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Abstract 

A method for the analysis and synthesis of closed curves in the plane 

is developed using the Fourier Descriptors of Cosgriff ‘[l] . A curve is 

represented parametrically as a function of arc length by the accumulated 

change in direction of the curve since the starting point. This function is 

expanded in a Fourier Series and the coefficients are arranged in the 

amplitude/phase-angle form. It is shown that the amplitudes are pure 

form-invariants as well as are certain simple functions of phase-angles. 

Rotational and axial symmetry are related directly to simple properties 

of the Fourier Descriptors. An analysis of shape similarity or symmetry 

can be based on these relationships; also closed symmetric curves can 

be synthesized from almost arbitrary Fourier Descriptors. It is estab- 

lished that the Fourier Series expansion is optimal and unique with respect 

to obtaining coefficPents insensitive to starting point. Several examples 

are provided to indicate the usefulness of Fourier Descriptors as features 

for shape discrimination and a number of interesting symmetric curves are 

generated by computer and plotted out. 
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Introduction 

The problem of discriminating planar shapes is one of the most familiar and 

fundamental problems in pattern recognition. It entails the assignment of an un- 

known shape to one of several classes of shapes based on a finite set of measure- 

ments (features) made on the shape. - The digital representation of the shape usually 

is initially a digital picture [143 - that is, a rectangular matrix whose elements are 

from some finite range (0, B) of nonnegative integers. When B = 1 we have a black/ 

white digital picture and each connected subset of elements having the value 1 (black 

points) constitutes a two-dimensional shape. Figure 5a exhibits such a shape. There 

are many different ways to obtain numerical features from digital shapes but we 

find features based on the boundary of the shape to be most compelling intuitively. 

There is a substantial body of psychological and psychophysical evidence suggesting 
t 

the importance of edges in visual scene analysis. We cite in particular the work 

of Attneave and Arnoult _15], Attneave [Is;; Uhr [17j, Lettvin et al. ,[18), and -- 

Hubel and Wiesel[19). 

The transformation from binary matrix to polygonal boundary can be effected 

by the method of Ledley [2 O] or Zahn [8], [9J. When B > 1 (so-called grey-scale pic- 

tures) more sophisticated methods are sometimes required to extract boundary 

curves but whatever method is employed the theory developed in this paper is ap- 

propriate. The topic is analysis and synthesis of closed curves in the plane and 

parts of the theory could be applied to nonclosed curves. Although the boundary 

of a shape has as many separate closed curves as its degree of connectivity we 

discuss single curves only. Full comparison of multiply connected shapes should 

involve analysis of all boundary curves but the treatment of each curve will be 

similar. 

At this point our problem is reduced to one of extracting a finite set of numeri- 

cal features from a closed curve, features which will tend to separate the shapes 

7. 5- 



of different classes relative to the intraclass dispersion. For this purpose, we 

shall use the Fourier Descriptors, first suggested by Cosgriff [l] . A starting 

point on the boundary is selected and a function 8 (Q) is defined which measures 

angular direction of the curve as a function of arc length. After appropriate nor- 

malization this periodic function is expanded in a Fourier series and the coefficients 

of a truncated expansion are used as shape features called Fourier Descriptors. 

Higher order terms represent changes in direction of the curve over very small 

arc lengths and their elimination will probably reduce noise and serve to accentuate 

lower order terms which contain more macroscopic information on the shape. 

The report by Cosgriff [l] was followed by a sequence of reports by Fritzsche 

[ 2) , Raudseps [3], Bore1 [4] , and Brill [5] , [6] , [?I-. Material from 

these reports tends to support the idea that look-alike shapes are usually near 
l 

I 

, each other in a space of Fourier Descriptor features endowed with the euclidean 

metric. The last two papers in the sequence Brill [6] , [ 71 are especially 

noteworthy because they report on the results of recognition experiments which 

had remarkable success considering the context in which the recognition was 

performed. 

In this paper we define a normalized cumulative angular function 6*(t) for 

a simple closed curve y and expand Cp * in a Fourier Series to obtain descriptive 

coefficients which we call Fourier Descriptors, although $* is a slightly different 

function than was used in the earlier work cl-7 ] . There follows a formula 

for reconstructing a curve from its Fourier Descriptors and the explicit formulas 

for calculating the Fourier Descriptors of a polygonal curve. Next we state 

several important relationships between the geometry of shapes and algebraic 

properties of the Fourier Descriptors. Using these results we are able to define 

form-invariant measures based on the phase angle Fourier Descriptors, that 
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is functions of these phase angles which are not dependent on the starting point 

used to generate the function 4”. Also using the basic relationships, we suggest 

methods for shape similarity analysis and the testing of symmetry with several 

concrete examples. A short discussion of Fourier Descriptors based on the 

curvature function of y shows that they differ only slightly from those based on 

e*- Next we consider the synthetic generation of curves from arbitrary Fourier 

Descriptors and establish some simple sufficient conditions for such curves to 

be closed. It is then proved that the Fourier Series expansion is the only ex- 

pansion for which the coefficients are largely independent of starting point. 

Several examples are shown to indicate the usefulness of Fourier Descriptors 

as features for shape discrimination and the theoretical material on curve 

reconstruction is used to generate some interesting curves with axial as well as 

rotational symmetry. 

Fourier Descriptors of a Curve and the Reconstruction Theorem 

We assume y is a clockwise-oriented simple closed curve with parametric rep- 

resentation (x(Q), y(Q))=Z (Q) where Q is arc length and 01 Q SL. Denote the 

angular direction of y at point Q by the function 6 (Q) assuming that y is smooth in 

the sense of Buck [21] and let do=6 (0) be the absolute angular direction at the 

starting point Z(0). We now define the cumulative angular function e(Q) as the net 

amount of angular bend between starting point and point Q (see Fig. la). With this 

definition $~(0)=0 and q5(Q) + 6, is identical to @(Q) except for a possible multiple 

of 2 7r. If the curve y winds in a spiral then I@ (Q)l achieves values larger than 2 ‘IT. 

Figure 2b shows $(Q) for the shape depicted in Fig. 2a. 

