the choice of 

solutions is the observation that H 
pn’ 

FrandI are not really independent 
Pn 

quantities e. g . , if one draws reasonable curves through the error bars one 

obtains the following typical correlations corresponding to the.two curves in 

Fig. 5 

--Hpn 

0.17 

0.23 

I Fpn 
pn 2- 

0.85 0.06 

1.11 0.08 
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We note that in Tables 3 through 6 there are no solutions with Hpn(a*) < 0.18 

for a proton residue Rp=l; and Rp=O allow us only to reach Hpn(m*)=O. 17. Thus 

if one believes in our version of the proton fixed pole and in the constraints we 

impose then the neutron fixed pole is ‘reasonable I1 in size only so long as FF(w) 

lies above the central data point values shown in Fig. 5. 

The necessity for stretching the p-n data arises from the presence of the 

quark charge sum rule as a constraint. To illustrate the effect of altering the 

quark charge sum rule from a value of l/3 to, say, 0.28 (which is not to say that 

any theory predicts 0.28, this number was chosen merely for purposes of illus- 

tration) we exhibit in Figs. 6 and 7 the quantities A, B, Cp and Rn as a function 

of Hpn (Fr and Ipn are assumed to vary linearly with H 
pn 

- see figure captions). 

It will be noticed that a solution with Rn=O, for example, is obtainable with A 

and B ) 0 for either case but that the magnitude of H 
pn 

required is far more 

reasonable in the latter case. Thus, if future experiments show that p-n dif- 

ference data is smaller than we have allowed for here it will still be possible to 

retain polynomial. residues for both neutron and proton fixed poles so long as one 

is willing to modify the l/3 in the quark charge sum rule. (See Appendix B for 

further discussion of the difficulty in satisfying this sum rule in general.) Of 

course, the precise asymptotic form for F;(U) would be changed. 

It should also be noted from the tables that for F (effective) to be < 1 we 

must believe the value of Rn to be 0 and that Rp=l. Thus the only situation in 

which the solution F values correspond to those likely for a triple Regge cut 

even with a reasonable number of coupled channels mixed in would seem to be 

the case Rn=O, Rp=l. Nonetheless we will continue to allow the other possi- 

. 

bilities . 
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For each of the four cases we pick the preferred or * solution with the lowest 

H 
Pn’ 

These are given below: 

1. 
R~zl’ Rn’o * 

F;(w) = 0.12+ 0.462 -l/2 w +4.02 u-3/2, Hpn=0.21 

2. -l/2 Rp=l, Rn=2/3. F;(U) = 0.06+0.618 w + 4.64 &I-~‘~, Hpn=O. 19 

3. 
RP=l, Rn=l * 

F;(W) = 0.05-tO.645 -l/2 w + 4.75 u-3/2) Hpn=O. 195 

4. 
R~‘“’ Rn’” ’ 

-l/2 F;(W) = 0.07+0.663 o + 3.67 CO-~/~, Hpn=O. 19 

There is some evidence that F;(w) would like to be as high as .25 or so in 

the vicinity of w=25. The values of F:(25) for the four cases are given below 

where the errors are estimated by taking into account the possibility of using 

other preferred solutions. 

1. F;(25) = .245 f ,015 

2. F;(25) = .221 i .015 

3. F;(25) = ,217 * .015 

4. F;(25) = .232 * .015 

It is clear that situation 1 is to be preferred on this basis. Certainly this aspect 

of the model will be tested in the not too distant future. If the data should refuse 

to fall, then the model as presented here is wrong. It would then have to be true 

that (assuming a positive residue for the proton fixed pole still) Regge behavior 

has not yet begun as low as w of 12 (e.g. , an extensive “quasi elastic peak” may 

be present or equivalently the behavior of F2(u) down to o of 12 may not be 

representable by a simple three power fit, i. e. , additional daughters or cuts 

would need inclusion) . We plot solution (1) on top of the Fg data in Fig. 1. 
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IV. CONCLUSIONS AND DISCUSSION 

