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ABSTR.ACT 

We have examined the reaction yp * n+a”p for evidence of p”-w inter- 

ference. Assuming the ratio of the p” and w photoproduction amplitudes 

It’= 7.1 zto.7, 

we find 

Re( 6elp) = 2.3 kO.9 MeV and Im(6eiP) = -0.4*0.9 MeV, 

where 6(= 2.3 MeV) is the mass mixing parameter and p(” -9 degrees) is 

the relative phase of the 8-w amplitudes. Our result, obtained using a 

hydrogen bubble chamber, agrees with the high-statistics Daresbury re- 

sult using photoproduction on carbon. 

The possibility of pa-w interference was 

proposed some time ago,‘but interference ef- 

fects amounting to two or more standard devi- 

ations in the aSa-channel have been reported 

only recently. 2-8 These experimental results 

have stimulate9d ;;w theoretical studies of 

PO- W mixing. - The magnitude of the 

observed o* IT+,- amplitude agrees with these 

theoretical expectations, and its relative phase, 

as seen in the detailed shapes of the interfer- 

ence effects, can be interpreted in terms of 

simple models for p” and w production in quasi- 

two-body reactions. 

Clear evidence for p” -0 interference has 

been observed in photoproduction on carbon by 

Biggs et al8 -- at Daresbury with 140 000 events, 

at a mean photon energy of 4.2 GeV. The p” -w 

interference is inferred from the shape of the 

IT+IT- mass spectrum near M,; they obtained 

constructive interference for Mm <M, and 

destructive interference for Mva > Mwin agree- 

ment with the prediction of A. Goldhaber, Fox, 

and Quigg (GFa).9 The interference is deter- 

mined by measuring the relative phase, p, of 

w+ s+n- and p” + ~+IT- amplitudes. For photo- 

production of p” and w, the value p = 0 is pre- 

dicted assuming the vector dominance model 

(Submitted to Nuclear Physics B) 



-2- 

(VDM) and that the photon transforms as the 

U-spin singlet member of an SU(3) octet. The 

Daresbury experiment obtained the value 

p = 2.0 & 5.1”. 

Hornli and GFQ9 have pointed out that the 

PO -w phase should be the same in p” and GI pro- 

duction from e+e- colliding beams as in diffrac- 

tive photoproduction (see also Ref. 8, 17). This 

follows from the observation that the production 

amplitudes shown in Fig. la, b, differ mainly by 

the presence or absence of a diffractive process, 

which does not distinguish between p” and o. For 
t- e e * vts- the Orsay storage ring group’ re- 

ported p = 55*28”, however, the disagree- 

ment with p=O is not statistically compelling. 

We have analyzed even$stof the reaction 

h- 
VP’= n-P (1) 

in terms of p” -w interference, as part of a de- 

tailed study of photoproduction using a hydro- 

gen bubble chamber exposed to a monochroma- 

tic linearly polarized photon beam. I3 We ob- 

tained 90 14 events/pb at 2.8 GeV and 149 f 6 
events/pb at 4.7 GeV. For the present study 

we combined the 2854 events at’Ey= 2.8 GeV 

and the 2910 events at E = 4.7 GeV that fit re- 

action (1). The mass reiolution, 6 M& in 

the p” mass region was estimatedto be =t5 MeV. 

In Fig. 2 we show the n+n- mass distribu- 

tion for the events of reaction (1) in the region 

of the p”. In the reaction e+e-+ n+a-a kinemat- 

ical skewing of the dipion mass distribution 

proportional to (Mn,)-4 is caused by the pho- 

ton propagator in Fig. I(b). A somewhat sim- 

ilar skewing in reaction (1) is not so well under- 

stood. Our previous studyi of the a’~- mass 

shape has yielded an empirical formula 14 that 

adequately describes the observed skewing of 

the TIT mass distribution. In Fig. 2 we show 

by the dashed curve the results of a maximum- 
likelihood fit to the events of reaction (1) using 

the empirical formula to account for p” produc- 

tion. At+ 9 and phase space were also allowed to 

contribute. Although the dashed curve ac- 

counts for the gross skewing of the $ shape, 

there is an excess of events just below M w 
and a depletion of events just above M,. 

To analyze our data we chose the mass 

mixing theory, and adopted the notation of 

GFQ. 9 Here we briefly re-derive their re- 

sult. The informed reader may skip to Eq. 

(3). 
In the spirit of the vector dominance 

model we assume that, before mixing, the p 

and w are produced (by diffraction scattering 

of the intermediate vector meson) in pure 

states which conserve G parity, i. e., 

IAPP 2a only 
,A, > ~ 3n only ) initial state. 

These states are then mixed by the G-violating 

term 6(assumed to be rea19) in the propagator 

matrix P. 