It is not hard to see that q6 (I,)= -25~ because all smooth simple closed curves 

with clockwise orientation have a net angular bend of -27~. As a result, $(L) does 
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not convey any shape information. The domain of definition [O, L] of ~$(a) 

simply contains absolute size information and we would like to normalize to the 

interval [0,27r] which is standard for periodic functions. Hence we define a 

normalized variant rp* (t) (see Fig. 2c) whose domain is [ 0,27r] and such that 

+*(O) = t#* (279 = 0. The formal definition is 

and $* is invariant under translations, rotations and changes of perimeter L. As 

intuitive justification for the definition of # * we note that $I* E 0 for a circle 

which is in some sense the most shapeless closed curve? Viewed in this light 

the function r$*(t) measures the way in which the shape in question differs from a 

circular shape. 

What we have done so far is to map all plane simple closed curves with 

starting point into the class of periodic functions on [ 0,27r; in such a way that 

all curves of identical shape and starting point go into the same function #*. Two 

plane curves have identical shape if they differ only by a combination of translation, 

rotation and change in size. 

We now expand $* as a Fourier series 

+*(t)=Po+E (akcoskt+bksinkt) 

i k=l 
(2) 

In polar form the expansion is 

Cp*(t) = p. + 2 Ak cos(kt - “k) (3) 
k=l 

where (Ak, a$ are polar coordinates Of (ak bk). These numbers Ak and ak are 



the Fourier Descriptors for curve y and are known respectively as fie M;h 

harmonic amplitude and phase angle. 

I * Having developed this description A 01 
I I k’ kl 

it is of interest to know how easily 

the curve might be reconstructed from these numbers and how well a truncated 

description j A N 
1 k’ak 1 I 

would reconstruct the curve. The theorem which follows 

answers the first question and a later section provides some insight into the 

second. The first question reduces quickly to one of reconstructing y easily from 

its angle-versus-length function 6 (Q). 

Reconstruction Theorem 

If curve y is described by 6 (Q) and starting point Z(0) the position of point 

Z(Q) can be gotten from the expression 

which is equivalent to 

Z(Q) = Z(0) + ‘eie wdh 

JO 
(4) 

l 

Q Q 
x(Q) = x(0) + I- cos 8 (A) dh; y(Q) = y(0) + 

/ 
sin 8 (h) dh 

0 0 
Proof: 

By definition 8 (Q) measures the direction of the velocity vector y’(Q)=(x’(Q), yf (Q)) 

which is tangent to y at Q (see Fig. lb). Whenever a curve is parametrized by 

its own arc length the speed I y’(Q) 1 is always 1 (see Buck [22] ) and we obtain 

immediately x’(Q)=cos 8 (Q) and y!(Q)=sin 8 (Q). The result follows by substituting 

these values into the fundamental therem of integral calculus 

Corollary 

/ 
Q 

J 
Q 

x(Q) - x(0) = x’(h) dh and y(Q) - y(0) = Y’(A) ~ 
0 0 

Any function e*(Q) E 8 (Q) and mod 2 r works as well in the above reconstruction 

formula. 
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Using the reconstruction theorem and a truncated Fourier series expansion 

of #* we shall give a practical formula for curve reconstruction based on 

Fourier- Descriptors 
I 1 

N Ak, a! k 1 . Invoking the corollary we can use 

e*(Q) = $(Q) + 6, in place of 8 (Q); then using Eqs. (4) and (l), the transformation 

of variable 7~ = s and the truncated version of Eq. (3) we obtain the formula 

Z(Q) = Z(0) ++* 
s 

2nl i -t+60f~O+~ Akcos(kt-cyk) 

L e 
C N 

k=l 3 
dt (5) 

0 

If we desire a curve of similar shape but starting point Z*, initial direction 

6*, and total arc length L* we use the same formula but with these values 

instead of Z (0)) 6 o and L. 

* - 
Calculating Fourier Descriptors from a Polygonal Curve 

In this section we shall derive formulas for the Fourier coefficients ak bk 

and p. when y is a polygonal curve. We assume the curve y has m vertices 

v. , l * ’ 3 vm-l and that the edge (VimI, Vi) has length APi. The change in 

angular direction at vertex Vi is Aqi and L = ?A$. With these definitions 
i=l 

(see Fig. 3) it is not hard to verify that 

4(Q) = 5 .Ac#I~ for kAQiS Qqk5’AQi 
i=l i=l i=l 

and 

4(Q)= 0 for OLQ<AQ, 

Expanding $I* we get e*(t) = p. +- 2 (an cos nt + bn sin nt) where 
n;l 

1 J 2n 

@0=2n o cp w dt 
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and 

1 a =- 
n 7r J 

2n 27T 
r@*(t) cos nt dt bn = $ 

J 
r+*(t) sin nt dt 

0 0 

+ t and changing variable h = 2 we get 

1 L 
s cco=E o (P(h) a+ = 

an = 2 
L SC LO 

$(A)‘+ -y- 
) 

cos = d?L L 

Exploiting the fact that e(Q) is a step function we obtain (after reasonably 

straightforwa‘r d but somewhat lengthy calculations [ 3 ] ) 

an = 2 glAGksin T , 

and 

bn = & Fl AC$~COS 2;Qk 

(6) 

(7) 

(8) 

where k 

Qk=I&lAQi 

The final forms of the expressions for an, bn are especially appealing 

because of their similarity and also because A$, represents the angular change 
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(bend) in the curve’s direction at the kth polygonal vertex, andQ k is the arc length 

from starting vertex to kth vertex. 

It is clear from these expressions alone that the Fourier coefficients (an, bn) 

contain no information relating to absolute position or rotational orientation of - 

the curve. 

In the amplitude/phase angle form of the Fourier series 

(P*m = IJO + & An cos@t - an) 

the (An, oln) are polar coordinates for the point (an, bn). 

An is called the nth harmonic amplitude and an the nth harmonic phase angle. 

Of course when An = 0 the nth term vanishes and an is undefined. 

