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A.BSTRA CT 

A basic feature of nonrelativistic quantum mechanics is the exis- 

tence of one representation (the momentum representation) which di- 

agonalizes the free part of the Hamiltonian, a second representation 

(the position representation) which diagonalizes the interaction part 

of the Hamiltonian, and a unitary transformation (Fourier transform) 

which connects these two representations. In local Lagrangian field 

theory the free particle representation which diagonalizes the free 

part of the Hamiltonian is well known, but the representation which 

diagonalizes the interaction part of the Hamiltonian has not been 

systematically studied. In what follows, this representation is ex- 

plicitly constructed and it is shown that there is no unitary transfor- 

mation connecting it with the free particle representation. In fact 

this representation space is not even a Hilbert space in the sense that 

it seems impossible to define a meaningful norm. 
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INTRODUCTION 

The most fundamental structures in nonrelativistic quantum mechanics are the 

two basic representation spaces, position space and momentum space, and the 

operation of Fourier transformation which connects them. Although one may ab- 

stract and consider arbitrary complete sets of commuting observables and their 

eigenvectors and eigenvalues, in practical physical problems one solves for the 

eigenvectors and eigenvalues of a ‘Hamiltonian whose free part is diagonal in the 

momentum representation and whose interaction part is diagonal (or nearly so) in 

the position representation. It is this feature of physical Hamiltonians which gives 

the position, and momentum representations their paramount importance. Most 

often one solves problems in position space, the representation which diagonalizes 

the interaction. 

When one turns to quantum field theory, the situation is radically altered. One 

invariably works in the representation which diagonalizes the free particle part of 

the Hamiltonian and one is completely unfamiliar with the representation which 

diagonalizes the interaction part. Let us attempt to remedy this situation. 

Consider the case of a local Lagrangian field theory with a scalar boson field 

coupled to a spin l/2 fermion field through a simple scalar coupling. The physically 

more interesting cases of quantum electrodynamics (in the transverse gauge), psuedo- 

scalar meson theory, etc. , require only straightforward generalizations of the 

methods used to solve the simple scalar coupling case. The Hamiltonian is given 

Ho = 

H=Ho+HI, (1) 

(la) 
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and 

(14 
where 

To start with we take the usual representation of the commutation (anticommutation) 

Here U&I) and v,&) are the free positive and negative energy spinors, 
. 

., [?(l-$ &t’,] 7 WI- 5% 

P t [bat& bpC;9’,]+= [ca($> c+P’)]+= +-&X5- 5% 

and-all other commutators (anticommutators) = 0, 

d[= d3& 

(2~)~ 2Ep : 

and 

tj([- 5') = (2q3 25 a3(pp 

@a) 

VW 

(34 

W) 

(34 

(34 

Our problem is to find an alternate representation which diagonal&es HI at 

t = 0. Therefore, for the rest of this paper tie consider the time to be fixed at 

t = 0. Further if we can find a representation in which $I@ is diagonal for every 

2, and j(z) is diagonal for every ZC, then HI will be diagonal in this representation. 

This is certainly feasible since c#@) and j(x) are Hermitian operators, and since 
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PART I 

THE DIACONALIZATION CF G(x) 

To find the eigenvectors and eigenvalues of $I($ it is easiest to go over to the 

Fourier transform field operators given by, 

(4) 

Clearly since [e(g), $($)I = 0, we have 

[O(P), +(P’)] = 0 
+-f. * and in particular, since $(-;) = $(s_pj , we have 

[G(P), m$l = 0 * 
so $(p) is a normal operator and may be diagonalized. 4(p) couples bosons of 

c PC 
momentum p only with bosons of momentum -p, which is to be expected since the CI Y 

eigenvalues of $(x) must be real. u Let the free particle vacuum be denoted by 

I$>, ==b a(p) = 0 for all p. Then consider the operator L r* 

Z=exp -+ 
[ J- 

t I- 
dl a tnp, a t-g, I . (5) 

Clearly, 

and 

[a($, Z]= - A-p) Z , YJa 
so 

= Z[a@) - a$--$ + a+-$] I$> = 03 

Therefore Z I@> = 10) is the eigenvector of e(p) whose eigenvalue is zero for all p, c WI 
i.e., 

