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In an effort to extend the semiclassical intuitions developed in infra- 

red dominated field theories (quantum electrodynamics, G3, etc. ) to field 

theories more likely characteristic of strong interactions, we have con- 

sidered the high energy - small momentum transfer limit of the ordinary 

linearly coupled fermion-pseudoscalar (nucleon-pion) interaction. In con- 

trast with the infrared theories, we find (without using a cutoff) dominance 

of “hard” exchanged pions but with a dynamically forced pair-wise cor- 

relation resulting in an s-dependent effective potential appearing in the 

eikonal phase . The correspondence of the nonfixed-pole J’softff two-pion 

structure thus developed to a nonlocal generalization of Wentzel pair theory 

is made and the qualifications on the quantum field theory necessary to pro- 

duce this semiclassical picture are explored. The role played by internal 

structure such as spin, isqspin, and chiral symmetry is particularly inter- 

esting. The asymptotic behavior of the theory is extracted and we find 

that the dominant N-N amplitude is s-channel helicity nonflip. 
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I. INTRODUCTION 

Recently much effort has been devoted to the study of high energy limits in rela- 

tively well-defined field theories such as quantum electrodynamics’ 
32 and $I . As a 

consequence of the iteration of lowest order connected t-channel exchanges, these cal- 

culations lead to eikonal-like results in which the eikonal phase is a simple power of 

the coupling constant times a two-dimensional integral over an effective potential. A 

major hope of this approach has been that it would be generalizable to hadronic inter- 

actions. However, there may be even simple qualitative differences between the pre- 

dictions of common hadronic field theories and the predictions of theories in which 

perturbation theory is a more reasonable calculational tool. 

In particular the theories thus far considered have either possessed, ly2 or 

forced3 dominance of the infrared region of exchanged particle momenta. This has 

insured correspondence with one’s classical intuitions about locally smooth (quasi) , 

potentials’ and straight-line paths for external pa<ticles 25 
’ but has required neglect 

of quantum-mechanical effects such as pair creation and annihilation and radiative 

corrections, except where these effects are only a minor qualification to the basic 

picture (e.g., building up a form factor). 6 This effective neglect of %ltraviolettJ 

structure within field theories may well be incorrect when strong interactions are 

considered. 7 

As a first step in studying such structure, we have considered the high energy 

limit of the pseudoscalar interaction of fermions. We shall call the exchanged par- 

ticles “pions 1’ and the fermions %ucleons’f for convenience. As is well known, 

scalar exchange in the generalized eikonal ladder summation is dominated by the 

Born term. This is a result of the spin of the exchanged particle being zero and of 

the lack of correlations. In a pseudoscalar theory this last requirement is not met 

if one allows ‘!hardJ1 pions to be exchanged (hard pion exchange is not allowed in the 

-2- 



various cutoff models proposed for deep inelastic ep scattering8 but is preferred by 

a 7, vertex). 

We have not imposed a cutoff but instead have included the minimal correlation 

substructure in summing the leading (after cancellations) behavior of the generalized 

ladder graphs. These correlations arise from the successive helicity flips preferred 

by the high energy nucleon or, in other language, from the periodic dominance of con- 

tact terms in the infinite momentum9 nucleon propagator. Pair effects are treated 

only in the sense in which the fermion lines contain these dominant contact terms - 

terms which do not arise in scalar theories. 10 

In contrast with theories possessing Lagrangian chiral symmetry, 11 the forward 

amplitude in our case does not vanish. If we had summed only soft pions and embedded 

the theory in the nonlinear o-model this would have happened. 3 There are two simple 

ways to see this. The first is that, in effect, we have kept the scalar projection of 

an iterated derivative coupling term (obtained by a Dyson transformation on our inter- 

action Lagrangian) . Or, second, one can impose chiral symmetry on our theory in the 

total Lagrangian just by taking the nucleon mass to zero. Then, however, the nucleon 

is in an eigenstate of helicity and the contact terms mentioned above do not contribute. 

From our point of view, then, it would be wise to regard chiral symmetry in hadronic 

interactions as a truly asymptotic symmetry not to be built into an effective Lagrangian. 

A similar statement can be made later about the isospin symmetry - the breaking of 

which does not seem to have such drastic consequences. 

II. CALCULATION OF AMPLITUDES 

We shall sketch the calculation, indicating the basic approximations and then ex- 

amine qualifications to the picture evolved as well as giving a simple interpretation of 

the method used and of the result obtained. We begin with the usual interaction 
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Lagrangian 

(1) 

and for simplicity put g+(x) = V(x) as an effective meson potential. One may proceed 

by consideration of Feynman graphs or by considering the equation of motion. We 

choose the latter course, checking results by evaluating high energy limits of sums 

of low order Feynman graphs. We first calculate the amplitudes for a nucleon scat- 

tering in an external “potential” and then obtain the various nucleon-nucleon ampli- 

tudes by functional techniques. 