Relationships Between Fourier Descriptors and Geometry of Shapes 

A number of useful relationships link algebraic properites of the Fourier 

Descriptors of a simple closed curve with geometric properties of the shape 

bounded by that curve. Probably the most powerful justification for the use of 

FDs (Fourier Descriptors) is the invariance of harmonic amplitudes An and 

certain simple functions of pairs of phase angles 
1 I 

( 1 
oln under translations, 

rotations, changes in size, and shifts in the starting point. It could be said 

that the An 
1 1 

are pure shape features although pure shape information resides in 

the 
\ 1 
( an also. Intuitively speaking, if we cut from cardboard a two-dimensional 

shape bounded by a simple closed curve, lay it flat on either side in any position 

and orientation, and select an arbitrary starting point -- then respective values 

of An 
1 I 

will be the same each time. When an algorithm computes the FDs 

for a polygonal curve the information about position, orientation and size is so 
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to speak factored out in the values Zo, 6 o and L and is therefore still available 

for discrimination tests. Mirror images and shifts of the starting point can 

be detected by an appropriate examination of the phase angles 
1 1 

an as described 

below. 

We now describe informally several important algebraic-geometric properites 

of the Fourier Descriptors of a simple closed curve. They are stated formally 

and proved as Theorems 1,2,3 in the appendix. First we remind the reader 

that two curves which differ only in position, orientation and size (i. e.? Zo, ao, L) 

but have analogous starting points are transformed into the same waveform 

Cp*(t) and hence have identical Fourier Descriptors An, an 1 . If y and y1 
1 

represent the same curve with different starting points ZO and Zb then the 

- FDs (A,, an) and (A; , a;/ for y andy’ satisfy 

where AQ is the clockwise arclength along the curve from Z 0 to z’o’ 

Two curves y and yt which are reflections of one another (mirror images) 

but have identical starting points satisfy 

A’n =A n CY; + an G TT (mod 2~) (10) 

It should be understood that the relations involving an, CY’~ hold only when 

01 n’ o(., exist (i. e. An, A; # 0). 

In addition to relationships which exist between two different curves we can 

investigate the affect on FDs of axial and rotational symmetries of a single curve. 
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We find that a curve y with axial symmetry satisfies 

2a, = n-nAa! 

After a shift of starting point by p = A 01/2 the resulting curve yf has its starting 

point on an axis of symmetry and the have the following simple property: 

Turning our attention to rotational symmetry we find that a curve having 

k-fold rotational symmetry (i. e. goes into itself under a rotation of 27r/k) has 

zero harmonic amplitudes for all indices which are not integral .multiples of k, 

that is 

An = 0 for n z 0 (mod k). (12) 

The general form of the propositions above was to give necessary conditions 

on the Fourier Descriptors for certain geometric properties to exist. They are 

sufficient conditions as well so that we obtain a one-one correspondence between 

a class of geometric properties of two-dimensional shapes and a class of algebraic 

properties of the Fourier Descriptors extracted from the boundary curves of 

those shapes. These statements are proved in the appendix. 

In practice we shall want to infer geometric properties from the properties 

of a truncated sequence of Fourier Descriptors I 1 An, an N with the knowledge that 
1 

similarity of shapes is likely to be only approximate. The experience we have 

gathered using FDs suggests that shapes which ‘*look similar” to people axe 

near each other in the space of low-order FDs. This assumes that the phase angles 

have been normalized so different starting points don? affect the comparison. 
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The omission of p. from this discussion warrants some comment. Because 

G*(O) = 0 we find that 

and therefore p. carries information related to the particular starting point used. 

This makes it undesirable as a shape discrimination feature. 

Form-Invariant Measures Based on Phase Angles 

Since the phase angles-[a,} contain shape information it is of interest to have 

measures based on ICV n) which are not affected by change of starting point. In 

other words, we desire form-invariant measures which are functions of {ant. 

Furthermore, because the harmonic amplitudes {Ani do not discriminate reflected 

images we would hope the measures based on @,I would discriminate such reflections. 

Define Fkj -y 1= j* ak - k* olj where J ‘* = j/gcd(j, k), k* = k/gcd(j, k) and gcd 

denotes greatest common divisor.. In other words, k*/j* is k/j reduced to lowest terms. . 

Now iffy= jAn,ant and yf = {Ah, a:) is y with a shifted starting point then 

01’ = an + n Aa! and we get n 
Fkj[Y] - ~~~[y’] = jy c!k - k*aj - (j; ak - k*a’j) 

= jTak - k*aj - j*(ak + Ma) + k*(aj + jAoL) 

= (k*j - j*k)Aol 

Hence 

Fkj [y] s Fkj [y’] (mod 2n) when yf = shift (y) (13) 



On the other hand, if y1 = {A;, cz;l is a reflected and shifted version of y then 

cYyr- an) + J.&X and we obtain 

Fkj[$] + Fkj [rlj = j*o!k - k*aj + j*(r - czk f kAcw) - k*(n - aj + jam) 

= (j* - k*)n 

Hence 

Fkj[YJ + Fkj ffj %* - k*)n (mod 2~) when yf = shift (reflect (y)) (14) 

Since axial symmetry means invariance under a reflection and the appropriate 

shift we can let y1 = y in the above condition and obtain 

Fkj [?‘I z (j* - k*) 2 x (mod a) when y is axially symmetric (15) 

(We get mod n because 2~ s &mod 2n) means 2~ - p = 2nn so that Q! - p/2 = rn 

which is equivalent to 01~ p/2- (mod n)). 

The choice of j* and k* as multipliers was made because they are the smallest 

pair of positive integral values whose ratio is j/k. The ratio condition is all that 

is really required to prove the above relationships and nonintegral values are 

avoided because every time we divide our values {a,] we divide the modulus a cor- 

responding amount (e.g., if czl E a3 (mod 271) then aI/3 E a3/3 (mod 2~/3)). 

