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1. INTRODUCTION

The multiperipheral model (MPM)jprovides a valuable scheme for the
classification and the understanding of the multi-particle production processes
(MPPP). The main ideas of multiperipheralism have survived ten years of
research, and the general features of the MPPP are surprisingly Vell reproduéed
by simple multiperipheral parametrizations.l However the detailed study of
particular production processes has not yet provided compelling évidence for
(or aéainst) the dominance of the multiperipheral dynamics: the statistics
are not'rich enough, and thé number of free parameters is usually large.

It looké.more promising, fof the time being, to concentrate our

attention on the general features of the MPPP, i.e. on guantities that are

hopefully independent of the details of the dynamics, and therefore of the

particular reactions involved.

An obvious quantity of this kind is the average number of particles

produced in high energy inelastic collisions (n(s)). A recent experiment2

‘has confirmed the logarithmic behavior predicted by the MPM. More information

is contained in the charge'distribution function P(n+,no,s) that gives the
pfobability of having 2n+ charged tracks and ny neutral particles (in a
reaction with total charge 0) as a function of the energy. The knowledge

of‘ P(n+; n,; s) obviously providesvmore detailed information tpan the‘one
contained in (n(s)). Still this gquantity is an extremely average one in the
sense that all the final state kinematical variables have been integrated bver.
There is actually good evidence that the charge distributions are, to a good
extent, universal, namely the same function P(n+,no,s) describes all reactions,
provided an obvious shift is made to relate reactions with initial charges

2,1, 0, and -1.°




The general Teature of the charged partiecle distribution is 'in gbod
agreement with a Poisson-like distributions,h providing a further hint for
the validity of the MPM. 1In faét, this kind of distfibution is predicted
for the production of n identical bosohs in all simpler MPM. For instance Chewl

5

and Pignotti” obtained:

P(m, s) (g %S)m 3—32/”1' (1)
 8)= % ‘
where g is the coupling of the boson to the multiperipheral chain. In the
physically relevant situation in which mo;t of the produced particles are
pions, (1) cannot possibly hold due to charge and isospin conservation.

| i‘ Severalrmodifications have been proposed to take into account this
éonstraint,like producing pairs of charged particles with a Poisson distribution,_3
or assuming a Poisson dis%ributioﬁ for the probability of positive and negative
particle production and multiplying the two to obtain the joint probability for
production of a.painﬁln the framework ofvthe multiperipherai model the
function P(n+,no,s) is uniquely determined by the isospin structure of the
exchanges . Itlis the purpose of the present paper to examine the predictions
that follow from the assumption of the dominance of several well defined and
physically reasonable mechanisms. In Sée. 2 we will introduce the models
that we are going to éonsiﬁer, and we will give physical justifications for
their relevance.  1In Sec. 3 we willkstudy the models analytically, and in
Sec.‘h we will examine their phenomenological consequences. Section 5 will

be devoted to some concluding remarks.

2. THE MODELS — GENERAL FEATURES

In this scction we want to outline briefly the general (very simple)

dynamical features common to the models that we want to consider, and to




introduce the specific isospin structgrc of the various models, giving some
Justification fof their selection and some hinpg/:: the particular problems
for which they can be relevant.

As stressed in the introdﬁction,‘we feel that the charge distributions
in which we are interested should not depend cfitically on the dynamics, and
therefore we will keep all dynamical features to a maximum level of simplicity.
Namely we will assume: |

a) The intepgrated cross section for the multiperipheral production of n

particlés in a definite order is given by a simple Chew-Pignotti form

0"('?\‘&) (%13“5)’“' {(f)/m" |

whe?e g2 is an appropriately defined coupling constant and f(s) behaves

1

like s~ 1in most multiperipheral models: however, this function is

irrelevant to the‘problem of charge distributions.
b) The matrix element for the production of n particles in a given order is
sizable only in the phase space region in which the longitudinal momenta of
the particles produéed multiperipherally are ordered in increasing magnitude
(in the laboratory frame). This allows us to add thg various permutations of
the final particles incoheréntly, neglecting interference terms.
¢) We will for simplicity assume that all the(produced particles are pibn§
(i.e. isospin one). |

