
.

SLAC-~~~-844
November 1970

A COMMAND LANGUAGE META-SYSTEM f

James E. George*
Computer Science Dept., Stanford University

and
Harry J. Saal**

Stanford Linear Accelerator-Center

Abstract
A meta-system for the construction of scanners for a wide variety of command-
type languages has been developed.
ated from command descriptions,

Provided with suitable sets of tables gener-
it is capable of parsing command languages which

enforce strict criteria on parameter specification or those with free field, key-
word identifier construction. The description language permits recursive scan-
ning so that list-like parameter fields may be recognized in addition to simple
ones. All phases of the system construction are table driven and provide great
ease and flexibility for experimentation.

1. INTRODUCTION table suitable for use by the scanner. The inclu-
sion of the desired semantics as subroutines in
the primitive library completes the definition of
the command language.

Our initial aim was to design an interactive text
editor for a micro-programmable computer and to
simulate this text editor on an IBM 360/91. In
the process of trying to design the user interface
'and an adequate set of primitive functions, we re-
viewed several text editors and discovered that,
as a group, we could not agree to a specific user
interface; the conflict was on commands, command
names and the specification of parameters to a
command. We did agree on the general system ob-
jectives of:

To use a specific command language, the user desig-
nates to the scanner which table is to be used.
This table is then obtained and saved in the user's
space. Commands can now be analyzed by the scanner
using the specified table'and semantics performed
through activation of subroutines in the library.

(1) User Interface should be easy to change.

(2) In a time sharing environment, each user
should not be required to have his own
copy of a text editor.

We realized that we were really designing a meta-
s'ystem for command languages.

2. OVERALLVllP OF THF: META-SYSTEM

Figure 1 illustrates the meta-system. To--define
a new command language, a command description is
analyzed by the table generator which generates a

*Supported by NSF Contract NSF-6J-687^

This model provides the versatility desired and
allows command languages to be developed or modi-
fied modularly. New or mod'ified commands can be
tested without the other users of that particular
command language system being aware or affected by
this testing. Further, each command language can
be tailored to a user or group of users. This
tailoring could provide simplified commands for
less sophisticated users or could limit their
actions or capabilities. These capabilities could
Involve items wuch as read only systems, file
access restrictions, etc.

3. THE TAEQZ GEl'iXRATOR

The table generator 'is implemented in PL/I using a
simple'precedence syntax analyzer and semantic con-
structor. The syntax for command descriptions
(which is an input to the table generator) is given

*Supported by AEC Contract AT(043)-515 kn Figure 2. ,.

f Summary of talk to be presented at Fourth Hawaii International Conference on SyStem

Sciences, Honolulu, Hawaii, January 12-14, 1971.

c
a’ -2

A command table consists of a set of options
followed by a list of commands. The options con-
sist of the table name to which the table gener-
ator adds the current date and time for identifi-
cation, a separator for use in the tables
(*PERIODIC) and a character which will surround I'
strings to indicate type <STRING> (~QUGTES*).

The list of commands is composed of subroutines
used in the commands and the keywords denoting
the commands and their parameters. Commands are
indicated by *KEYWORD: *RTN* indicates the sub-
routine to be activated when the parameters are
obtained. Both co?fiands and subroutines (*SUB-
ENTRY*) can have alternate names.

Normally, all special characters are treated as
delimiters (all non-alphanumeric characters) by
the scanner; when scanning for the next item, the
scanning proceeds until a delimiter is found and
then the delimiter is deleted. If a delimiter is
given in *DL-X-LIST* for a command or subroutine,
it is not deleted but is returned as the follow-
ing item; if the delimiter is given in *DL-SKIP,
it is treated as any other alphanumeric character.

Parameter types may be number, name, string or a
table-subroutine call (<STRING>), and may be ini-
tialized. Parameters may further be restricted
by,using the *x-P% and *K* options; for *P", no
parameter before the one with this option can.be
filled in after thZs parameter; for TK*, this
parameter can only be filled in after recognition
of its key.

A'parameter may have multiple keys of varying
types. Type *VALUE* means take the next item
a,fter the key and assign it to the parameter; type
VALUE <STRING> means take everything up to the
occurrence of <STRING> and assign it to the para-
meter and then delete <STRING>; type *VALUESHORT*
<STRING> is *VALUE* STRING but without deletion;
type *SELF+ <STRING> means assign aTRING) to the
parameter; type *CALL* <STRll!JG) means call table
subroutine <STRING>.

4. THE SCANNER

For ease of implementation, the present scanner
was written in SNOBOG. One assembly language
module was provided in order to permit SNQBO& to
interact with our local terminal supervisor,
hf@I'EN .

A user specified syntax table-is scanned and
translated into a SNOBOL 4 data structure. Com-
mands are then entered from the terminal.