We have shown that inclusion of an effective trajectory in the description of 

the off shell deep inelastic proton scaling function F;(w) makes it possible for 

the fixed pole in v T2 to have a polynomial residue with the on shell magnitude 

found in Refs. (3). Evidence for such an effective trajectory in the crossing 

even pp+pp scattering amplitude was presented. It was clear, however, that 

other fixed pole residues were also possible. Interestingly enough we discovered 

that it was possible to have a polynomial residue for the proton fixed pole and 

simultaneously satisfy the proton-neutron difference quark charge sum rule and 

in addition to have a polynomial residue for the fixed pole in the vT2 for the 

neutron (if for instance at q2=0 the pole is not present, as might be indicated 

by the Thomson limit), As was also discussed, relaxation of the quark charge 

sum rule makes it easier, in the sense that the Fy data need not be stretched 

to their limits, to satisfy the other constraints if the l/3 of Eq. (3.5) is reduced. 

Conversely it is harder or nearly impossible to satisfy the other constraints if 

the quark charge sum rule is increased to 1. For the case with all constraints 

present and Rn=O, Rp=l we obtained a solution for the universal F;(m) curve of 

g(w) = 0.12+0.462&1’2+4.02~-3’2 (4-l) 

for W > W*, which at an w of 25 has fallen to about 0.25, For the solution to be 

correct the proton-neutron difference Fr(w) must actually be towards the outer 

edges of the error bars of the present data so long as we demand that the quark 

charge sum rule (= l/3) be satisfied. Thus higher w data or more accurate 

proton-neutron data will be able to test the consistency of the theoretical quark 

charge sum rule value of l/3 with our other hypotheses. 
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It is also interesting to note the implications of (4.1) for on shell Compton 

scattering. The current best fit to the world data with u > 2 GeV with a form 

a+bv-1’2 gives a - 100 pb, b - 62 pb (GeV)1’2 (clearly these values would not be 

greatly altered if a small cv 
-3/2 term were allowed). It is clear that a very 

small mass must enter the problem, in some fashion, in going from the q2=0 

limit to the large q2 region, since the relative ratios of the Pomeron to the 

coefficient of the leading Regge term is considerably altered in the process. We 

use in what follows a specific ansatz for determining this mass. The Regge 

scaling assumption says a + AN; b-3BN(q2/2M) 112 ; c-CpNls2/2M) 
312 for large 

q2. If in fact the q2 ---) 0 limits were properly given by the following form for 

VW 2 

VW = 2 (4-9 

with ?? = 2M v /(q2+J?) , then we will clearly also obtain the correct q2 --*a0 limit 

by the above expression (4.2). This form allows us to obtain an expression for 

the high energy behavior of o-(v) at q2=0 using the facts that 

CT(v) = 4a20! wl/u at q2=0 (4.3) 

with 

WI = lim W2v2/q2 
2 

q +o 

(4.4) 

which follows from the vanishing of the longitudinal cross section in this limit. 

The known values for A, B and a, b give 

0.12 A l/2 
- =- 
0.462 3B and & 0=100 

CAV 62 (4.5) 

and hence &d = 0.22 GeV. Further c(q2=O) = CpN(&[2/2M)3’2 = 14. Since 

N=lOO/O. 12; and, finally, since N=4x20/m2 we have that m2=0. 134 (GeV)2. 
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The implication of the above is that o=lOO in the scaling data corresponds 

to v =100&i2/2M = 2.59 in GeV. Therefore we predict that the scaling curve at 

o=lOO will be shaped like the on shell data curve at i =2.59, i. e. , the same 

relative contributions from the three terms will be present at these values of 

w and II . Thus at v =l. 68 GeV the contribution from the effective trajectory to 

the on shell cross section might be as much as 5 pb. This would require only a 

very small adjustment in the parameters a and b for the Damashek-Gilman 

analysis. With a=lOO, b=62 and the above value of c, we find rYp (v =l. 68) = 154 

microbarns. They require the Regge fit attach onto the low energy data at 

v =l. 68 with a value of cr 
YP 

(I. 68) = 152 microbarns. Such a minor adjustment 

results in no change in their results as we have explicitly verified. It might be 

argued that the small value of m which we obtain, which implies that scaling is 

good to about 90% above q2= I (GeV)2, was to some extent assumed, in that we 

assumed F2(u) had already scaled at a=12 and since the data points we used 

there came from relatively small q2 measurements. Nonethelessif the data as 

we assumed it holds up for large q2, then an early onset of scaling is strongly 

indicated by the above considerations which suggested that the onset is charac- 

terized by a very small mass. 

