
SLAG-PUB-871 
March 1971 

SLAC CONTROL ROOM CONSOLIDATION - SOFTWARE ASPECTS* 

S. Howry, R. Johnson, J. Piccioni, and V. Waithman 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

SLAC is consolidating its two control rooms by utilizing 
existing control computers in each, connected by a commun- 
ications link. Except for video signals, all of the controls 
and data of one (Central Control Room) will be sent to the 
operators in the other (beam switchyard control room) using 
this system. The paper is concerned with the software as- 
pects of this project. The major program components ape 
described. 

Introduction 

By late summer of this year, SLAC plans to have con- 
solidated its two existing control rooms. The SDS-925 com- 
puter, located m what will become the Main Control Center, 
is mainly responsible for the operator/computer interaction 
and the PDP-9, remotely controlled over a data link, drives 
most of the accelerator interfaces from the old Central Con- 
trol Room. A paper1 in these proceedings discusses the 
main hardware system components and another2 goes into 
detail on the touch panel displays, which the operator uses to 
control the accelerator. This paper discusses the software 
aspects of the system. A software block diagram, Fig. 1, 
shows the basic building blocks. Control panel designs, made 
up by operators or other nonprogrammers, are described in 
a source language. This is converted by a 360/91 program 
into tables which are loaded into the 925’s ‘touch panel 
library”. The basic SDS-925 system program3 has been aug- 
mented to include conversational input, the display and touch 
panel interface, as well as the link handler. The data link 
itself is synchronous, bit serial EIA compatible, and will be 
operated at about 3000 bits/s (adjustable). The data rate is 
limited by software - each 6 bit ‘byte” requires a program 
interrupt and processing. This rate is adequate except for 
signals such as pulse shape, which are carried to the operator 
by a video system external to the computer. Accelerator sta- 
tus (about 6000 bits) is kept in both computers. In the PDP-9 
a program continuously monitors the interfaces for change in 
status. These changes are sent as individual messages to the 
925, unless they occur in such bursts that the PDP-9 decides 
it must refresh the entire array in the 925. When an individ- 
ual status change is received by the 925, each currently aotive 
display table in turn drives a program which decides if an up- 
date is required on the corresponding display. If the entire 
array is refreshed by the PDP-9, then status on all displays 
is rewritten. 

Operating Systems 

To successfully handle as many signals and controls as 
the SLAC accelerator requires, a comprehensive operating 
system must be implemented at the earliest possible point in 
the development of the project. If the programs csnnot be 
dynamically called up from mass storage, the demand on core- 
memory will increase as programs are added, and this will 
eventually limit the capability of the system. Tape or movable 
head disk systems are a problem because of reliability and 
slow program switching time. If the operating system is not 
resdy before individual control/acquisition programs are 
implemented, then those will most likely have to be rewritten 
to fit the system when it arrives - a waste of software man 
hours. If the operating system is not comprehensive, then 
various %tsnd alone” programs will appear and switching to/ 
from these is a nuisance. 
are “push down” in-nature. 

Most existing operating systems 
Higher priority tasks interrupt 

lower priority tasks, creating a new layer of dynamic vari- 
ables, which are erased when the task ends. The disadvantage 

*Work supported by the U. 5. Atomic Energy Commission. 

of such systems is that it is difficult to vary the priority of 
the task as it goes to completion because its dynamic vari- 
ables are at a fixed layer in the push down stack. This is a 
serious drawback in our application because most tasks in- 
volve real time delays (to wait for relays to close, or for 
data on the disk, to name two examples). 

The above considerations led to the development of 2, 
a multitasking operating system on the PDP-9. Its resident 
section includes a disk relocatible loader, interrupt driver 
programs, and a task scheduler. The rest of memory is 
occupied by areas for user program blooks and dynamic 
memory of the tasks. A task includes such information as 
execution time, current program location, and user variables, 
but does not include the user program itself. In fact, a task 
may go from program to program as it progresses. While a 
user task is in execution the prooessor is in user mode; 
otherwise it is in a system break. Tasks areinitiated, con- 
trolled, and deleted by a set of macros provided in DS. 
These may be coded into a program just as ordinary machine 
instructions. During a system break each existing task is on 
one of two queues. One queue contains the scheduled jobs - 
these will be executed as soon as the scheduler gets to them, 
or at their specified execution time, whichever is earliest. 
The other queue contains tasks waiting for a specific event, 
such as ‘TTY keyboard carriage return”. The events may 
be system defined, as above, or user specified. By coding 
the maoros the programmer has complete control over oc- 
currence of system breaks within his task. He must protect 
his variables across the system breaks (by putting them into 
dynamic store) because the program may be re-entered by 
other tasks before a given task resumes. Within any one 
user period, variable protection is unnecessary. 

Touch Panel Implementation 

The touch panel system is basically a substitute for conven- 
tional hardware panels. The software associated with this 
system consists of programs driven by data tables. 