#t&m = 0 forallz. 
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Consider further the operator 

where g(p) is an arbitraryC number function of p which satisfies ” yc w- 

Clearly we have 

and 

g*t$ =,, gt-2) l , 

[a’(-p), wj=‘o * 

(7) 

so that 

=g(PJwzI~>. 
Since at(p) commutes with a’(c) a t (TX’) we can write 

” W5i& = w(g$+ = exp[J+Q a’(g) - (l/2) JigI a$-~) >I9 ‘(8) 

and we have 

I&p = mlpa> ’ (9) 

is the eigenvector of e(x) for all 3 For all p we,have im ‘* 

~~~lgQ)> = gt&tp 9 

and for all x %- 

(10) 

where 

and by Eq. (7), g@) is real. 1 : 

Now let us try and fix the normalizations so as to give us a complete ortho- ‘- 

normal set of states, and thereby,a unitary transformation. ,Toward this end let : 

us evaluate the scalar product <f(@Ig(g)> for two arbitrary functions f(E) and g(E) 

which satisfy Eq. (7). To facilitate the ca&ulation we insert a convergence factor .’ 



by letting 

in 

where 

o<t<1. 

Thus we have 

I&P) > t = U,M$)~~~ > (11) 

where 

Then at the end of the calculation we shall take the limit as t - 1. We define the 

state IO >t by 

10>t = U,(O)I#J > , (12) < 

and we then have, 

ptl$Q >t = t < OleAeBIO>t 

where 

and 

A = t s d5 f*(z) a@J 

Now consider the operator 

P(P) = a(P) + t2 aft-PL w * (13) 

It has the basic properties, 

PaI L 

CP(gh P(P’)l = 0 ? w tw 
[P(g), P?p_‘,3 = (1 - t4, SW- f’) l ( 134 
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Solving (13) for a(p) we find : 

a@) = p 
(J-J) - t2 &pJ 

L (1 - t4, 

and substituting this into the expressions for A and B we find, 

and 

04) 

Let us try to use relation (13a) to our advantage. We shall use the operator identity 

e(B1+J32) 
= eB1eB2 e 

-112 [B1, B23 
(16) 

where Bl and B2 are operators whose commutator is a C number. Letting Bl be 

the p’(g) part of B, and B2 be the /3(-p) part of B, we find using (16), (15b), (13c), 
w 

(13a), and (7) 

Similarly, we find 

Applying another operator identity 

,A,leB1 B A 
= e. le le 

+[Al, Bl] 

where [A.l,Bl] is a C number, and 

Al = t 

(l- t4, 
c-4 f*t~VQ 

Bl= t 
(l- t4, 

d5 g’;) P’t$ 
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we find using (17a), (17b), (7), (Isa), and (13~) 

t<OleAeBIO>t = t<f(IjIg(g)>t = t<OIO>t eXP 
r J- 2(1- t4, 

X em {E)b{ f*(g) g(E)\ It4 dr’f(” - gQ”2 

1 

It remains only to evaluate t< OIO>t. We have, 

The expression 

<Q, 1 [ha]n [.da’] “I$ > = Kn 
may be evaluated by induction as follows. Take one operator a.(-$) from the left 

and carry it through to the right picking up the commutators along the way. We 

obtain, 

Now take the operator a(g) and carry it through to the right obtaining, 

Kn = { 2n C(oo2) f 4n (n-l)}Knmr 

= 2n{C(m2) + 2(n- l)}Kn-1, 

where C(a2) is the doubly infinite constant given by 

(20) 

(18) 

Since K. = 1, we have 

Kn = 2”n! C(m2) [C(m’) + 2) - - - - [C(m2) + 2(n-l)] 

and so 

t<OlO>t= fJo $ x +[-+$ +l] ----[*+(n-l)j 

= (1 _ t4jt-ct”2)/2) 
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by the binomial theorem. Combining (18) and (22) we have 

<f(P) 1 g(P)> = 
3 

(23) 

First we note that unless f(p) = g(p), the first exponential goes rapidly to zero as 
w. SW- 

t 3.1. Since we are interested only in the limit as t- 1 we may rewrite (23) as 

It is a satisfactory feature of (24) that unless 

JdSif$) - g(@j2 = 0, (25) 
the numerator goes rapidly to zero as t -1, for this means that in some sense the 

orthogonality of eigenvectors with different eigenvalues holds true. However, the 

appearance of the factor 

in the denominator means that it is impossible to orthonormalize the states 1 g(p)> 

and hence there exists no unitary transformation connecting the free particle states 

‘with the states Ig(p)) . 

Can we make any better intuitive sense of (24) ? First observe that since 

/ 
2i!k!k=l, 

v (27q3 

implies that V is a phase space volume element for a single state for one boson we 

may heuristically write 

(26) 
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where n is the product over any half of the possible states for one boson. 
S 

Similarly using relation (7) we may heuristically write 

and 

(27) 

(28) 

where n is the product over a particular half of the possible states for one boson, 