The ,routines SCANNER and ISTWE (used recursively)
do the bulk of the work in interpreting a user
command. SCANNER first locates the command key-
word and if valid, establishes a new set of de-
limiters based on *DL-EX-LISrC and *DL-SKI@
ffelds.

G'sZng these delimiters, the next field is extract-
ed CT If it is not a keyword for the current para- I b

meter and this parameter requires a key, one looks
at the next possible parameter entry. If the key-
word is not required, ISTYPE is called to deter-
mine if this field (or more) is of the type speci-
fied for the current parameter. If any of the
field is recognized, it is used as the parameter
value; otherwise, we advance to the next parameter
'to see if it is a keyword or recognizable type.

Whenever a keyword is located, the action taken
depends on the key-type specified. We may search
for a matching delimiter (like closing quotes)
where the delimiter is to be ignored once detected,
or a separator character (like comma) which must be
rescanned later as a keyword identifier. We may
sfmply set a parameter value upon detecting a key-
word without further scanning (like recognizing
'NOLIST') or else recursively call ISTYPE with a
specified command word string preceding the remain-
der of the user command. This permits new data
types to be recognized by using subroutines of
table entries in addition to the built-in classes
NUM (number), *NAME* (alpha followed by alpha-
numerics) or *STRING* (arbitrary). ISTYPE handles
these three classes directly but will call SCANNER
to use its table for anything else.

Whenever parameters are successfully recognized,
their values are bu-ilt into a tree structure which
reflects the level of scanning at which a value was
ascertained. This tree is then passed to the sem-
antic routine associated with the top level command
entry decoded. The semantic routines may determine
if a value was explicitly determined by scanning or
was an initialization value.

The scanner described most closely resembles a top-
down parser. However, it will try alternatives on-
ly if no additional part of a command is recognized.
In general, there is almost no backing up in the
scanning and inability to read further or errors in
type will exit with a pointer to the offending char
acter. This provides a very good localization of
the cause of non-recognition.

5. J!.xAMPLE

Let the desired command be

where L may be substituted for LIST. Further as-
sume that (FILFJJAME) can not be specified first and
that<NUM> can be used in place of <NUM)/<J!RJM).
The command description is:
*QU(yf&‘S” S-&b 'I
*PERIOD++ *=* .
*TBL-~W *=* 'MAMpI;Efl
*KEYWORDn LIST *RTN* SUBROUTINE1 *DL-M-LIST" '/'
*KEYWORI+ L *RTN* SUBROUTINE1 *CDL-M-LISP "/'_
cpaRM *NUM* "INITIAL" "-lU *ENp
CpAF@f *m* *K* "p" *mmJ&* "-1"

KETY / *VALUE? *EZp
CpAm *Nm* SK++ +Q% "I'Nn-AL++ ""

*KEP IN*VALUE* *END"
END-TABLE

%
* ’

-3-

The output table produced would be:

EXAMPLE w/30/70

LIST.SCBROUT~l./..

L.SUBROUTINEl./..

l&33:48.250

."NUM***. -1.

.*NUM*p"K*.-1.

. . /**VALUE*..

.*NAME*pKK*..

..IN,*VALUE*..

COMMAND
DESCRIPTION

5 tJ

TABLE
GENERATOR

cl
t

(COMMAND TABIE)
(OPTIONS >
(OPTION)

(COMMAND-LIST)

I:: El
(ID>
(PARM LIST}
(PAW
(PAR&l ID}

(TYPE KEY)

TABLES 1

cl

+-- SCANNER c > PRIMITIVE
LIBRARY

.

FIGURE 1
Command Language Meta-System

::= (OpTIoNs) (COMMAND LIST) *END-TABIE*
l *= (OPrION)I(OpTIONS) (OpTION) . .
l m= *Q~OIES* *=* (WORD) 1 . .

TBL-NAME *=* (WORD)
'APERIOD)C *=* (WORD) 1

ii: 1;; LILI;{ (PARM LIST) 1 (COMMAND-LIST) (ID LIST) (PARM LIST)
1 (ID LIST) {ID SPEC)

::= (ID) E *DL-Ex-LISW (STRING) 1 (*CDL-SKIP {STRING) 1
sm-ENTRY (WORD)

(PARM) *ENIyA

-*= *PARM* . . *INITIAL* (STRING)

::= *KEY* (WORD)
NAME 1 (STRING)

::= (KEYS) *KEY* (WORD)
: := *VALXE?+ 1

0.m IBY>
VALUE (STRING) I

VALUESHORT (STREJG) 1 *CALL*
*SEW (STRING) 1

(STRING)

FIGURE 2
Syntax for Command Descriptions

0 means can occur 0 or 1 time
0 followed by (1 means each can occm 0 or 1 time in any order