The nucleon wave function in an external potential obeys the equation 

[i+- m - iy5V(x)]$(x) = 0 (2) 

Utilizing the infinite momentum’ or Sudakov variables (for a vector A, A, = A0 + 

A3, A- = A0 - A3, u = 26/&‘x-, etc.) the projection operators for large and small 

components 

p, = $Y-Y+ 1 
pm = xY+Y- 

and putting 

we have the coupled equations 

(0 - iygVp+ + $P+ I- i~-)y-p- = 0 

$P- + i d,)y,p++tO - W,V)P- = 0 

(3) 

(3’) 

where the transverse operator 0= (wl) SF’ - m. From Eq. (3) we can write the 

%malll’ solution 

p, = -2$ r,(l+i erl (0- iy5V)p, (4) 
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and with y&O= %*, write the equation for the jt1arge9’ solution p, as 

(m2 + ip+B+)p+ 3- (5 + iy,V) 1 + i EZ 
( ) 

-1 

P+ 
(0 - ir,V)p+ = 0 

which we rearrange as 

[i~+a+ - ${V, (I+ iS_/p+?V},]p, = NP+ 

(5) 

(6) 

where N contains derivatives with respect to transverse variables of the potential 

and a term V2(1 + i8-/p+)-‘(a_/p+)p,. The latter will be small under the conditions 

discussed below. The other terms can be shown not to contribute in the high energy, 

small momentum transfer limit. The operator factor (1 + S-/p+)-’ provides the non- 

localization of paired pion emissions necessary for convergence in momentum space. 

Its origin is the nucleon propagator which has otherwise been eikonally approximated. 

That is, the usual procedure of dropping quadratic terms in denominators renders 

loop integrals divergent and convergence must be restored. One could simply cut 

off the integrals:. but the operator above restores convergence in the correct, un- 

ambiguous s-dependent (p, x J”, fashion without affecting the solvability of the 

problem. This is because the operator produces an averaging in the x, coordinate, 

while the differential equation to be solved is in the independent coordinate x+. 12 

This operator is interesting also in that it selects only the scalar (and later, iso- 

scalar) state of two pions. E we had kept other components of the original multipole 

operator (for example, dependence on transverse coordinates), the other states con- 

tributing would yield lower order (by powers of In(s//.~~) asymptotic contributions to 

the eikonal phase. 

Treating the right-hand side of (6) perturbatively, we can integrate formally 

and to lowest order find 

P+(X) = e -ix(x) . (spinor factor)+ (7) 
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where 
Q) co 

X(x) = J 0 
d7- U(x-2p7) =; s dT 

0 
(8) 

The spinors are chosen in an appropriate infinite-momentum1 basis as eigenstates 

of the projection operators. Note that, in contrast to the usual eikonal potential, 

the effective potential U is now s-dependent. Working in a frame in which the mo- 

mentum transfer 2A is purely transverse, the helicity nonflip amplitude for nucleon 

potential scattering is (p, = p. + p3 NN 6% pk) 

fP+ 

s 
f d2xldx ,2iA* x 
nonflip = 4R 

JWQ w- 2KT) 1 
--oo -1 f (9) 

while the helicity-flip amplitude is 

iA 
fflip = 2n 

cd4x V(xJe2iA 0 x - i X(x) 

As expected, this is down by a factor of A/P, over the nonflip amplitude, vanishes 

in the forward direction, and has an odd number of interactions with the potential. 

Nucleon-nucleon scattering amplitudes do not emerge as easily as they would 

with a simpler coupling and no correlations. Utilizing functional technique% however, 

we can write I fnn = Cl2 f+vtx)) f2(V’(Y)V~o(4*~ 
2 

fl - 2 (f _ E d4Wx-rl) sv!tTj f2tV’W (11) 

where Cl2 is the “connector” operator which insures correct counting 

and is a simple displacement operator as indicated in Eq. (ll), where we have also 

taken V- 0 after the shift is made. D is the boson propagator. 

Let us work in the c. m. frame where incoming nucleons have momenta p - A 

and q + A and outgoing nucleons have momenta p + A and q - A with the momentum 
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transfer 2A purely transverse. Then the on-shell amplitude for neither nucleon 

suffering a helicity flip is (p, NN fi = q-), 

fnn=-- 2p+qi (2s)434((p+q) - (p+q)) dT. e2iA ’ ’ ew- PW / 1 lTr!In(l-K(z,,w,wl))-l 2 

(13) 

where 

K(z+w’) = 2p7 + 2qu)8+8- D(zl - 2p7 f 2qCJ) 

+ D(7--~)$q D(T--w (14) 

and where 

Be = (1 +i8,/qJ + (1 +ia,/s_) 

c+ = (1 +z+lps + (1 +iqh+J 

In taking the trace and logarithm,K is treated as a matrix with continuous indices w 

and o ’ (which play the role of proper times along the eikonal direction). This ampli- 

tude (13) corresponds to the graphs shown in Fig. (la). These are Feynman graphs 

in which internal propagators have been eikonally approximated consistent with the 

permutation symmetry (all possible crossings of boson lines) and the correlations 

discussed above. This is indicated by a dot. if we include isospin, and assume that 

this inclusion does not alter the nonlocal averaging at each pair of vertices, then the 

only change above is a multiplicative factor of $ = 3 (pions) in the eikonal phase. 