A artial panel inside the 926 is a data table containing 
display control specifications for a rectangular array of ac- Y--- 
celerator buttons. The tables are made up of five b&c sub- 
sections: fixed text, analog signal list, accelerator status 
signal list, button specifications, and computer generated 
text. One or more of these tables, linked together, define a 
panel. The linkage names each constituent partial panel 
along with its geographic position on the panel. To utilise 
the tables, there sre various processing programs. A panel 
select program obtains a panel from the library and puts it 
on display (i.e. - onto the currently active list). A button 
processing program monitors and decodes push button inter- 
rupts, using table data to initiate the appropriate response 
functions, if any. Another program uses a similar procedure 
when sn accelerator status change is received. Additional 
programs, such as analog and text handlers, exist and can be 
written to work on this data base. 

Off-Line Panel Compiler 

Because the touch panel system will be comprised of hun- 
dreds of different panel displays, and therefore, hundreds of 
different data tables to make.up the displays, it is necessary 
to have a means to quickly and easily produce the data tables. 
A language was devised whereby a desired panel display could 
be described in a way that is easy for a nonprogrammer to 
use, but that contains all the necessary information, This 
special language is used as input to a panel generating pro- 
gram that operates on the IBM 360-91. The output from this 

(Submitted to the 1971 Particle Accelerator Conference, Chicago, Illinois, March 1-3, 1971.) 



program is a punched deck of binary cards to read into the 
touch panel library on the SDS-925 drum. 

A push button panel may cover up to three TV monitors 
which make up a single operator console. For example, a 
panel (or partial panel) may be a row of buttons or 20 lines 
of binary status. 

A panel may consist of many partial panels, and a given 
partial panel may be a part of different panels. The panel 
generating program has. two functions: to generate tables for 
partial panels and to create linkages which define panels. In 
the partial panel source language, there are five basic in- 
struction types, corresponding to the subsections given above. 

If a user wishes buttons to appear on his partial panel, 
he includes a ?button” type instruction in his input deck for 
each button. He must include the following information: lo- 
cation of the button relative to the origin of the partial panel, 
function of the button when pushed, function when released 
(if any), type and shape of the button. If the user wants text 
on his panel, like the label of the button, he inserts a ‘Text” 
instruction in his deck for each line of text. Many items 
have defaults, like letter size will be normal height and nor- 
mal width unless otherwise requested, but certain informa- 
tion must be supplied, like the element for which to display 
the binary status, the units and magnitude of the analogs, the 
field width of computer generated messages, and positions. 
The program also converts all x, y coordinate references of 
the source language into the 256 x 256 coordinate system of 
the TV display system. 

Control Functions and Data Logging 

stalled during the construction of the control room. The 
CCR computer is relatively new, first going on-line less thsn 
two years ago. Initial on-line usage was concerned largely 
with data logging, used both as a maintenanoe aid (as, for 
example, continuous recording of the faulting of each of the 
245 klystrons) and for the operations log (e.g., total on time 
and number of pulses delivered to each experimenter). This 
was soon followed by control functions, such as switching on 
klystrons to replace those that had faulted, and setting the 
(- 50) accelerator quadrupoles to pre-assigned values. The 
computer is also used to test the complicated interlock net- 
works used for the protection of personnel and the machine. 
Consolidation will have little effect on this software, except 
that most of the operator interaction with the computer will 
be via the touch panei/link system rather than the teletype as 
at present. Little closed-loop control of the accelerator has 
been accomplished, largely due to the lack of the necessary 
interfaces. Consolidation has accelerated the schedule of 
building these interfaces. However, plans for closed loop 
control have been deferred until the more basic direct con- 
trol from the touch panels to the accelerator interfaces is 
firmly established. 

References 

1. K. Breymayer et&. , ‘BLAC control room consolidation 
using linked computers, ” this proceedings. 

2. D. Fryberger and R. Johnson, “An innovation in control 
panels for large computer control systems, ” this 
proceedings. ’ 

3. S. Howryeta., ‘The SLAC beam switchyard computer, ” 
IEEE Transactions on Nuclear Science (June 196’7). 

Each control room had its computer before the concept 
of consolidation was considered. The BSY computer was in- 

(IBM 360/91) 

ACCELERATOR 
PANEL 

PANEL 

LAYOUT CARDS * COMPILER 
c 

ACCELERATOR 
’ SOURCE 1 

LANGUAGE 
1 TABLES 

INTERFACES 

PROGRAM 

ACCELERATOR 
STATUS 

AREAS FOR 
USER PROGRAMS 

’ PANEL 

--b PARTIAL 
PANEL 

CURRENT ACTIVE 
PANEL LIST 

ACCELERATOR/BSY 
STATUS 

PROGRAMS 
LINK OPERATING 

HANDLER ON DISPLA) 
DATA BASE 

t 

TOUCH INTER- 
PANEL RUPT 

HANDLER DRIVER: 

BEAM 
SWITCHYARD 
INTERFACE 

NEW OPERATOR CONSOLE 1834BI 

FIG. l--SLAC control consolidation - software diagram. 