One could go even further, however, and assume that our ansatz is correct 

not only as a means for going from the q2=0 region to the q2 + 00 region but 

also as an interpolating formula. One should then find that ov W2 is a universal 

function of the variable z, (and that scaling would be best seen by plotting’ everything 

as a function of this variable), were it not for the fact that m#.A!. It may, how- 

ever, be that this inequality is only a result of the inaccuracies of this work. 

In fact, if we look at solutions obtained by modifying the quark charge sum 

rule, in particular the one obtained in the example given in Section III (R,=O) , 
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we find that it is possible to obtain a solution for which m=&i=O. 44 GeV. This 

solution is as follows: 

A=.17 B=.113 
cP=3*42 

(4.8) 

which was obtained with the l/3 in the quark charge sum rule replaced by 0.28. 

This solution gives an Fi(25)=. 264, which is perhaps more likely to be consistent 

with the future data at that point. We feel that this is a more likely solution 

than the previous one which yielded such a very small value for &. As we have 

seen requiring the above sort of value in the quark charge sum rule is far more 

consistent with the present p-n difference data (see also Appendix B) . 

The variable Z was, of course, found from considerations involving the large 

v region. In going to small v we might instead consider a variable 

fi = (2Mv + M2)/(q2 +Jp) the new analogue of the older w I of Bloom and Gilman. 23 
A 

Such a suggestion has independently been made by Rittenberg and Rubinstein 24 on 

the basis of very different considerations. They also come to the conclusion that 

the mass J,! is quite small. 

An indication that the masses m anddimust be quite small is seen in the 

large w small q2 data of Ref. 5. At q2 = m2 our ansatz would imply that the value 

of v W2 should have risen to 50% of its q2 ---)oo value. This is in fact supported by 

the data of Ref. 5 (see Fig. 17 of that reference) if one assumes the limiting value 

to be of the order of .25 to .3 for the two higher w bins. A substantially larger 

value of m2, combined with the known values of Y W2 at smaller q2, would re- 

quire a final asymptotic value considerably higher than the .25 to .3 range, or 

else a more complicated interpolating ansatz. We remind the reader that the 

small value of m2 in our analysis is directly a result of the relatively small 

contribution of the Pomeron to uW2 in the scaling region. 
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In the above discussion we have implicitly assumed that the data of Ref. 5 

is indeed truly representative of the q2+oo (scaling) limit. Should it turn out 

that this is not the case, see, e.g., Appendix C, much of what we have said in 

this section would need to be reconsidered. However, it remains true in general 

that fixed poles with polynomial residues are possible if, and only if, the w 

dependence of v W2 for o L 12 requires contributions additional to the usual 

leading Regge behavior. 
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APPENDIX A 

In Tables 3 to 6 we listed the values of A, B, Cp which result from a 

sampling of values of I H 
Pn’ Pn 

and Fr all assumed evaluated for w*=12 within 

the extremes of the neutron-proton difference data, for the various neutron pole’ 

residues and proton pole residues that we consider, Changing the value of d has 

little effect on these results unless d approaches 1 in which case, as referred 

to previously, equivalent solutions are obtained for slightly smaller values of 

H I and Fr, i.e., 
w’ pn 

for this smaller value of d it is not necessary to push 

the Fr data to the limits of the error bars. The allowed range of A and hence 

B and Cp etc., is not. greatly altered by changing d. It is apparent that there is 

no lack of solutions provided one is liberal with the p-n difference data. 

