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Introduction 

In order to achieve the maximum luminosity from the 
SIAC storage ring “SPEAR” it is necessary to vary the ef- 
fective vertical beam height at the interaction regions. The 
minimum height is determined by field errors in the ring 
which couple the horizontal motion to the vertical motion. 
Since the horisontal extent is normally larger than the verti- 
cal extent of the beam, it is possible to increase the vertical 
beam height by increasing the coupling between the horison- 
tal and vertical motion. 

We will discuss a method of controlling the coupling by 
introducing four skew quadrupoles of length P symmetrically 
into the storage ring lattice. The coupling and hence the 
beam height is varied by varying the field gradient in these 
skew quadrupoles . 

Eigenfrequencies 

We will designate the equilibrium-orbit path length in the 
storage ring by s. The radial excursion of a particle and its 
derivative with respect to s will comprise the first two com- 
ponents of the four-dimensional vector ?, while the vertical 
excursion and its derivative will comprise the third and 
fourth components respectively. The transformation matrix 
from point s1 to another point s2 is defined by the matrix 
equation 

(1) 

and the matrix M(sl) is the transformation matrix from point 
s1 once around the ring back to sl. The matrices P and M 
depend upon the magnet lattice of the ring including the field 
gradient g of the skew quadrupoles. 

For some s’s0 we find the modal matrix E(Q) and the 
eigenfrequencies vi (which are independent of SO) such that1 

Ws0) E(so) = E(sd 

where we have numbered the eigenfrequencies so that 
v =-v 1 2 sndv =-v 3 4’ 
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i2rv 
0 2 e 0 0 
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Figure 1 shows the variation of these frequencies with 
the skew quadrupole strength for one of the two proposed 
SPEAR operating modes. 2 

The performance of electron storage rings are limited by 
the incoherent disruptions of one beam by the other. The on- 
set of instability is found empirically to be characterised by 
the linear tune shifts Avx and Avy. In the presence of coup- 
ling these shifts produce the eigenfrequency shifts Avl and 
Av 

d 
which probably also characterize the onset of instability, 

an are given by 

Au1 = axAvx + a Av 
Y Y (3) 

Av3 = bxAvx + b Av 
Y Y 

Figures 2 and 3 show the variation of the eigenirequency shift 
coefficients ax, “y, x, b and by with skew quadrupole strength 
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for the two SPEAR operating modes. It is important that the 
coefficients not be appreciably larger than one and this will 
restrict the magnitude of the skew quadrupole strength. 

Beam Size 

The mean square beam width and height at any point are 
the sums of the mean sauare betatron excursions and the 
transverse excursions due to the mean square momentum 
spread in the beam: 

<w2> = <x;>+ ?1; <($)“> , 
<h2> =<x;>+ T; <($> , 

(4) 

(5) 

where the four-dimensional vector?j(s) defines the transverse 
excursion for an off-momentum particle of AP/P=l and is a 
function of the magnet lattice of the ring including the skew 
quadrupoles. 

In order to determine the size of the betatron oscillations 
we define the matrices A(s) and B(s) by 

Aij(so) = 4 E;&) E;;(so) 
C + “;;(so) El1 -t*(s($] 

Bij(s,,) = f E;;*(s,$ E&d + E&J E;;*(s,,)] 
C 

(6) 

A(s) = +(s, QA(s6)P-‘(s, s6) 

B(s) = ‘vp-‘(sp s,,)B(s,,)P-‘(s, s,,) 
(7) 

where a superscript (-1) denotes the inverse, a star the com- 
plex conjugate and a tilde the transpose of a matrix. 

In the absence of synchrotron radiation damping or fluc- 
tuations the following quantities would be constants of the 
motion 

W1 = cij Aij(s)xi(s)xj(s) (54 

W3 = cij Bij(s)xi(s)xj(s) (9) 

The average value of the quantities W1 and W3 are determined 
by the synchrotron radiation fluctuations and radiation damping. 
For SPEAR, with damping rates for the horizontal and verti- 
cal motion equal to one half of the damnina rate of the energy 
oscillations, the average values of WI-and W3 are given 
approximately by3 

<wl> =(*) 2 [cT\ij"iTijl (10) 

(11) 

where ec is the critical energy of the radiation, E the particle 
energy, and the bar over the sums designates the average 
over all of the bending magnets. All the bending magnets 
have the same field strength and no gradient. 

The distribution function for the betatron motion is given 
by 

I)(;) = k exp ( -Cij xixj] (12) 

where k is a normalization constant and the matrix C is given 
by 

cij=&>+& (13) 

(Presented at the 1971 Particle Accelerator Conference, Chicago, Illinois, March l-3, 1971.) 



The mean square value of the betatron excursion4 is 

<x8> = + (c-jii t 
(14) lJ BP-Magnetic Rigidity 

0 2.0- 
Figures 4 and 5 show the root mean square value for w k 

P=Length of a Skew Quadruple 

and h at the interaction region versus the skew quadrupole W 

strength for the two SPEAR operating modes at 1 GeV. The s 1.5- 
Hi-q Mode v,=5.25 v,=5.15 

rms width and height scale linearly with energy. 

From the above figures it appears that it is possible using 1.0 
a reasonable skew quadrupole strength to increase the height 
sufficientlv to achieve the desired luminositv without drivinz 

= 0.5- one of thekigenfrequencies to a resonant vaiue or producing 
large eigenfrequency shift coefficients. 
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FIG. l--Variation of eigenfrequencies (vl and v3) with 
skew quadrupole gradient (g) . 
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FIG. 3--Variation of eigenfrequency coefficients with 
skew quadrupole gradient (g) . 
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FIG. 4--Variation of beam width and height at interao- 
tion region with skew quadrupole gradient (g) . 
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FIG. L--Variation of beam width and height at interac- 
tion region with skew quadrupole gradient (@r) . 

FIG, Z--Variation of eigenfrequenoy coefficients with 
skew quadrupole gradient (g) . 
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