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ABSTRACT 

Subroutine GAUSS is an IBM routine which computes a normally 

distributed random number with given mean and standard deviation. 

This routine is based upon an application of the central limit theorem 

and the use of the random number generator. In this note we will 

give a short explanation of how this routine works. 

Since we have found that for Monte Carlo studies of tracking 

algorithms and propagation of errors that IBM’s GAUSS is not quite 

sufficient, the main point of this note is to provide explicit bounds 

for the accuracy of GAUSS. The modification required in IBM’s rou- 

tine is trivial. Since the proof and development of the ideas necessary 

to establish the bounds are deep and computational, we will only in- 

dicate the development of the ideas and state the result without proof, 
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I. THE CENTRAL LIMIT THEOREM (CLT) 

The CLT states that the sum of independently identically distributed (IID) 

random variables tends to a normal distribution. The precise statement of the 

CLT is as fellows : 

Let X1, X2, 0 D 0 be a sequence of RV’s which are IID. Let E(Xi) =p 

ancI Va.r (X3 = u’, p c CO, a2 < 00, Let Sn =X:=1 xi” Then for each 

Z, 

The proof for a large class of distributions can be found in [l]. For an indication 

of the proof see [2]. For generalizations see [31. 

The idea of the proof is to employ the linearity of characteristic functions, 

and the unique inversion property of characteristic functio v s. 

II. APPLICATION OF CLT IN SUBROUTINE GAUSS 

As is often the case in the application of limit theorems one merely applies 

the limit theorem with .finite n. The subroutine uses X1, 0 D 0, Xn generated by the ’ 

random number generator i, e. : 

1, ifx 6 [0,1-J 
xi = i=l, n 

0, otherwise 

Then, E(Xi) =1/2, I$) =1/3=tVar(XJ = l/12. Then applying CLT for this 

case we get: 

y Cn,lxi-~ 
= 9 Y--+@asn--+ao. 

In 



For computation reasons only IBM takes n=12 to obtain Y = ct2$ Xi - 6. Then 

the user mean, /..J, and user standard deviation, 7, are introduced as follows: ’ 

y’ = YU4-p 

to obtain the desired normal distribution about p with SD=cr. 

III. HOW WELL DOES THE CENTRAL LIMIT WORK? 

In the application of limit theorems what is really needed is an explicit 

bound for the remainder. Obtaining such bounds is often a much harder problem, 

since bounds demand detailed understanding of the process involved in the limit. 

That is to say limit theorems are really vague and general and appeal to those 

working in generalities o However, if one is working with actual computations 

remainders are needed. 

Theorem If the random variables Xl, 0 0 ., ,X n , . 0 0 are IID such that E(X$ =p, 

vW(xi) =u2 < * , E$$ =p < m 6 Then if we put, 

F,(x) = P I 
C~=l xi-“cl 

ix 
u n J- I 

@(q = &Lx exp(- $,du 

Then, 

I F,(x) - rP(x) i z I & C=1.88 

This result is known as the Berry-Essen Theorem ([4], [5]) 0 

The proof of this theorem depends upon using Chebyshev-Hermite expansion 

of Fn(x) -@p(x), and improving Lyapunov’s Theorem: 

I F,(x) -@p(x) < cp 
I &- 
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IV. APPLICATION OF THE BERRY-ESSEN THEOREM TO IBM’S GAUSS 

@ =$ol X3dx=. 25, C = 1.88 and for IBM’s routine n=12. Therefore, 

IF,(x)-@+ 9 ~6.14 

Thus it is clear at the values of x where the upper bound is attained n=12 

IBM is not sufficient. To alter IBM’s routine merely use the Berry-Essen 

Theorem to compute adequate n and normalize properly according to the for- 

mula in II. 

V. OTHER METHODS OF COMPUTING NORMAL DEVIATES 

Several other methods for computing normal deviates have been studied 

[6], [7]. One of the most interesting of these is the direct approach of Box and 

Muller. Briefly this method is as follows: Let Xi, X2 by independent random 

variables uniformly distributed on 0, 11: Then it can be shown that if, 

Y1 = (-2 log Xl)1~2 cos 2n x2 

Y2 = (-2 log x$J2 sin 27r x2 

Then, Y1 and Y2 are independent normal random variables with zero mean and 

unit variance D 

The advantage of this method is that the computation is exact. However, it 

does require more core and computing time than the method based upon the sum 

of random variables (i,e *, approximately 30% more time per deviate based upon 

summing 12 random variables) 0 Consequently if it turns out that n is moderate 

for any particular application for, 

I 
Fn(x) - @p(x) < 2 

I JI; 
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to be within the desired error bounds, then it seems worthwhile to use the sum 

of random variables approach for generating normal deviates. 
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