We discuss here in detail the trends exhibited in the Tables and the preferred 

choices for correlated values of H Fpn and pn’ 2 I 
Pn’ 

To do so we first rearrange 

the equations of Section III into the following more convenient format: 

-2B(w*) -1’2)/(d-1) - (%-Ip+ 6B(w*) +1/2 /(J* > 1 
-l/2 = + - H,(w*) - Fy(w*)/d 

- 2B(~*)-l’~ ( *+m + Rp-Ip+6B(w ) ) 1 /w* 

cp(l-X) x (2-i) (W*)-d = 2F34 -I- Hpn(u*) - f 

where, again, 

Fr(o*) = F;(w*) - F;(w*) s F$jn 

f 

w* Cd* 
Ipnw*) = 

1 
do Fy(w) and HpnP*) = s 1 

@ Fy(w) 

- 22 + 

(A. 1) 

(A. 2) 

(A- 3) 

(A.4) 



and Rp is the magnitude of the proton’s fixed pole. Equation (3.7) for the neutron 

fixed pole residue Rn can be rearranged to give Ipn(w*) as a function of A, B, 

Cp and x for a given value of Rn. 

We first note that there are no solutions for Hpn(W*) I .18 when R =l. That P 
is, if one believes in our version of the proton fixed pole, then the neutron fixed 

pole is only reasonable in size so long as the Fy(w) proton neutron difference 

lies above the central data point values shown in Fig. 5. We note that relaxing 

the constraint that the proton pole be +l, e. g. , allowing it to be zero, allows us 

to obtain solutions:with Hpn(w*) as low as . 17. If the data should eventually 

force one to accept a maximum value for Hpn(o*) which is less than .17 then one 

would be forced to accept a negative pole residue for the proton, or alternatively, 

if one’s prejudices demanded a non-negative proton pole, then one could allow 

additional structure in the higher w data or further, relax certain of our con- 

straints - i. e. , the quark sum rule. 

Second, we note that for a fixed value of Ipn(u*) we can increase Hpn(w*) 

only if Fr(w*) simultaneously falls. Since I 
pn 

is only bounded, there is in 

actuality some leeway but the general trend remains valid. Thus, the bounded- 

ness of I 
Pn 

allows us to say that reasonable solutions can only fall in the ranges 

tabulated - high H 
pn 

is inconsistent with too low a value of Fr outside of the 

regions given, and for given values of H 
pn 

and Fr, Ipn can certainly only lie 

in the ranges which we give. Pn Too high a value of F2 (i, e. , > 0.1) we have 

also excluded as being manifestly inconsistent with the data. In actual fact, 

most of the solutions which we tabulate are not all that reasonable and only cer- 

tain combinations correspond to acceptably shaped p-n difference curves for low 

w . These particular solutions have been marked with a * in the Tables. Of 

course, there is a continuum of unlisted solutions with values of H 
Pn’ 

Fr, and 
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Ipn in the immediate vicinities of the particular ones which we have recorded in 

.our Tables. 

It is obvious that a given value of B can be obtained for a variety of combina- 

tions of H 
Pn 

and Fr (Eq. (A.2))) so long as Hpn and Fy are inversely correlated. 

Once B has been determined, A and Cp follow for given values of the proton pole 

and proton data (Eqs. (A. 1) and (A. 3)); Demanding a higher value for A clearly 

requires a lower value of B (Eq. (A. 1)) and a lower value of B only results if the 

combination of Hpn+ Fr/d increases (Eq. (A. 2)). This explains the general 

trends for increasing H 
Pn 

with increasing A.. (One must of course keep in mind 

that We restrict Fr to be < 0.1.) The overlap results from allowing Fy to vary 

within its allowed range. 

For a given proton fixed pole once A, B, Cp and x have all been determined, 

it only becomes a question of whether I pn (which is the only remaining variable 

determining Rn) also lies within an acceptable range. This is the final limitation 

on the range of solutions accepted by us and given in the Tables. 