S 

namely a set of half the values of p chosen so that if.8 is within the set, then -p * 

is not within the set. For example we could take the set of all p such that either I 

p, > 0, or if p, = 0 then py > 0, or if p, = 0 and py = 0 then p, _> 0. Now a simple 

calculation shows that 

Therefore combining (26), (27), (28), and (29) we have heuristically 

Expression (30) is just the answer we intuitively expect and in fact is just the exact , 

answer one obtains when the set S contains only a finite number of distinct. possible 

states, i. e., if we put all our bosons in a finite box and only consider those states 

for which 1x1~ some pm=. Hence we can say that the expression (24) is trying to 

describe a continuously infinite product of delta functions, but since such an infinite 

product is mathematically horribly ill defined (in fact the dual motion of integration 

over the manifold of all possible functions g(g) has never been successfully defined), 
2 

the mathematics just breaks down and produces infinite multiplicative constants as 

in (24). 
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PART II 

THE DIAGONALIZA.TION OF j(z) 

First we note that by (lb) and (3b), 

j(E) = + [$(z), $(x)1 = 3;(z) $(xJ + infinite constant. 

Since we are interested in the problem of diagonalizing j(xJ, the infinite constant 

may be ignored and we shall hereafter take 

j(g) = RX,, $@I (31) 

as the operator to be diagonalized. 

Secondly, we reintroduce explicit awareness of the infinite Dirac sea of filled 

negative energy states by setting 

Ua+2($ = v,(-3) 

b a+2(gl = +g) 

(01 = 1,2) 

Substituting (32) in (2a) we find 

(32) 

Thirdly we note that the Dirac vacuum, I #> , for free fields is defined by the con- 

- dition that for all p 
111 

and 

ba&$N = 0 (a = 1,2), 

(a! = 3,4). (34) 

The b (and b f ) operators destroy and create fermions in eigenstates of the 

free Hamiltonian. Clearly if we wish to diagonalize j@J we shall need instead 

operators which create and destroy particles localized at a given position x. 

Therefore consider the operator 
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where uai(g) is thei’th component (i = 1,2,3,4) of the spinor uo(p). Define the 

spinor eo by 

e = 6 ai ai 

From (33), (35), and (36) it follows that 

and 

Next consider the operator 

tw 

(37) 

(39) 

Substituting (39) in (37) and (38) we find 
4 

and 

(41) 

The [(and 5 t ) operators are the desired operators which destroy and create particles 

localized at a given position. To construct an eigenvector of j(x) we simply define 

it by the condition (compare with (34)) that for all 6 

and 

S,(~)lj> = 0 (a! = 1,2) 

(o! = 3,4). 

If we use the standard representation where 

I 0 
Yo = f ) 0 -1 

(42) 
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we find 

, 

which by (41) and (42) 

= - C(fJq 

where C(m) is an infinite constant given by 

C(oo) = S3(0) = / - 
wr 

0, , 

Hence I j > is an eigenvector of,j(xJ. 

To obtain all the eigenvectors of j@ consider an arbitrary function f(a,xJ 

whose range consists of the integers 0 and 1. ‘Define the state I f(a! ,,xJ> by the 

condition that for all Q! and ;r, 

&(xJlf> = 0, if f(oz,$ = 0 

and 

fL(x}lf> = 0, if f(cx,@ = 1. (43) 

Since the states (01,s) are a complete orthonormal set for one particle we see 

by analogy to the case with any finite number of particles, that corresponding to the 

set of all distinct possible f(cL,s) we have a complete set of orthogonal basis states 

for all possible numbers of fermions. Furthermore, 

(4% 

where if 

fP,g) = 0 
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then 

C(o0) f(cY,xJ = 0. 

So If > is an eigenvector of j(z) whose (infinite) eigenvalue is 

Therefore we have found the complete orthogonal set of eigenvectors and 

eigenvalues of j(xJ . 3 The infinite constant C(oo) appears for the following reason: 

Consider the case of only one particle localized at position ,&I and spinor index Q! I. 

The corresponding state lfl> has 

1 
fl(q) = 

if Q! = 01’ andg=f 

0 otherwise . 

Then the eigenvalue of j(z) is 

if ,x = $ 

otherwise 

where 

p(l) = p(2) = -p(3) = -p(4) = -t-l . 

However, C(c++ = S3(0), so the eigenvalue of j(x) is just the expected result, 