The simplest model that we are going to consider (H-model) assumes
the multiple exchange q{/ég = 1/2 ’obJect to be the dominant mechanism. Under

this assumption it is straightforward to compute;
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where we define the shadow function' Sn(s) as
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The factors (3) and, (3) are the squares of the Clebsch-Gordan coef-
ficients for the (1,0) X (%,%) - (-%,-%) and the (1,1) X (-%',—-%)—r(%,%)

on
couplings, and a factor (2n+n+ no)b is obtained/observing that the permutation
0

-of two oppositely charged particles leads to a configuration not allowed by
I =~%  exchange. ‘The main interest of this model consists in the fact that
the neutral particle production factorizés ahd therefore the model simulates
an indepehdent émission of the various charges, The charged particle
distribupion has the same structure8 as ‘one of those proposed byVWang.3

Even if this model has essenfially/:éiigmml interest, we can propose
a physically relevant application in ﬁﬁ 'anhihilation processes, From the
data on the charge asymmetry9 in pp - T we know that nucleoﬁ exchange
dominates over A exchange at low energy, and the average subenefgy of a pair

of pions in ﬁi annihilation should be generally very ldw,lo as the total

annihilation cross section behaves experimentally like s—l. Also in Tp

and pp inelastic processes nuéleon exchange has been successfully advocated1
to parametrize the so called central interactions. The pions emitted at the
nucleonhline in the model of Ref. 1 should follow the distribution (2).

The second model that we are going to consider (A-model) was actually
proposed by Chew and Pignotti.s The assumption that characterizes the A-mo@el
is that the dominant multiperipheral mechanism is alternate exchinge of I=0
and I=1 objects. Assuming for simplicity that the initial and final links
have I=0 when the number of produced particles is even, the piobability

distribution is:

»
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with n, equal to 2m or 2ml, m integer.

The function SA(s) is defined in analogy with (3) by
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Two physical justifications for this model can be proposed. In the framework
of the AFS modelll this mechanism 1s relevant in the phase space region which
corresponds to large energies for the~ T-T cross sections, but we know that
this phase space region is actually éuite smgll. On the other hand, the
I=0 particle exchaﬁged could be an ® or a P', and the Isl1 a p or A,
(or an elementary ). In the framework of the multi-Regge model the exchange
of mesons (defined as Regge trajectories with intercept close to .5) is
dominant, but it remains to be explained why I=0 and I=1 should be exactly
alternate}z We can hopefully assume however that the predictions of models in
which I=1 or I=0 exchanges can alternate in any (allowed) fashion, will
be somehow intermediate between the A-model and a third model (I;model) in
which I=1 exchanges dominate through the chain.

In the I-model, assuming for simplicity that the initial and final

links have ;fo, we obtain the distribution;

2'“ ‘my
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and SI 1s the shadow function for this model, defined in analogy with S




In the last model (R-model) the final pions are not directly produced
by a multiperipheral mechanism, but come from the decay of resonances for
which a miltiperipheral production mechanism is assumed. In this model there
is a strong correlation between the neutral and charged particle production,
and this scems in agreement with the present data.h To define this model
more preciscly, we assume that the dominant mechanism is the multiperipheral
prodﬁction of I=0 (a,fo) and I=l(p) T-T resonances through multiple I=1
exchange. Therefore the R-model corresponds to an extreme parametrization
of the AFS model, in which the T-T cross section is assumed to be‘dominated'
by the s-channel production of I=0 and I=1 resonances. In view of the
fact that the average w-T subenergy is of the order of ;5 GeVe, the model
is not unreasonable. As pointed éut'in Ref. 15, the actual shape of the
assumed resonance is not important, as all dynamical variables are integrated
over. What really matters is a definite s-channel isospin character of the
=T cross section.

We obtain the charge distribution iﬁ two steps: We first finq the

probability distribution for the production of r I=0 resonances, ml p+

(and m, ") and m, .