,Graphically the residue of the fixed pole in either F;(w) or F;(U) is deter- 

mined by the quantity X+Y-Z in Fig. 8 where the data is to be taken either as 

Fi or Fi and the dashed curve represents the sum A+ 2B/Jo or A+ 3B/&, 

respectively. The proton data, however, is fixed, i. e. , Ip is fixed. At most 
* 

we can imagine that I 
w 

can alter by about 30 percent, which would represent a 

change in the neutron In (= [$-I,,]) of about 10%. This immediately tells US 

that requiring a significant increase in Rn wiil necessitate a decrease in the 

value of the area under A+2B/Jw while retaining the same area under A+3B/&, 

which is equivalent to keeping the proton pole fixed. Since A and B are both > 0, 
. 

the only way to do this is to decrease A; recall that A and B are correlated in 

such a way that A decreasing causes B to increase (Eq. (A. 1)). Where there is an 
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overlap in the A, B, Cp solutions between two different Rn values, it occurs as 

a result of the adjustments possible in the p-n difference data. If the same 

values of A, B, Cp are consistent with two values of Rn, it is seen from Tables 

3, 4, and 5 that the H corresponding to this solution is smaller, the smaller 

the value of Rn, and hzce Fpn 2 is larger. This is understood again by a graphi- 

cal argument. Again, fixing Ipn, for a given value of A, B, Cp the difference 

X-Z in Fig. 8 under the neutron curve is fixed (recall that Ip is always fixed and 

that In = $-Ipn) . Thus the only difference in neutron fixed pole is that resulting 

from the area Y, which is larger, the higher the value Fi(w*) is. For a fixed 

proton curve a lower Fr is needed to give a higher Fi; thus the higher the Rn 

value required, the lower Ff wants to be. The Ipn fluctuation for a given B, 

of about 30%, is not capable alone of changing this correlation. 

We wish to reiterate that we have been assuming in the preceding discussion 

that the proton data for w < w * = 12 is well determined, i.e. , that Ip(w*) and 

F;(w *) are as we have given them. Decreasing $(u*) while keeping F$w*) 

fixed will cause a given solution (i.e., Hpn, Fr and Ipn fixed) to change as 

follows: F (effective) and Cp increase while A decreases (A and Cp are inversely 

correlated since B is fixed by the p-n difference (Eq. (A. 2)) and F;(w*) remains 

fixed (Eq. (3.1)). The fact that Cp must increase can be seen from Eq. (A. 3). 
4 

Consequently A will decrease. Conversely it follows that if g(~*) were to in- 

crease, then so will the value of A (again, holding the p-n solution unaltered). 

Similarly from (A. 1) and (A. 3) it is clear that if Ip is held fixed while F: in- 

creases then A and C, will increase, so the w > 12 curve will be somewhat 

higher than previously, in particular the value Ft(25) will be slightly greater I 

than .25. 
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APPENDIX B 

We make a few comments here on the role of the quark charge sum rule in 

a Regge type analysis of the p-n difference data. In the main body of the paper 

we discovered that for a three pole Regge model of the high w points, it is not 

possible to satisfy this sum rule unless the p-n difference data is larger than it 

presently appears to be. These same remarks apply in the case of a %onven- 

tional It two pole model (Eqs . (3.1) and (3.2) with Cp=O) . In this event the sum 

rule becomes 

J 
cd* 

l/3 = dw/w Fpn(W) + 2Fpn(wx) 
1 2 2 03.1) 

and it is clear that this can only be satisfied if the data are pushed to their maxi- 

mum values. Note that here, as before, increasing w* doesn’t really help very 

much unless Fr has some nonsmooth fall-off, e.g. , a rise and then a smooth 

asymptotic ‘Regge ” fall. 

These problems are totally independent of the considerations involving the 

residues of the fixed poles. Thus, if in fact the eventual p-n data restricts us 

to small H 
Pn’ 

then it is clear that the quark charge sum rule must Fall”, or 

alternatively, there must be some unusual structure in the higher w regions of 

the p-n difference data. 
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APPENDIX C 

We recall now the second possibility mentioned in Section I, namely that 

the scaling function is not the full F;(w) but rather a subtracted F;(w) (which 

we called I$(,)) as suggested by suri and Yennie. 15 

In Fig. 1 we exhibited the observed IJ W2 data and in Fig. 2 we showed the 

resulting “data” for F2- = (V W2 -vector dominance contribution). suri and Yennie 

propose that I?- is the object which might already be scaling and that for 

q2 > some q?, the vector dominance contribution is negligible, but that this 

region has not yet been reached. We can then write Eq. (1.3) with F2 replaced 

by $for q2 > tin, and use the _F2- of Fig. 2 in the sum rule under the assump- 

tion that _F2_ is already scaling. 

