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ABSTRA.CT 

We formulate a general method for evaluating relativistic and 

binding energy corrections to matrix elements of the electromag- 

netic current for multiparticle composite systems. Application is 

made to the calculation of the g-factor for bound electrons and 

compared with recent experiments. 
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The present theoretical difficulties of handling~ composite systems when rela- 

tivistic and strong binding corrections are significant is well illustrated by the 

problems of constructing dynamical information from the quark model [l], espe- 

cially for baryons when three quarks are involved. Particularly interesting here 

is resonance photoproduction where the nonrelativistic quark model has some 

success [2], so that an estimate of corrections is desirable. In an attempt to over- 

come such problems, in this Letter the lowest order relativistic and binding energy’ 

corrections to the electromagnetic current are obtained from the direct application 

of Lorentz invariance, rather than a reduction of Dirac type equations as has been 

customary. 

Working in terms of the generators of the Poincard group, the Hamiltonian and 

boosts2 for a collection of free particles have the canonical forms [i] 
8 - , 

HO= CE., 
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which reduce to the usual nonrelativistic limit. 

The free particle currents can be regarded phenomenologically as the solution 

I&= CK. 
i 8-1 

(1) 

of the current conservation, four vector equations 
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Expanding in powers of v2/c2, to first order beyond the leading terms, Eqs. (2a, b, c) 

give3 

If the charge, current density (Q(z), z(x)) f o a system of particles is to be a 

conserved four vector, then the equations 

i[H,Q(xJl = -; . z(xJ 

i LK_, Q($) = +J + 5: - d<$ 

i[K J(x)] = - i_x[H, p)] + k Q<xc> ycl’... * (4) 

must be satisfied. If the system is a collection of free particles whose charge, 

current densities pi(x), ji(x) satisfy Eqs. (2), then the Hamiltonian and boost for 

such a system will be H = Ho = c Ei, K,= E. 
i 

= C I& and so the Eqs . (4) will be 
i 

satisfied by 

Q(X) = ’ pi(~), p<xc> = C~i(x--). (5) 
i 1 

In general there is interaction present between the constituents of the system. 

The interaction between,particles i, j is assumed to be a local potential Vij( Iri - rjl). 

The interaction terms H’, ,g’, depending upon the potential V, to be added to Ho,so 

are then required to satisfy [4] 

i[$‘,Po]=&H’;[K’,HO] + [k.o,~‘] = O;I$XICo+~oX~= 0 (6) 
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so as to preserve the PoincarQalgebra to first order in V. Equation (6) uniquely 

(up to a unitary transformation) determines H’,K!i extended to include v2/c2 cor- 

rections, for either a scalar or a vector potential [5]. In the latter case we have [4] 

H’ = $ % d?f’ x(x,, ~‘1 s = -f$ ig~(~+~‘)cqpJ 

+ i C V.~i(~ !Z* ~j(~‘)J;~-x,, dr r Vij(r) 
i>j 

(7) 

The pi,& are the internal currents between which the vector potential acts. Their 

leading terms are4 

so that nonrelativistically H’ goes over to a sum of two body local potentials. In 

the particular case of a two body system when V is just the normal Coulomb inter- 

action, the familiar two particle electromagnetic interaction Hamiltonian is obtained 

(41. Verification of Eqs. (6) relies on the current conservation, four vector equations 

for pi,ii with the neglect of i [Ei,ji(xJ] in accordance with the v2/c2 approximations. 

For systems with interparticle interactions the Eqs. (4) are no longer satisfied 

by (5j. For these cases the solution of (4) will be 

Q(“,, = C Pi(z) + ‘pi(z) 
i 

,J(z> = cji(g + ‘ji(g (9) 
1 

The pi(z),,,ji(x) satisfy the Eqs. (2) and so, to first order in V, the 6pi@), 8Ji(xJ, 

must satisfy 

i[Hg, “P~Q] + ,V * ~~i(~ = -i[H’, Pi(~] 

‘ko, Gpi(x)] - xI’ aji(x) - Eli = -i[K&,Pi($] 
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The right hand sides of (10) may be evaluated with the current commutators which 

follow from (3), 

[pi(z), pj(xJ= iSij $ 
i ( -) 

pi + ‘2 
i 

xx 6 <z- 5’) ’ ci ’ 1x1 Pi(c) 

[Pi(_X,,~j(x_‘)l = -iSij & ~,{8Cx_-x’) Pi(~)} 
i 

cjiEl2 Pj(x,‘)l= -iSij 2 pi(z) Vx 6(5-z’). 
i 

(11) 