A - 4t 2 T
P (x, m, m, s): (g0 As) ¢ | P, e, s)

)L‘

Here g02 is the coupling constant for the production of the I=0 resonance,
and gz (implicit in PI) is the coupling for the production of an I=1 '
resonance; their rclative value can be fixed by requiring that the -1

amplitude with T=2 in the crossed channcl vanishes (as it does in the
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s-channcl). Wc obtain from this condition goz = %— , but, as stressed in

Ref. 13, the predictions of the model do not depend critically on this
assumption. From (6) it is easy to obtain the pion distribution (n0 = 2 M

is necessarily even in this model):

M _ &% -1 _
P'R (M"Mo";)‘._‘ (%T&AS)IN M2 + < 972 (SIU)) x - (8)
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- LM.-t-’W‘z"). 3 2

m = 0 m,=0 (’M,-l)! (/m‘,_)! (M+;'ml'm2).i k’“"ml)-’(z""‘t*’”‘z\!

3., ANALYTICAL STUDY OF THE MODELS

In this section wve want to perform an analytical study of the
distributions’predicted by the various models in order to obtéin some
features (like the ésymptotic behavior) of the phenomenologically relevant.
quéntities.

The H-model is very simple, and again it is convenient to start from
it to establish the notations. The shadow function SH(s) can be explicitly

gomputed.lh Trom (3) .
hi el 1 g8
S - */jt“ﬁk@)"‘l o o (9)

where here and in the following a 9;2111 8. The charged particle

distribution is | | (2,
Clnt) - L Plae,n, )
h

and exhibits Poisson-like features. The average number of positive particles

PR

n! (W’K&i)“‘l (10)
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" and the average number of neutral particles 1s '
v g Q. ,
TR Y S | |
o7 =/ ?(h«.ho.b)“oi:-; 3 (12)
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The total average multiplicity behaves asymptotically as gzln s. The

‘coefficient of the logarithmic increase (gé) equals the power with which the
shadow function increases, as usual in miltiperipheralism.

Because ﬁhe dependence on n,_ and n, of P(n+,ho,s) factorizes ,
the'éverage number of WD produced for a fixed nuﬁber of charged particles,

n, does not depend on n,: B
H ’ L ha/\)(h‘“hol}_") A -

/5\ (\\k,}b) = "‘55—73"“f”"”'" = 3 ' o (13)

| > Plne, no, ) - |
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In the A-model the shadow function is given by :

' Antdm+l \
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(14)
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'wherevwe separated the sum in two parts corresponding to even and 0dd number
of wp respectively. We note that the contribution from the terms with an .

even number of wp is the derivative with respect to a of the contribution

from the terms with odd n 0* kTherefore, using the doubling forhula for the
: , T o ' o
I' function, we can recast (14) in the form:

! R
{Dﬁ(b) -Ir (-H E[L—UL )T (% | ‘*lf' Z;,‘ (3:) "‘m("“"'“/;)‘
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Therefore we obtain the simple expression

Sty = wh(Ba) + swhlRa)

The function I in Eg. (15) 1s the Bessel function of imaginary

argument, asymptotically the shadow function behaves like

3+1 J—S
2\/""

(10), is given by

« The distribution of charged pions, defined in ehelogy with

‘ C\ (1 h) cxn’ 1’% 'lx“’ r L
ﬁ' h*’ L/ ‘?)&) ‘}‘L/.L(ﬁ“)

 We: see that the "Poisson-character" of the distributlon is repro&uced. Tﬁé‘ 

' ?waverage number of charged (positive or negative) pions is

b (Ba) +13 (- ~)mk(ﬁa)
Vi ph(Ba) + 50k \B2)

’ '_ewhich asymptotically behaves like ——— ; For the average numbex of.heutral
SRR ; \/3 . ' . '

‘;< b - % an

erpiuns ve get

= o; MM\B«L)-& ‘r(‘*") Wf»(ﬁ‘k)
< > v~ K m&(ﬁ«) v Ak ‘\{341) | 0\,,09 VS -, (18)

Asymptotically, therefore we have an equally increasing number of positive

and neutral pions. For the correlation function between charged and neutral

pions’defined in analogy with (13) we get:

}\A (e 4) = & (+&) Im:h(a) % l"*’/cm-) - |
. Ty B 1“"/).(0\) + 1}\”/1,(«) .

vhich for large a behaves like
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monotonically decreasing as ‘a function of n, in the region in which n N is

much smaller than a. For lé.rge values of n , at fixed a ) A, levels off

to the asymptotic value a/2.