In Tables ‘7 and 8 we give the corresponding Rp=l and R,=O, Rp=O and R,=O 

solution possibilities as they would occur in our scheme, (we took $=O. 21 and 

Ip=2. 72 at w*=12). Quite clearly if their model is correct we would predict that 

most if not all of the Pomeron has been subtracted by their vector dominance 

subtraction. The true scaling function would contain very little constant com- 

ponent. Unfortunately it is still not possible to decide on any basis whether the 

vector dominance subtraction has removed the fixed pole or not. Both Rp=l and 

Rp=O seem equally viable possibilities within our framework. Changing the 

quark sum rule would (as before) result in some modification of these results. 

In particular the 0.28 value in this sum rule would allow some additional 

Pomeranchuk contribution to remain in I$. 
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TABLE 2: Variation of the minimum X2 and power for the additional object with 

the i0w energy cutoffs. The “increasing goodness I7 of the X2 with higher cutoffs 

is misleading since the resulting fits do not extrapolate well in the lower plab 

region. The table shows a definite jump in X2 at plab=2. 7 indicative of additional 

structure (e.g., resonant or threshold effects). 

plab - Cutoff 

2.6 

2.65 

2.7 

2.75 

2.8 

2.85 

2.95 

3.15 

Degrees of Freedom Min X2 datMinX2 

28 54 1.35 

27 49 1.4 

26 47 1.4 

25 28.3 1.5 

24 ‘26 1.5 

23' 23 1.6 

21 16.2 1.7 

17 10.3 1.9 

a=38.35 . 



TABLE 3: Rp= 1, Rn= 0 (neutron residue proportional to charge) 

A B 

.179 
cP 

4.32 

H 
Pn 

,194 

. 11 

.12 

.13 

I 
pn F 

. 0.9 1.08 .75 

.1975 1.21 .824 

.l .171 4.225 .1975 .97 ,705 

.2005 1.09 .77 

.204 1.2 .853 

.162 4.115 .201 .844 .658 

.204 .976 .72 

.2075 1.09 .79 

.211 1.21 .88 

.154 4.02 *. 211 .97 .735 

*. 214 1.096 .816 

.2175 1.21 .913 

.1455 3.915 *. 2175 .97 .758 

*. 221 1.09 .84 

.224 1.22 .956 

.14 .1365 3.81 t. 224 .976 .779 

t. 2275 1.09 .875 

.231 1.204 .99 

.15 ,128 3.7 .231 .964 .8 

.234 1.21 1.9 

H FpnandI 
pn 2 

refer to the values at w = 12 of H 
w 

(w*) etc. The table gives 

the values of A, B, C F, I H p ’ pn’ pn’ 
and Fr ‘thich are solutions to the 

constraint equations of Section RI with the indicated choices for Rp and Rn. 

Values of Hpn and $2n with their corresponding A, B, Cp , Ipn and F, satisfy- 

ing the constraint equations, are not given if they fall outside of reasonable 

limits on the p-n data (* indicates a “preferred” solution, t indicates a possi- 

ble but unlikely combination of H Fpn and I 
pn 2 PJ* 

e? 
.l 

.095 

.l 

.095 

.09 

.l 

.095 

.09 

.085 

.09 

.085 

.08 

.085 

.08 

.075 

.08 

.075 

.07 

.075 

.07 



TABLE4: R =l,Rn 
P 

= 2/3 (quark model possibility) 

A 

.04 

.05 

.06 

.07 

.08 

.09 

l l 

. 11 

.12 

B C 
P 

H Fpn 
P* 2 I F 

pn 

.2235 4.85 .1775 .l 1.03 1.085 

.181 .095 1.14 1.24 

.2145 4.74 .181 .l .9 1. 