p(a’)83(g - 5’) . 

Alternately consider the state Ifi > where 

f2(cq) = 1 if a= 1 

and& is within some finite volume V, and f2 = 0 otherwise. Then the eigenvalue of 
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where 

I 1 
eqg = 

0 

if geV 

otherwise 

Thus in this case the eigenvalue is infinite for all g within V, which simply reflects 

the infinite density of particles within V. 

It is interesting to note that in a completely analogous way we can construct 
i 

the set of all eigenvectors and eigenvalues of Ho, the free particle Hamiltonian. 

We simply consider all possible functions g(a!, p) whose range is 0 and 1, and * 

define the corresponding state by the condition 

ba($ I g > = 0, if g((Y,,p) = 0 

b;t’$g > = 0, if g(ar,;) = 1. (45) 

Then we have 

So )g> is an eigenvector of Hoa Just as before, the states Ig(cr, p) > for all possible 

distinct functions g, constitute a complete orthogonal basis set for all possible 

numbers of fermions, but which diagonalizes Ho. Note that the conventional Hilbert 

space in which one does quantum field theory is an infinitesimally small subset of 

this complete orthogonal basis set. The conventional Hilbert space corresponds to 

the subset of those functions g(a,p) such that for all,p, 
m 

0 if a!=l,2 
!mg) = 

1 if a!=3,4 , 

except for a finite number of discrete values, ai and pi (i = 1,2, . . . , n), where 

g(ai,gi) is arbitrary (but must be 0 or 1). 
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Returning to the eigenvectors of j($ we may ask if there exists a unitary 

transformation from the complete orthogonal basis states Ig(a,$)> which diagonalize 

Ho to the complete orthogonal basis states I ~(cY, $> which diagonalize j(x) and hence 

HI. First we observe that, just as in the boson case, the set of basis states is so 

infinite that it seems impossible to define the notion of integration over all possible 

states, and therefore it is impossible to define a normalization for the basis states. 

So, there exists no unitary transformation connecting the I g > states with the If > 

states. If we try to write any given if > state as a superposition of Ig> states this 

problem of the basis set being too infinite immediately appears. To see this, write 

the given If > state in the form 

where 1 O> is the no particle state defined by 

(47) 

for all a! and .x, and by ZfI is meant the produce over all (Y and 5 such that f(ly ,.$ = 1. 

Now from EC@. (35) and (39) it follows that 

where 

Substituting this in (47) we find 

(48) 

(49) 
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If there are only a finite number, N, of particles in the state if > we have from (49) 

Since the expression 

N + 

is just a 1 g> basis state, Eq. (50) gives I f > as the required superposition of g 

states. However if, as is generally true, the state If > ,contains a continuously 

infinite number of particles, then the 

[ 
nst (P x) f pa *‘ml 1 

will in general be either zero or infinite, and there will be a continuously infinite 

number of summations and integrals to do, which is also ill defined. Therefore, in 

general, it is impossible to write a given If > state as a superposition of Jg> states. 

CONCLUSION 

We have shown that a basic element of the nonrelativistic quantum theory is 

absent in. quantum field theory. We are still able to construct explicit representations 

which diagonalize either the free part or the interaction part of the Hamiltonian in 

quantum field theory, just as in nonrelativistic quantum theory, but there is no 

unitary transformation connecting the two representations. 

In nonrelativistic quantum mechanics all the Hermitian operators which occur 

in the theory can be diagonalized, and the various representations which diagonalize 

them are connected by unitary transformations. This feature is fundamental to both 

t 
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calculation and physical interpretation of the theory. The fact that this is no longer 

true in quantum field theory, as we have amply demonstrated, is a serious dif- 

ficulty which has yet to be understood and overcome. 
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