A simple example helps to explain why we choose (j*, k*) over (j, k) as multi- 

pliers. Suppose that j = 2, k = 4 so that j* = 1, k* = 2. If we calculate values of 

~4 - 2o12 over two classes representing distinct shapes it is possible that the values 

would fall in disjoint intervals P, 3 I- g] and[$ ,2n with a significant gap between. ] 

Unfortunately, the intervals for the values of 2a4 - 4ar2 would be 0, 2 and 
2n II 1 

[ 1 
3,2~ which overlap considerably. The change in scale involves loss of dis- 

crimination because the phase angles are only known modulo 2n. 

We must add a warning about applying these properties to real data where the 

geometric properties are not exact. Whenever a harmonic amplitude Ak is small 
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then the significance of CY~ is greatly diminished and therefore one cannot expect 

the measure F . based on ak to reveal anything significant about the geometry of 
k3 

the shape. 

Analysis of Shape Symmetries and Similarities 

If we are given the FDs (An, cr,) for a closed curve y we might like to know 

how nearly symmetric y is in the rotational or axial sense. For k-rotational 

symmetry we propose the following measure 

R&l= ,c Aj 
j$O (mod k) (16) 

where the sum is finite depending on what frequency has been chosen to truncate 

the sequence of FDs. A curve with perfect k-rotational symmetry has RkcJ y=o 
and we expect that R~[T] near zero will generally indicate a shape which would be 

> . 
judged nearly symmetric. 

For axial symmetry we propose 

x~yJ= x lFkj - i (j* - I@): (17) 

where the sum is taken over some subset of pairs (k, j) preferably avoiding those 

pairs where either or both of Ak Aj are small. Another possibility is to weight 

each term with a weight w kj = &Ak + Aj) or wkj = min {Ak, A.j}. The latter seems 

to be what is required since one small harmonic amplitude suffices to destroy the 

meaSwe Fkj l 

Given curves y and y’ with Fourier Descriptors 

how similar are they? Or how close are they to being mirror images? For 

similarity the following measures are suggested by the, previous sections 

sA [Y,Y’] ‘cIAk --AL ( (18) 

‘a IY,Y’I = CIFkj - “&jl (1% 
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where, as before, weights can be inserted in the formula for Sol. 

To measure the extent to which ,yf is a mirror image of 7 we use SA and the 

following measure based on the phase angles. 

M[Y,Y’]= c iFkj f Fkj - (j*‘- k*)sl 

In computing these absolute differences care must be taken to get the smallest 

magnitude change modulo the appropriate uncertainty. The modulus is 2n for all 

a-based measures except X [y] which uses n. 

If we have found two curves to be almost identical in shape by virtue of SA[y, y’] 

and Sary, y’] being nearly zero then what is a good estimate for the shift Aor between 

their respective starting points? A least squares fit of f(n) = nAa! to (a; - an) 

suggests itself but there is a serious difficulty. The quantities (a; - (Yn) are not 

single-valued because phase angles are modulo 2~. In practice we have found that 

for quite similar shapes one can fix the (art n - an) at what seem clearly to be the 

best choices module 2x and then use least squares to get the finely-tuned estimate 

of Aol. It is helpful that [ Acrl < R can be assumed! 

This pseudo-least-squares can be used (with analogous caution) to find the 

approximate axis of best axial symmetry and the shift between analogous starting 

points for mirror images. 

To get a feel for how well the values {AnFczn) reflect shape properties we have 

calculated in Table 1 some FDs for the eight shapes in Fig. 4. In’particular, the 

four, shapes X, Y, 2, W are in form quite similar except that Y, W are reflected 
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versions of’X, 2. More precisely, the mirror image of X is more like Y than X 

itself is like Y. We expect to find that 

;F~~BI + F~JYI - T ; << 1 F~~CXI - F~~CYI 1 
In actuality we get .112 << 1.169 so that X is very nearly the same as Y without 

reflection. Performing the corresponding test on F32 we get .339 << 2.828 so both 

F21 and F32 strongly support the hypothesis that X and Y are nearly mirror images 

rather than similar without reflection. 

Turning our attention to Y and W we find that 

IF&l - F4w~ = ,210 << 1.071 =,I F~~[Y] I- Fzl[W] - xi 

and correspondingly for FS2 we get ,628 << 3.117 so Y and W are more nearly 

identical than they are mirror images. 

According to formulas of the previous section axial symmetry is revealed by 

F21 and F32 being near n/2 or 3x/2 (i. e. , nearly n/2 mod x). The reader is invited 

to check for himself the extent to which Table 1 reflects such geometric properties 

of the shapes in Fig. 4. 

Fourier Descriptors Based on the Curvature Function 

In the original report on Fourier Descriptors Cosgriff [l] suggests two alternate 

is 

ways of defining the descriptors. One-way is to expand the angle-versus-length 

function e(Q) in a Fourier series as we have done in this paper. The second way 

to expand the curvature function k(Q) = g instead. As is well-known, k(Q) = ki 

where RQ is the radius of curvature of curve 0 at the point Q. The minus sign is 
.- 

not normal but simply reflects our convention that clockwise is negative. 

One might have expected k(Q) to be the prime choice for basing Fourier Des- 

criptors but there is a problem. For a polygonal curve, e(Q) is a step function so 

DDE 
WI= -j-j is zero almost everywhere and infinite at the discrete jumps of 0(Q). This 

makes k(Q) a poor candidate for polygonal curves and. therefore of little use for 
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SHAPE 

A1 

*2 

A3 

A4 

A5 

@l 

a2 

cr3 

cr4 

a5 

F21 

F32 

F42 

X 

.366 

.866 

.333 

.250 

.273 

2.099 

2.099 

3.142 

1.571 

1.043 

4.184 

- .013 

Y - 

.223 

.729 

.289 

.217 

.105 

1.043 

1.156 

0 

1.113 

2.099 

5.353 

-3.468 

TABLE 1 

Z W - - R s 

.440 .363 .024 .468 

.872 ,717 (.. 116 .840 

.500 .513 .272 .384 

.108 ,243 .025 .229 

.135 0 ,139 .244 

4.361 2.509 4.414 6.269 

.274 3.878 1.252 4.702 

3.670 4.397 3.844 6.237 

4.222 .827 1.969 4.723 

6.108 - 3.467 6.181 

4.118 5.143 4.990' 4.730 

.235 -2.840 3.932 -1.638 

A/2 = 1.571 

3n/2=4.713 

T U - 

0 1.558 

.004 1.081 

0 .592 

. 023 .122 

0 .161 

- 3.867 

5.473 .033 

- 2.583 

6.237 6.057 

- 4..562 

- 4.865 

- 5.067 

-4.709 



practical shape discrimination. We can however investigate what such Fourier 

Descriptors would be like if the curve were smooth. 