Iet us now turn our attention to the I-model. In this nodel the

shadow function can be written as:
' - ox\N

‘ : a hs
SI. ‘ Z g'}:) (V\i-“'\a“\\)" Q)\f)‘. (1") _ o
DWEL e Lo feel T
.y @) b Ca ) @
- m (VH' ,ZN My T ‘ :
h%' .l e
Using the integral representation of the confluent hypergeometric function

& T | e s b
CP():,A, x) < MT’(A)TM—) So (R)

we obtaln the convenient integral representation of S (s):
i (5:.) L R

S() ¢ W Q'“) d“-.:,

Ol lwm o
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Z
where I

1 is the Bessel function of imaginary argument. To obtain the

asymptotic behavior of SI(s) when s (and therefore a) goes to infinity,

we replace Il by the leading term of its asymptotic expansion

{

Sl(’ﬂ ~ V%g X [ %+ aafi) o M
A—0° . ;

v




The asymptotic behavior of (22) can be evaluated by the standard saddle i)oint

method;

1 2
5(/:)’5 3 < 5! - | (23)

The charged particle distribution. in this model can be evaluated in a similar

’ 2 ﬁ+
AU L C(€)" Plurnn L%:')
C (VLHB) = Z“: P .(Y\t‘ho, &) = m" S:\ (/b) | (24)

Using the asymptotic expansion of the confluent hypergeometric function we

way:

.- obtain ~ o ‘ S
i : h+

N A . |
C (m 0 ;:; 6/5 — e

We see that the Poisson-like features are present also in this model, at
least asyn;ptofi‘cally. Formula (25) cannot be used to compute the average
number of charged particles, because the é.sympto‘tic expansion of § is
valid only for a>> n. However, we can calculate (n I( s8)) using a

~ representation similar to (22)

<V\+s)> Zm(,(m,),_,s_l_)g.g@r( L(@)a)&a
hvl (s

~) la o ; .
L 3 (26)
and in an analogous way: | ) ' Olf')h
| AT Pl g, &)
< “o 07)? / no ? r\+ ho’ 'LJ) 1 )! ! ) l.)
: ls A) h=)
ho'h |
“&r ! (27)
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The average number of 1ro at fixed n + is given in this model by:

Ry R o S i)
ZI ,\) (’\*l)\"ob) ‘ hf*% @(V\f I A+l | %)

= 0 EEL O%CP N+ 2.}'\%*\';\)1 (28)
At large a . | |
.AI (m,s) ~ % ~(n *‘) o 0 (w) (29)
. » A——-aua

and we expect a .monotonically decreasing function of n . at fixed large .s. . |
However at small values ‘of a, the third térm in the expansion can give a
smb.ll incfease in n, this feature disapx;earing rapidly with increasing a.
For n N ilarge compared with a we can use the asyn@tqtic expansion at

fixed a and n - «, and we get

Al(m.'b)h +O(n,) | | 00

| For the R-model analytical calculations are more cumbersome. However, using
t’he results of the I-model a few basic quantities can still be calculated.

The shadow function is given by:

a T i,
SR('B) _ Z )\nho,/u) 7 ( (3“) Z‘?l(m,,mzlo\):

\
hyn h‘anl '. e _m,,fvu

I @

Using (22) we get for the asymptotic expansion of S

14

e (32)




The average number of charged pions is given by
Cayye 5 (nmen) G B Plnn, &
<)\f b)? m‘+mk+h}~ mh")z,,‘)':

hla —DI ’ ) | (33)
h.,nx I / ,

The expression appearing in the numerator was calculated in (26).

Therefore the asymptotic expression of (n+)¢ is
'y _ ’2.0\‘ A _ |
gy~ F 4374
)>0\~9°" I

In an analogous way w

<FD
4,03
[4:3
ot
Hy

-R( hyo )
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The average total number of particles produced behaves therefore as 3g in s,

L, PHENOMENOLOGICAL CONSEQUENCES

The function P(n+,n0,s) derived in the previous sections contains in
principle all the information about the charge distributions. Very few
experiments however can determine the number of neutral particles present in
the final state (none, to our knowledge, in/tgzmic ray energy region).
Therefore the charged particle distribution C(n ,8) defined in (10) is
particularly relevant. The information contained in the function C can be
exploited in different ways. We can fix an energy s and plot the dependence
of the cross section on the number of prongs. The experimental information

avellable on this dependence supborts the Poisson-like structure common to all

the models that we have considered. In Fig. 1 we compare the predictions of
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the fodr models with the data of Ref. k. We see that the genersl shape is.
predicted by all models, even if the H model falls off too rapidly.