.184 .095 1.02 1.13 

.187 .09 1.15 1.33 

.206 4.64 .1875 .095 ,904 1.04 

*.191 .09 1.02 1.19 

.194 .085 1.15 1.41 

.197 4.54 p.194 .09 .909 1.09 

*.1975 .085 1.023 1.27 

.201 .08 1.14 1.51 

-1885 4.435 7.201 ,085 .9 1.145 

*.204 .08 1.03 1.35 

.2075 .075 1.14 1.66 

.18 4.33 t.2075 .08 .91 1.21 

*.211 .075 1.02 1.45 

.214 l 07 1.14 1.81 

.171 4.22 ,214 .075 .909 1.29 

*.2175 .O? 1.023 1.58 

.221 .065 1.14 2.05 

.162 4.12 .221 .07 .9 1.39 

t.224 .065 1.02 1.73 

.2275 .06 1.14 2.37 

,154 4.02 .2275 .065 .904 1.51 

.231 .06 1.02 1.94 

Format as in Table 3. 



TABLE 5: Rp=l, R,=l (isoscalar fixed pole) 

A 

.02 

.03 

.04 

.05 

.06 

.07 

.- 8 

.09 

.lO 

B c 
P 

H 
Pn 

FPn 2 I 
Pn F 

.24 5.05 .174 .095 1.04 1.52 

.1775 .09 1.18 1.9 

.231 4.95 t.1775 .095 .94 1.38 

t.181 .09 1.05 1.65 

.184 .085 1.17 2.06 

.222 4.85 .181 .095 .81 1.245 

t.184 .09 .93 1.46 

t.1875 .085 1.06 1.81 

.191 .08 1.17 2.35 

.215 4.75 .1875 .09 .815 1.32 

.191 .085 .93 1.58 

*.194 .08 1.05 2.00 

.1975 .075 1.175 2.72 

.206 4.64 .194 .085 -815 1.4 

*.1975 .08 .935 1.74 

*.201 .075 1.05 2.25 

.204 .07 1.17 3.25 

.197 4.535 t.204 .075 .93 1.91 

*.2075 .07 1.055 2.61 

.1888 4.435 .2075 .075 ,.815 1.66 

t.211 .07 .93 2.15 

t.214 .065 1.05 3.1 

.18 4.33 .214 .07 .813 1.82 

t.2175 ,065 .935 2.5 

,221 .06 1.05 4. 0 

.171 4.225 .221 .065 ,815 2.06 

,224 .06 .93 3.0 

Format as in Table 3. 



TABLE 6: Rp=O, Rn=O(no fixed poles) 

H 
Pb 

FPn 2 I 
I 
m I 

F A 

.05 

B 

,239 

C 
P 

3.88 .1715 

.175 

.178 

I 1 
~- 

.l .91 1. 

.095 1.025 1.17 

.09 1.14 1.36 

.095 .9 1.05 

.09 1.03 1.26 

.085 1.15 1.75 

.06 .23 3.71 .178 

t.1815 

.185 

.07 ,221 3.67 .09’ 

,085 

.08 

t.185 

*.188 

.1915 

.1915 

*.195 

.198 

9.198 

*.201 

.205 

t.205 

*.208 

.212 

.08 -213 3.57 

.09 

.lO 

,085 .91 1.19 

.08 1.03 1.48 

.075 1.15 2.0 

* 204 

.195 

3.46 

3.36, 

,187 3.26 

.178 

l 170 

3.15 

3.05 

.08 .91 1.28 

.075 1.03 1.66 

.07 1.15 2.33 

.075 .075 .91 .91 1.4 1.4 

.07 .07 1.08 1.08 1.88 1.88 

.065 .065 1.15 1.15 2.93 2.93 

.07 .07 .91 .91 1.56 1.56 

.065 .065 1.03 1.03 2.23 2.23 

.06 .06 1.15 1.15 4.0 4.0 

.065 .065 .91 .91 1.77 1.77 

.212 

t.215 

.218 

. 11 

.12 ,218 

t.22 

.13 .221 

.225 
L 

I pormat as in Table 3. 