If we take polygonal curve y and compute the Fourier Descriptors (A,,, ani 

based on the angle-versus-length function 6(Q) the; (see integrand in Eq. (5)) 

$(a> = ++ +po+ c Akcos I1 (@+!- ak)+ 80 

is a reasonable approximation to 8 and what’s more it’s smooth so de is well 

defined and easily calculated! 

If we define k(Q) = $- and k*(t) = k(g) for te [0,2n’ we find 

N 
k*(t) = B. + c 

k=l 

where 

Bk COS (kt - pk) 

2n 2nk 
Bo=-z Bk= L % and @,=\a,-$- 1 ‘, 

- 
In other words, {Bk, Pk] are the curvature based Fourier Descriptors for a 

smooth curve which approximates the curve for which {Ak, ak} are the angle-versus- 

length based Fourier Descriptors. The fact that Bk depends on L shows that k(Q) 

is not a size invariant ‘function the way e(Q) is. To fix this we should probably define 

k*(t) = I..$$). Note that the constant term B. = - F is correct for the average 

curvature. In particular, for a circle of radius R we get constant curvature 

k*(t) =+ so the average curvature is also 2 . ButL=2rRsoBo=-$=+ 

making B. the average curvature. 

The most important thing we find from calculating the (Bk, pk/ is their ex- 

tremely simple relationship to the angle-versus-length based Fourier Descriptors 

I 
A OL 1 The new harmonic amplitudes Bk I 

k’ kj’ I 1 differ from lAk ‘only in the sense 1 

that the Bk give greater weight to higher frequencies. The descriptors based 
I 1 

on curvature are therefore essentially equivalent to those based on the angle-versus 

length function and there is no need to further consider these alternative descriptors. 
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Synthetic Generation of Curves from Fourier Descriptors 

A.ccording to the Reconstruction Theorem proved in an earlier section a curve 

can be reconstructed from a knowledge of its Fourier Descriptors {Ak, ak , PO/and 

the triple (L, a,, Zo) giving length, initial tangential direction and position of starting 

point. We repeat the formula here for ease of reference. 

N 
(21) 

Z(Q) = Z. -I- $- s 

2?rQ/L i -t-i- 8ofp0f c Ai cos(jt - oj) 

e j=l 
dt 

0 

This formula suggests the possibility of making up a fictitious set of Fourier 

Descriptors {Ak o!ki and seeing what sort of curve Z(Q) results. We should mention 

that p. is not really a free variable but is given by {Ak ok]. as 

N N 
PO = c Ak C06(-O!k) = c Ak cos ok 

k=l k=l 

Now given any IAk, ak b N 
1 

and ,a triple (L, ao, Zo) ,Z(Q) becomes a well-defined 

continuous function on :O, Ll and hence traces out a curve in the plane. Almost at 

once we would like to know which {A, a \ generate closed curves? k’ k* 

We have obtained some simple conditions under which Z(L) = Z. and they are 

presented in the following theorem (see Appendix for proof). 

Closure Theorem: 

The function Z(Q) represents a closed curve if one of the following conditions 

holds : 

1. A.l is a zero of the first Bessel function J1(x) and An = 0 for n >, 2. 

2. An=Oforalln$O(modk)wherek~2. 

As a special case of condition 2 in the Closure Theorem we see that if only 

one Ak(k > 2) is nonzero then Z(Q) is a closed curve with k-rotational symmetry. 

After seeing a number of curves reconstructed from single terms we can hazard 

the following interpretation of the resulting curve. Starting with a circle ’ 
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you push in toward the center at k equally spaced points on the circle and how 

hard you push is determined by the magnitude of Ak. 

Using relationships stated earlier (see Eq. (11)) one can generate curves 

with axial symmetry simply by putting an = 7r/2 for all n. This will not however 

insure a closed curve but an axially symmetric closed curve could be made by 

adding a straight line between Z (0) and Z (L) . 

It should be pointed out that our closure theorem does not insure that you 

get a simple closed curve. The conditions for simplicity are probably very 

complicated. 

Gptimality of Fourier Basis for Generating Curve Descriptors 

In earlier sections we introduced the angle-versus-length function 8 (Q) and 

its normalized cumulative variant #*(t). We then expanded e*(t) as a Fourier 

series and used its coefficients as descriptors of the shape of the curve. The 

familiar real-variable forms of the Fourier series are 

akcos kt + bk sin 

and 

$*(t) = PO * & J$ cos(kt - ak) 

We can, however, express the Fourier Series in a complex form [lo], where the 

family of functions generating the expansion is {e”[, and the expansion is 

with coefficients given by 

cp*(t) = kF seikt 
--oo 

ck = & i”” 9*(t) eeikt dt 
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These coefficients ck are complex numbers related to the real ak bk and Ak, OLD 

by the equations 

co = po, 2ck = ak - ibk = Akeei”k and 2c-k 7 a.k + ibk = AkeirVk 

Since there are other families {f,Ct)i of functions upon which such an expansion 

could be based we are led to question whether or not the Fourier basis {eintlIm 

has any advantage over other families. One feature of Fourier series which we 

have already found to be extremely valuable is the invariance of harmonic-amplitudes 

under shifts of starting point and the simple relationship o&= am + mAa! which holds 

under shifts of starting point. We shall soon show that among all possible expansions 

$*(t) = Ccnfn(t) only the Fourier series allows a simple functional relationship 

between cn($&j, c,($*) and AQ! where (pLLy, $ * are the functions derived from a 

single curve with starting points differing by Ao!, For the Fourier series expressed 
^ 

in complex form we obtain the simple relation 

cnt4&) = q#*) e 
inAor 

nfo 

embodying the relations An( $12~) = An( c$*) and an( $IZ,) = cyn( +*) - nAa! which we 

have already discovered (Eq. (9)). The earlier work of Raudseps [ 3 ] contains 

some empirical evidence favoring Fourier series but no theoretical results on its 

uniqueness with respect to a desirable property. 