Using the usual abbreviation for Fe Breit- 

Wigner denominators, pp= m - m - i $! , pw 
P 

= similar, and m for the dipion mass, we 

have 

Dropping the b2 term gives 

After mixing, the 2s amplitude is 

where the T’s are decay amplitudes in the ab- 

sence of mass mixing[we take T(w+2a) = 01, 

and the A’s are the vector meson production 

amplitudes, 
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To investigate p” -w interference in reac- 

=L%+ 1+-E ( I 
A 

9 &T -) 
(mo-m-if) Ap 

where p = Arg[Aw/Ap] . 

eiP 6 
T ’ 

ma-m-i- 
2” ) 

(2) 

That is, in the presence of 8-w interference, 

the ~,‘n- mass distribution is given by the p 

line shape (including kinematical dependences), 

multiplied by a modulating factor, $, which 

characterizes the interference: 

On the other hand, the Daresbury group 

analyzed the p-w interference using the phenom- 

enological parameterization 

ior 
S(* t- IF )= 

( 
1 

2 2 
m -mp tim F +- 2 z” 

P P 
m -mw tim l? w w )* 

(4) 
Factoring out the p Breit-Wigner and comparing 

Eqs. (4) and (2), one obtains 

A I I 2 eip6 S 
A 

(m -m-i%) 5 eicum 
P P 

Evaluating the right side at the w mass yields 

the convenient approximation 

A I I -E eiP 6.z + 5 ei(a-+p), A 
P 

where tan + 
P 

(5) 

The Daresbury group obtained e = 0.0097*0.0008, 

Mp=767.7f1.9 MeV, Fp= 146.ik2.9 MeV, 

MeV, CY = 104.0&5.1 deg, and 

These values, along with Eq. 

6 = 1.910.25MeV. 

6 = 2.0*5.1 deg. 

tion (1) we assumed that the empirical formula 14 

(discussedinRef. 13) adequately represents the 

kinematical effects in p” production. We then 

made a maximum-likelihood fit, modulating the 

p” amplitude by the factor vof Eq. (3). Since p 

is undefined for 6 = 0, we fit the real and imagin- 

are parts of exp(ip). For convenience we define 

Atll 7=3 yq- 6. I I P 
(6) 

The solid line in Fig. 2 gives the best fit ob- 

tained with this form, which is better than that 

obtained without the factor $ by E 2.5 standard 

deviations. The fit gives 

7 cos/3 = 2.6*0.9 MeV, 

T sinp = -0.4rtO.9 MeV, 

resulting in a value of T = 2.6~t1.0 MeV. 

Figure 3 shows contours of equal x2 in the 

r cosp and T sir@ plane, where 

A x2 = - 2A [In (likelihood)]. 

In order to relate r to the $-w interference 

parameter, S, we must make assumptions con- 

cerning the amplitudes A, and A . Figures 4 a-d 
P 

shows the diagrams for the p” and w photopro- 

duction amplitudes resulting from natural- 

parity exchanges [P = (-i)J] and unnatural- 

parity exchanges [P = (-i)Jfi]. Analysis of 

the p” decay in this experimenti has shown that 

the reaction vp -. pop proceeds almost com- 

pletely through natural parity exchange; i. e. , 

the amplitude corresponding to Fig. 4c can be 

neglected. Because the natural- andunnatural- 

parity.exchange amplitudes are orthogonal, only 

the natural-parity exchange amplitude for the w 

interferes with the p”. 

Using VDM and assuming that the p and w 

elastic scattering amplitudes onprotons are equal 

,gives 1 Aw/Ap I = ye/y,, where yv-’ is proportional 

to the photon-vector-meson coupling constant. 

Augustin et al. , 16 using the Orsay Storage Ring, 

obtained yz/yF = 7.1* 0.7. With this value and 

Eq. (6) our result for 7 gives 
6 = 2.3AO.9 MeV. 



-4- 

In comparing the results for diffractive 

photoproduction on carbon and on hydrogen, 

consideration must be given to nuclear effects. 

An indication of whether coherent nuclear ef- 

fects are important in the interpretation of the 

Daresbury experiment can be obtained by com- 

paring their determinationi of the ratio 

Y,2/Yp2 with the Orsay storage ring results, 16 

where nuclear effects are not present. As 

previously mentioned,the Daresbury group ob- 

tained yu2/Yp2 = 7.0 ‘I::, whereas the Orsay 

results are y, 2/p = 7.1*0.7. 
P 

Hence, ne- 

glecting differences in p” and 0 coherent nu- 

clear scattering appears to be justified within 

errors. If incoherent processes are also ig- 

nored, 8 the Daresbury result for the mass- 

mixing par am’eter, 6, may be compared with 

the results from diffractive photoproduction on 

hydrogen and from colliding e’e- beams. 

Given in Table I are the values for 6 and 

/3. Because our value of 6 is about 2.5 stan- 

dard deviations from 6 = 0, we do not give an 

error for S. The results for b and p as deter- 

mined by the colliding-beams experiment and 

by photoproduction from carbon are given in 

Table I for comparison. Our determination for 

6 corresponds I8 to BR[=l]= 1.3+;*; 70. . 
The parameter 6 has been estimated by GFQ 

from the Coleman-Glashow model 19 to be about 

2.5 MeV; this corresponds to BR[=l]= 1.45%. 

Conclusions 

We have observed evidence for p” -w inter- 

ference in diffractive photoproduction of vector 

mesons on hydrogen. Our results are consist- 

ent with the predictions by Goldhaber, Fox, and 

Quigg 9 and by Horn; 11 they are also in agree- 

ment with the results for PO-W interf,erence in 

diffractive photoproduction of vector mesons on 

carbon. 8 
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Fig. 2. IT ‘IT Mass+distribution for events of 
the reaction yp -C lr IT-P. The curves give the 
results of maximum-likelihood fits with (-) 
and without (-----) pa-o interference. 
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Fig. 1. (a) Production mechanism assumed 
fy yp +$:x-p. (b) Feynman diagram for 
ee+r71. 
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Fig. 3. Contours of equ&X’ in the plane of 
T COST and T sin8 (7 = 31~1 6, 6 is the mass 
mixing parameter). P 
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Fig. 4. Production diagrams for p” and w 
amplitudes resulting from (a, b) natural-parity 
exchanges, and (c, d) unnatural-parity ex- 
changes. 