The solution of Eqs. (10) is not unique [5], but a minimal solution which corresponds 

to that given by reduction of the Dirac equation is 

‘Pitx) - L > 
m3 

Ej,tx,> = -v dx’ 
-0 j i 

vij(l~-&‘l )Pj(~‘), 

Also in this v2/c2, first order in V, approximation the c. m. decomposition of 

the single particles’ dynamical variables K,~~,cJ-~ is modified [3,4,6]. The additional 

terms are necessary essentially to take care of the Wigner spin rotations for the 

composite system, both for the individual particle spins and orbital angular momen- 

tum. In the c. m. frame ,P = 0, ,pi - l& with Z,ki = 0 where k.,zi and r.. = zi -zj are 
ii 

a-13 

the internal variables. With ,P = 0 

r.=R+Asi-&C$ e-1 .w+ 
j 

-t 

AL~=C 2 r j dti =ij’ &t=Crn. 
i 1 (13) - 

One application of our results is for the calculation of magnetic moments of 

composite systems. The magnetic moment operator is 
1 

k.=z s %gx;tg, 
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in the c.m. frame P = 0. This may be explicitly evaluated in terms of (3), (9), 

(12) and (13). For a two particle system, employing a unitary transformation to 

simplify p evaluated between eigenstates of the mass operator (=H for ,z = 0): )w 
then for particle 1, 

(1 +F2, ,kx (k_XF22) 

This agrees with previous results as far as spin dependent terms [‘7]. For a hydro- 

genie atom with an electron in a (1s) state, 

2 
W-tm,) 

2 (l- g) + ’ 
e 

)2 

(15) 
neglecting terms of O(cr4), which include v4/c4 effects, and using ~~ = CJ! /Fib. 

6 For 

the bound nucleus the corresponding g factor is 

gbound = gnucleus 
nucleus 2(me+W2 

Mme 

(me+JW2 
-l- 

3(me+W 
3 (Zme+W 

(16) 
to the same accuracy.” These results are in agreement with recently published 

results [S]. 

The method presented here neglects radiative corrections but as shown by 

Grotch [8] these are unimportant for the present accuracy except insofar as the 

electron has an anomalous moment, which has been included. Numerically from 

(15) the ratio of the bound electron g factors for hydrogen and deuterium is 

g,( “1 
-=l+a gD( “1 

2 3mz 5 3 me 
---a - 4M2 24~ M 

P P 

= 1 + 7.25 x 10 -9 (17) 
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whereas two experiments (91 give 1 + (7.2 zt 3.0) X lo-’ and 1 + (9.,4 -I 1.4) X lo-’ 

in good agreement. 

Thus the methods described above provide a consistent framework for the cal- 

culations of relativistic corrections to the electromagnetic multipole moments of 

composite systems of arbitrary numbers of particles. 

One of us (F. E. C. ) wishes to thank S. J. Brodsky for comments and discus- 

sions, and H. Grotch for communications. 

FOOTNOTES 

1. Thus the present results cannot be immediately applied to the naive quark model 

of very massive quarks and strong binding. It is hoped to extend this approach 

to include all orders in the nonrelativistic binding potential V but only first 

order in V X v2/c2. 

2. Commutation relations involving the momentum go = Cti, and the angular mo- 
i 

mentum 4Jo = C (;i X,pi -t 1/2zi) can be satisfied trivially and so will not be 
i 

discussed here. 

3. The sole arbitrariness in the solution of Eq. (2) lies in the overall normalization 

and the relative magnitudes of sets of terms which are independent. Then to 
2 2 order v /c this arbitrariness is exhibited by the numbers ei, pi, < rf > , G’ M, ito) 

in (3). Tf the p, j at (3) are to be thought of as electromagnetic current densities 

for the free particles then the above arbitrary parameters are fixed by requiring 

that the current so constructed gives the values of the charge (pi), magnetic 

moment wi), etc. , of the free particles described. Hence <ry% 6 

GH i(O)} is the mean square radius, normalizing G 
, E , i(O) = GM , $0) = 1; 

GE(O), Cm{ 0) > 0 for the proton. 
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4. The p,s are free particle currents satisfying Eq. (2), and normalized as at (8). 

The spin dependent term in j is independent of the spin independent terms and #a 
hence its arbitrary magnitude is reflected in the parameter K. 

5. This also leads to the disappearance of the R dependence. 

6. For Coulomb binding V(r) = -Zo/r, K = K, ge = 2 [ 1 + $ - 0.328 (a2/r2) 1 
where the m2 term should not be affected by the binding except to C(a4). 

7. This method verifies Ref. (15) for arbitrary nuclear spin, with the usual 

definition ~~~~~~~~ = t Ze/2W gnucleusSnuclem~ 
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