Let $*(t) and $$a (t) be the normalized cumulative variants of the angle-versus- 

length functions for two curves differing only in starting point A (Y. Using the 

definition of 4* (Eq. (1)) and the relatio&hips 8 Aa! (Q)=0 (Q-no!) and 8 (a)=$ (Q)+ so 



we find that 

$2,(t) = $“(t - Aa) + Aol + a0 - 6;” (22) 

Now suppose { fn(t>t is a basis of linearly independent functions in the Hilbert 

space s2[0, 2x3 of complex-valued square-summable periodic functions on the 

interval [O, 2x1 employing Lebesgue measure on the real line. Let Cp* and ~$2~ be 

expanded using {f&t)1 as 

cP*m = ~cnfntt) cp&-)! = q”L f&t> 

Although jfn(tJt is not necessarily an orthogonal basis we can still compute 

the coefficients cn and cn Aa! by selecting a family {gm(t){ in such a way that each. 

gm is orthogonal to the entire subspace spanned by all functions {f,) save the one 

fm. The existence of each gm is assured by well-known facts about Hilbert space 

‘lfl. We can in fact choose g,(t) so that 

s 

2n 
fnW g,(t) dt = anrn where bar means complex conjugate 

0 

Furthermore, g,(t) can be chosen periodic in [0,2n . 

With this family { g,(t) } ‘we can compute coefficients 

s 

2n 
Cm= 4*tt) g,(t, dt CA” = 

0 
m J 

27r 

0 
+gact> g,(t) dt 

Now we ask the question, “Is there any family fn(t) 
I 1 

Aol such that cm =, cm for 

all save one value of m (e. g. , m=O), for all closed curves Cp* ?‘I “If not then is 

I there some Ifn(t) such that cAmo depends only on cmand Acr , (i. e. is independent 

Of Ck’ k #m) for all @* ??l 

The answer is provided by the following theorem whose proof is in the Appendix. 
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Optimality Theorem 

1. There is no family fn(t) 
l I such that ct” = cm for all save one value 

of m, for all closed curves 4** 

2. ! int The Fourier family 1 e ACY is the unique family for which cm depends 

only on cmand Aa! independent of curve $* and other coefficients c k, kzm. 

We must point out that the criterion of optimality used here concerns the 

problem of different starting points for identically shaped curves and that if a 

canonical preferred starting point could be determined in some other fashion 

then expansion of e*(t) with respect to other orthogonal functions may well be 

quite useful. 

Usefulness of Fourier Descriptors for Shape Discrimination 

We present in this section a sampling of the evidence indicating that Fourier 

Descriptors are very good features for use in shape discrimination. Our own 

experiments involve numerals from the hand-printed character sets collected 

by Munson .24) . Each character of this set is represented by a 24 x 24 binary 

matrix or black and white digital picture. Figure 5a is one such picture of a 

hand-printed numeral ‘4’. The curvaturepoint method [ 8,9] was used to obtain 

a polygonal boundary description as shown in Fig. 5b. It was then an easy matter 

to calculated the Fourier Descriptors 
I 1 
Ak, ok using formulas derived earlier. 

Figure 5c shows the .first ten pairs of harmonic amplitude and phase angle. Figure 

5d depicts a reconstruction of the ‘4’ based on the 10 terms of Fig. 5c. This 

reconstruction was generated by the reconstruction formula of an earlier section 

in conjunction with numerical integration. The shape of Fig. 5d is visual proof 

that the ‘fourness! of the digital picture is contained in the twenty numbers 

Drill [ 61 contains examples of five numerals reconstructed from 5, 10, and 
.I. 

15 FD pairs indicating that approximately 7 pairs shouid be sufficient to discriminate 
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the five numerals. 

Using 39 samples each of numerals 1, 2, 3 from the Munson data [ 24 ] repre- 

senting the work of 13 separate authors we plotted these 117 numerals in the 2- 

dimensional space of features (Al,A2) to observe how well the numeral classes 

separate, if at all. Figure 6 shows the degree to which these three classes 

cluster in (A1,A2) space. Knowing that harmonic amplitudes alone cannot dis- 

criminate shapes which are nearly reflections of one another we tested the feature 

F42 = o4 - 2a2 on similar samples of the numerals 2 and 5. The results were 

that with few exceptions F42 was in the interval [4.7, 5.6 ] for numeral ‘2’ and 

in C3.1, 4.43 for numeral ‘5’. Of the three exceptions out of 80, two fives were 

outside both intervals and one two was in the interval populated by fives. As can 

be seen from Fig. 7 these three samples are not very standard looking numerals. 

It would be convenient if we could see visually what the numeral classes of 

Fig. 6 looked like in the 5 -dimensional space (A1, A2, A3,A4, As) but there is no 

way to directly display such higher dimensional spaces. An indirect method .has 

been recently reported [23] f or characterizing the degree to which classes of 

points in‘a general metric space cluster internally compared to the separation 

between classes. A tree is constructed with the points as nodes so that the total 

of all edge lengths in the tree is a minimum among all possible trees spanning 

the point set. In case the class membership of each point is known this minimal 

spanning tree or MST can be used to calculate the relative compactness of the 

classes with respect to each other -- that is, the tendency for points of one class 

to be near points of the same class rather than other classes. The number of 

MST edges with end nodes in different classes measures this tendency rather well. 

We have performed such an analysis on the 117 points used earlier to see how 

well the classes would separate in the space (Al, . . . ,A5). The results are that 



the MST contains one edge linking a f 1’ and ‘2’ and three edges linking ‘2’s and 

‘3’s. With three classes two of these edges were absolutely necessary and the 

extra two (out of 114) are a reflection of the tendency toward intermixture of 

classes. The tendency is quite minimal. Looking closely at the nodes causing 

the crossover edges we were able to determine that they were due entirely to one 

author whose ‘2’s curled downward making their shapes approximate more closely 

to ‘3’s . 