The amplitude for scattering with both nucleons changing helicity can be similarly 

derived. IX we write exp(Tr $Jn( 1 - K)) = det( 1 - K), the result is the minor of this 

determinant. The corresponding graphs are shown in Fig. (lb). 

The compactness of Eq. (13) for fNN belies the difficulty of evaluating it numeri- 

cally. However, since at high energies the characteristic interaction time is very 

small, one may expect K to have the form of a sharply peaked distribution in (w-o’). 

/ -7- 



That is, the matrix may be nearly diagonal and, for example, Tr(K . K) z (TrK)2 

when one expands. We believe this will be true as long as the singularity structure 

of higher order Feynman graphs is simple. Cut contributions, large contributions 

from nonend-point regions in Feynman parameter space or from noneikonaPt-paths” 13 
, 

could prevent this simplification. 

With the preceeding qualification in mind and faced with the difficulty of evalu- 

ating higher order terms in the expansion of 

-TrQn(l-K) = TrK + iTr(K.K)+$Tr(K.K*K)+. . . (15) 

we have evaluated the asymptotic N-N amplitude when only TrK is kept in the ex- 

ponent. This has the further utility of insuring only small corrections to the lowest 

order solution of Eq. (6). The lowest order term in the expansion of the exponential 

yields the asymptotic behavior of the sum of box and crossed-box Feynman graphs, 

in agreement with an explicit analysis of these graphs. In momentum space 

TrK= w d4k d%’ JJ S(k++k;)F(k-+k’Je 
-izl ’ \k + k’)l 

(k2-p2+ie)(k’2-p2+ic) (l- k$/pt)(l- k2/6, 
(16) 

To evaluate the forward amplitude, we expand the exponential and do the loop integrals 

by rotating to a euclidean basis. Only the leading behavior in s is retained in each 

order. One should note, however, that substantial cancellation has already taken 

place in the sum over all crossings and permutations. The T-matrix corresponding 

to the amplitude 13 then has the form 

tiQn(~/~~)K;(z~) e -1 (17) 

where A = 2-4(2n)-3g4. In the forward direction we can do the integrals and find 

asymptotically (i. e. , g4JIns/p2 very large) 

TNN(A = 0) m in !I.r~~(A$.n(s/$~)) (18) 
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with a resultant total cross section which behaves like !& - ln2(Aflns/p2)/s. It is 

somewhat surprising that the sum of leading logarithms yields a cross section with 

this behavior. Indeed one suspects from this result that one must carefully consider 

the effect of the nonclassical contributions mentioned above. 

III. DISCUSSION 

The model discussed here bears an interesting resemblence to the static pair 

theory of Wentzel 14 in that, in the extreme relativistic case, each center-of-mass 

proton has a very large effective ‘jlongitudinal” mass and is able to act as an instan- 

taneous fixed source of pion pairs (a retarded classical field density) with which the 

other proton can interact. Our purpose has been to show how this picture can arise 

even in the relativistic field-theoretic formalism and to consider the qualifications 
I 

on its accuracy. In particular, the two-pion vertex is smeared out over a region 

which is, in general, dependent on both s and t (though we kept only the s-dependence 

in looking at the near-forward amplitude) and the scalar, I= 0, object thus constructed 

must be absorbed in a similar region on the other proton (otherwise the ‘fbutterflylf 

graphs of Fig. l(a) corresponding to higher order terms in the expansion, Eq. (15) must be 

considered). The two-pion structure obtained is found to be “soft. It That is, its 

total four-momentum is small even though each individual pion has large momentum 

components and is far off-shell. 

We note in passing that we could have generated higher angular momentum states 

of two pions than the “sigma, If whose contributions to the eikonal phase have a non- 

/ 

leading behavior in s, by using a more accurate form of the operation in Eq. (5). 

We kept only the essential part of the operator - the part which generates an expan- 

sion about the light cone x = 0, in powers of l/fi, of the product of pion fields. 

There is cancellation in this expansion when one sums over permutations. These 
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permutations at the same time generate the isospin symmetry. Because of the non- 

local s-dependent coupling, any higher angular momentum states would not produce 

fixed poles. Further structure in these states, as in the scalar case, will result 

from the interaction of internal pions. The imaginary parts arising in these internal 

amplitudes will also be important in any realistic statement of unitarity. We have 

in mind, for example, the pion “tower” diagrams resulting from the insertion of 

nucleon loops. 

We emphasize that these results should be taken seriously only for the qualita- 

tive features revealed. In particular, we have found that the emergence of a semi- 

classical picture from a hadronic field theory requires not only the space-time 

averaging one might expect but also the suppression or cancellation of the more // ( 1/S 
delicate singularity structure one believes the field theory to possess. More im- 

portantly, we have found that some aspects of the field theory, the helicity and 

isospin correlations arising from internal structure for example, are consistent 

with a semiclassical interpretation. 
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Representative graphs considered in nucleon-nucleon scattering, (a) for the 

nonflip-nonflip helicity amplitude, (b) for the flip-flip helicity amplitude. The 

heavy dot indicates the correlations described in the text. 