TABLE7: Rp=l,Rn=O 

A B C H Fpn F 
P Pn 2 I 

Pn 

.Ol .171 2.98 .201 .095 1.09 .57 

.204 .09 1.21 .63 

0.00 .162 2.87 ,204 .095 .97 .53 

t.207 .09 1.1 .58 

.211 .085 1.21 .64 

0.01 .154 2.77 .207 .095 .85 .49 

t.211 .09 .97 .54 

*.214 .085 1.09 .59 

.217 .08 1.22 .665 

0.02 .045 2.67 *.217 ,085 .98 .55 

*.221 .08 1.09 .60 

.224 .075 1.2 .68 

,003 .136 2.56 f.224 .08 .97 l 55 

t.227 ,075 1.1 .62 

l 004 .128 2.46 .227 .08 .86 .51 

.231 ,075 .97 .56 

The input assumes the scaling function to be that obtained by suri and Yennie 

after their vector dominance subtraction. Format as in Table 3. 



TABLE8: Rp=O,Rn=O 

A B C 
P 

H 
Pn 

Fpn 2 I 
P* 

F 

-.Ol ,195 2.11 t.205 .075 .91 .92 

*.208 .07 1.02 1.2 

0.00 .187 2.01 .208 .075 .79 .79 

f.211 .07 .Bl 1.0 

*.214 .of35 1.03 1.4 

-i-o.01 . 178 1.90 .215 .07 .79 .84 

,218 .065 .Bl 1.1 

SQlutions are for the suri-Yennie subtraction case (see also Table ‘7). Format 

as in Table 3. 



FIGURE CAPTION9 

1. Data for v W2 plotted against w (= 2Mv /q2) assuming R (= uS/oT) = 0. The 

solid curve for w > 12 is the curve 0.12 + 0.462 w -l/2 + 4.02 w-3/2. The 

dashed curve below w of 12 is an arbitrary hand-drawn curve through the 

data which encloses an area (1~ of about 3.38 between o of 1 and 12. 

2. The nondiffractive contribution to v W2 in the suri-Yennie model (Ref. 15). 

The variable x=1/w. The solid curve is the solution of Table 8 with A=O, 

3B=. 5 6,. Cp’2.01. The dashed curve is hand-drawn to the data below 

w=12. 

3. Plot of X2 versus d for fits to the pp+ pp total- cross section data (Fig. 4) 

with form 76.7 -I- bv 42 + cv-d for plab 2 2.75 GeV/c. 

4. ‘T =?ot (pp) + %,(pp) from 2.75 to 50 GeV/c incident laboratory mo- 

mentum. The,data are compiled from Refs. 16. The solid curve is a best 

fit to the data given by 76.7 + 41.3 -l/2 + 121.2 v -1.52 v . The insert is 

an enlarged version of the region 2.75 5 plab 5. 3.5 GeV/c. (c T is in 

mb, v in GeV and other quantities are in appropriate units) . 

5. Data for (V W2 proton _ vVneutro 
2 7 plotted against W. The two hand-drawn 

curves are included in order to indicate the relationships between the 

magnitudes of H pn’ Ipn’ FF and the data. The curve labelled (1) has 

Ipn=l. 11, Hpn=.23, Fy=. 08. Curve (2) has I =.85, pn Hpn=. 17, Fr=. 06. 

For various values of Hpn (the area under the proton-neutron difference 

curve up to w* =12 - see Fig. 5) we show the solutions for A, B and C 
P’ 

defined in (3.1)) which will yield a fixed pole in the proton data with 

residue +l, and which satisfy the p-n difference constraints. The mag- 

nitude of the fixed pole in the neutron data, for a given H 
w ’ 

is also shown 

6. 

(Rn) . The demand that both A and B are nonnegative restricts solutions I 



to lie between the two cross-hatched vertical lines. Thus H 
Pn 

must be 

at least 0.18 if the quark charge sum rule has a value of l/3. Fy and 

Ipn were taken to vary linearly from .06 and .94 respectively as H 
m 

varies from .18. 

7. As in Fig. 6, but showing the effect of changing the value of the quark 

charge sum rule, Eq. (3.5), from l/3 to .28. Note that the A 2 0, 

B 2 0 region has shifted to lower values of H 
pn 

as compared to Fig. 6. 

8. The solid curve represents the scaling function F2(o). The dashed curve 

represents the low w extrapolation of the asymptotic ‘Regge” form 

A+ ; 0 
Bo -!‘2 (3 for Fp 2, 2 for Fa . The magnitude of the fixed pole is 

given by the combination of areas X+Y-Z. 
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