The recognition experiments carried out by Brill [ 63 give impressive indica- 

tions of the power of Fourier Descriptors. We briefly summarize the results. 

In one experiment 600 machine printed numerals from 50 different fonts were 

recognized with an error rate of 1.5%. In another, 400 hand printed numerals 

from 40 different styles were recognized with an error rate of 9.5%. These are 

very good if not spectacular error rates. What is rather surprising is that the 

recognition was accomplished using lower order Fourier Descriptors and a 

reference set containing about 2 samples per numeral class. In other words, 

numerals from 50 fonts were recognized by an algorithm whose training set con- 

sisted of at most two fonts -- similarly, for the hand printed numerals. Brill 

et al., [ 7 ] report on further recognition experiments with machine-printed 

characters which are known to make trouble. 

Experiments in Shape Generation Using Fourier Descriptors 

Programs have been written in PL/I to reconstruct and plot (on line printer 

or digital Calcomp plotter) curves from arbitrary Fourier Descriptors. We have 

experimented very slightly with the generation of curves using these programs and 

Fig. 8 contains a small sample of some of the more interesting results. In line 

with the Closure Theorem of an earlier section we reconstructed the presumably 

closed curves from a single FD Al where AI is one of the zeros of the first 
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Bessel function. Figure 8(a) and 8(b) are from A1 = 3.83171 and 7.01559 

respectively. Most of the remaining curves generated have both k-rotational 

and axial symmetries which can be forced by putting Aj = O’for j % 0 (mod k) and 

yp n/2 (mod 3. Rather attractive curves are generated by a very #small set 

of FDs; for example, Fig. 8(c) is generated by A5 = 4, a5 = 0 and Fig. 8(d) is 

generated by A4 = 3, a4 = r/2, A8 = 2, 01~ = 3x/2. The very interesting shape of 

Fig. 8(e) involves only two nonzero harmonic amplitudes A6 and Ag. Table 2 

lists the FD input to generate each of the curves in Fig., 8. 

- 26 - 



Figure 

8(a) 

TABLE 2 

Generating Fourier Descriptors 

A1 = 3.83171 

Al = 7.01559 

A5 = 4.0 

A4=3.0, cx4=?r/2, A8=2.0, a8=3a/2 

As= 1.0, a6 = n/2, Ag= 2.0, a9 = w/2 

A2k= 1.2 - (.2)k, a2k = n/2 fork= 1,2,3,4,5 

A8 = 1.0, a8 = 3n/2, Al0 = 2.0, al0 = n/2 

A2k = t* 5)k> a2k = l.O(k- 1) fork= 1,2,3 

Ak=. 6-(.l)kfork=lto5and~xl=01~=(r~=n/2, 

a2 = a4 = 3~/2 

A3=2.5, cz3=%-/2, A6=l.0, a6=3r/2, Ag=.5,c+=r/2 

A6 = 3.0, a6 = r/2, Al2 = 2.0, al2 = 3n/2 

A,3 = 1.5 
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Appendix 

Theorem 1: 

If two closed curves y and yf differ only in starting point by AL in units of 

arclength (clockwise from Z. to Zb> then 

a) Ak=Ak 

-27rA.e h) cuk=cuk-tkAa! where Aol= 7 

c) /.ib =Po+ao- 

Conversely if these three conditions hold then y and yf differ only in a shift 

of starting point by AL 

Proof: 

B y and y’ differ by AQ in starting point then Of(Q) = e(Q -I- AQ) and so 

@r’(Q) + t3b = $(Q + At) -I- a0 

or employing Eq. (1) 

e*‘(t) - Cp*(t -I- At) = a0 - ijb - At . 

The two functions F(t) = 4*‘(t) = pb + 2% cos(kt - @k) and G(t) = 4*(t -+ At) = 

pO”%4kcos(k(t+At)- k Q! ) differ by a constant and therefore their Fourier 

coefficients must match term by term except that /~b - ,LJ~ = So - 8b - At. The 

term by term equality of harmonic amplitudes and phase angles assures that 

A&=Ak 

and 

a’ k kkAt =O! 
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Letting Acr = - At we obtain condition b. Reading the sequence of equations 

backwards we obtain the converse. 

Theorem 2: 

B y and y’ differ only in the sense that y’ is a mirror image of y with the same 

starting point then 

c) Ppo= -A$, where A$0 is the bend at ZO. 

Conversely if these three conditions hold then y and y’ are mirror images of 

each other with the same starting point. 

Proof: 

s Referring to Fig. 9 we see that the curvature of y’ at Z’(L - Q) is identical 

to that of y at Z(Q): This is because reflection of the curve changes the sign of 

curvature but the change of orientation also changes the sign resulting in no net 

change. A.s a result of this the cumulative change of direction $’ between (L - Q) 

and L is the same as the change in $ between 0 and 8. 

Hence we can write 
$‘(L -Q) e Cp(Q) +A+o = -2~ 

where A$, is the change in direction at Z. to take care of situations where y is 

polygonal and Z. is a vertex. 

Transforming to the normalized functions $I* and $=I (see Eq. (1)) and variable 

t 2rQ = L we get 

or 

4*‘(2n - t) - (2n - t) + c)*(t) - t + A$I~ = -2n 
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or 

$*‘(-t) + $*(t) + A$, = 0 

since $I** is periodic [2x]. 

If f(t) and g(t) satisfy 

and if 

f(t) + g(-t) =c 

g(t) = pb + zl (s cos kt -I- bk sin kt) 

while ak, bk and p. are the analogous coefficients forf(t), a straightforward 

calculation yields 

%=-% bic=bk pb=-po+c. 

For g= $I *‘, f = $I* and c = -A4, we get 

s=-ak ’ bfi=bk and .E~~=-H~-A$, 

Since Ak, ak are polar coordinates for ak, bk we obtain conditions a) and b) 

immediately. 

The converse follows from observing that if the Fourier coefficients of q5*’ 

and Cp* are related as above 

$*‘(-t) + 4*(t) + “4, = 0 

and this implies 

$‘(L-Q) + #I(Q) + A$, = -2~. 

Theorem 3 

A curve y has n-fold ‘rotational symmetry if and only if Ak = 0 for k $ 0 (mod n). 

Proof: 

First assume n-fold rotational symmetry. This implies immediately that 

4*(t) has period 5 and we must show that Fourier coefficients %f % are zero 

except when k z 0 (mod n) for a function f which is periodic 2r [ 1 n_ . It is easy 

to show this by direct calculations. \ 
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The converse is almost immediate because a function of the form 

“0 O” f(t) = 2 + c Anj cos(njt - anj) 
j=l 

is periodic with a period F . 

Closure Theorem 

I 
j 
! 

/ 
! 
, 
I 
, 

! 

Let N 
1 

Z(Q)=Z,+& S 
BlrQ/L i -t + So + p. f CA. cos(jt - 01) 

1 jl 
e 

j=l 3 
dt 

0 

Then Z(Q) represents a closed curve if one of the following conditions holds: 

1. Alis a zero of the first Bessel function J1(x) and An = 0 for n > 1. 

2. An = 0 for all ns 0 (mod k) where k 2 2. 

Proof: 
N 

If condition 2 holds then f(t) = c Aj cos(jt - oj) is periodic with period 
j=l 

27r/k and we must show that 

S 
27T 

e-it + iftt)& = 0 . 

0 

A simple calculation shows that when f(t) is periodic this expression has 

as a factor the sum of all the kth roots of unity and so it is zero. 

If condition 1 holds then Al is the only nonzero Aj and we need to show 

s 
2n -it + i A1 cos(t - al) 

e dt = 0 
0 

A simple change of variable t’ = t - CY~ gets rid of al and our requirement 

on A1 becomes 

s 

2n -it? iA cos I? 
e e ’ dt’ = 0 

0 
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This equation holds for A1 such that J1(A1) = 0 where Jl is the first Bessel 

function [ 13) and the theorem is proved. 

Optimality Theorem 

1. There is no family ( fnc)} such that ck” = cm for all save one value 

of m, for all closed curves c$*. \ 

2. The Fourier family Aa! is the unique family for which cm depends 

only on cm and Aa! independent of curve $* and the other coefficients ck, k# m. 

Proof: 

Suppose a family ( fn(t)) as described in 1 did exist. If such a situation 

did hold we would have 

2n f r G*(t) - qg,l g,(t) dt = 0 for m # 0 
0 

The function F(t) = G*(t) - 42,(t) in square brackets can also be expanded as 

F(t) = Cbmfm(t) 

where 

b = 
fZT 

Iyl 30 
F(t) g,(t) dt - * 

From the expression above bm = 0 for m # 0 and so 

F(t) = bofoW 

or 

which expresses the possible dependence of b. on Aa. 

Substituting for (pzQ (t) from Eq. (22), dividing by Acl! and taking the limit 

as ACV - 0 we obtain 

lim 9 “(t) - @*(t-AoQ b&w 
Aol -l-l- 

Aor- 
Aa! - Aa’ f&t) = ’ 
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The first quotient approaches the derivative of $I* at t, the second approaches 

the derivative of 9 at its start&g point and the third quotient approaches bb( 0) since 

bO( 0) = 0. We finally obtain 

fo(t) = D k(t) -I- E 

where 

k(t)= e$ 

is the curvature of the curve being expanded and D, E are constants not depending 

on t. Hence fo(t) depends on the curvature of the curve whose function $I* is being 

expanded and therefore the expansion couldn’t work for arbitrary curves. We 

conclude that no family {fn(t)f can be chosen to obtain c: = cn for all but n = 0, 

for all closed curves C/I*. 

AC! Since we cannot arrange to have cn = cn the next best thing would be to have 

CAQ! n depend in some simple way on cn and ACY. We shall now see what happens 

when we assume the basis {f,Ct)/ is such that c? = hn(cn,Aa) for all n and hn 

Aa! independent of G*(t). In general, cn would depend on all the ci and not just on 

C n. This condition becomes 

,AQ! = 2n 
n s 

2n - 
9&p) ‘fq, dt = 4b*tt) g,(t) dt, Aa 

0 

Since the above equation must Ihold for arbitrary C/J* we can let r$* approach a delta 

function $*(t) x h6(t - p). Substituting for #zo and then M$t - F) for $J* we get 

h gm(Act +/..c) -t- (Aa. -I- So - Sp) $ 
27r 

0 
gmtt> dt = h,(A iiJ3, q 

Putting 

and 

2?r 
D-= g,(t) dt 



we get 

grntAa +P) 
Y- 

g,w 
-I- D = h,(y, Aa) 

Treating y and Aa as variables, we see that the right side does not depend on 

p, and therefore neither does the left side, so that 

Gm(A@ = 
grn(aol + PI 

gmw 

is independent of /..J for all Aa. The only reasonable (e.g., anywhere continuous) 

solution [12] of such a functional equation is 

Since g,(x) isperiodic on 0,27;_‘, 

Y m\= in(m) 

where n(m) is an integer, and since {g,! is a complete set, the set {n(m)\ must 

include all integers. Therefore the family (g,(t) 1 is in fact (eint\Ia and aside 

from appropriate multiplicative constants the family -(fn(t)r is precisely the Fourier 

basis {e-int\I,. 

There is a slight flaw in the above argument where we approximated @* to a 

delta function but the problem is simple enough to repair. We were wrong in 

saying that #I* was arbitrary because $I* comes from a closed curve and must 

therefore satisfy the integral formula (see Reconstruction Theorem, Eq. (4)) 

s 
2n .i($*(t) - t) dt = 0 

0 

If we define an infinite sequence of functions Sz m * by 
> 9 
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where h > 0 and m is a positive integer then each 6% m f satisfies the integral 
, , 

formula for closure and for fixed A, f it is easily verified that 

lim s* m -oF, h,m,& tt) = *As(t - CL)’ 

The proof of the optimality of Fourier series is now complete. 
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