Another possibility is to study the s dependence of a given topology.
Figure 2 shows the predictions of the R-model compared with some data at -
acceleratgr energies. The prediction of the other models are qualitatively
similar.1 We note that every individual cross section decreases to zero in
this kind of model as s to some negative power, and we see that the present
data are compatible with this feature, even if no individual inelastic cross
section shows a clear trend to decrease at the present energies. We note in
particulgr that our model reproduces well the data on the basis of which a
2 B rule for the (constant) asymptotic behavior,of the cross sections with
'a definite number of prongs was proposed.17 A third way of exploitinglthe
information contained in C(n ,8) _is to.consider the probability of having

a mumber 2n+ of charged tracks at an energy at which the average number of

charged tracks is 2(n+). We obtain in this way a set of functions P ((n 1))
+

that is plotted'in Fig. 3. The main interest of this kind of plot is in the

fact that the set of functions Pn ((n+)) looks ekperimentally universal,

namely independent of the particular type of reaction considered and this
fact is, in our opinion, dn indication that the details of the dynamics do not
play aﬁ essential role in determining these distributions. _

Let us now examine the'nedtral particle distributions. In all the
models under consideration the average number of WO and of w* are the
same asymptotically: Figure 4 shows how this asymptotic limit is reached.

except for

We see, that all models (_/ the R model, that has by necessity the opposite
behavior of the I model) predict a slight excess of r over WO at low

energies. In the A, I, and R models the difference (n+)-(no) reduces
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very rapid;z/a constant value, that survives asymptotically. The few data
available on (no) are however not sufficient to test this prediction. A
very interesting quantity for which some experimental data are available is
the function A(n+,s) introduced in Sec. 3, that measures the correlation
between charged and neutral particle emission. ‘As argued in Ref. 13, the
‘available data show a clear depéndence of A on n., and therefore cast
serious doubts on.any model in which the heutral and charged particles are
emitted independently (like the H model). Also the prediction of the I and
A models (see Fig. 5) are not in agreementIWith the data of Ref. h; that on
bthe contrary support a mechanism'of resonance'production, of the form of the
R model. _ _‘ | | . .

A further interesting poiht relaéed‘to the neutral particle distribution
is suggested by the study of cosmic ray évents. In'this kind of experimént
only charged particles are detected, and also the momentum analysis is usually
very difficult. Therefore, the only experimentally observable quantity is the
scattering angle ©

lab’

- of events presents large gaps in the (n tg olab distribution. Assuming

1imited values for all the transverse momenta this fact corresponds to the

It has been observed that a rather high percentage

existence of large gaps in the longitudinal momentum distribution of the
charged particleé. It ié therefore possible to classify the chafged particles
produced in this kind of event into two (or mpre) clusters, in such a way
that the relative energy between any pair of charged particleé belonging to
different cluster is.larger than, say, 3 GeV2. These events are usually
referred to as "two (or more) fireball: " events, and their océufrepce is a
challenge to the multiperipheral scheme. Recently DeTar and SniderJB have

examined the problem, and have found suitable mechanisms within the MPM, to




of having an event with n particles in the final state, without any

|

account for the occurence of this kind of reaction. One obvious explanation
for the presence of a large gap between two charged particles‘in the frame-

work of the MPM is that several neutral particles have been emitted between

them along the multiperipheral chain and have gone undetected. DeTar and

Snider estimated that the subsequent emission of two neutral particles is

sufficient to produce a gap between the longitudinal momenta of the adjacent
charged particles large enough to meet the phenomenological requirement for

the classification of the event in the fireball_category. It is therefore

a relevant question to ask what is the probability in tne varlous moaels “for

the subsequent emission of two or more neutral particles.v We expect that jﬁ,

a

will glve a higher probability than the H-model, which simulates uncorrelated:”

emission.' In Fig. 6 we plot the function O(n) that gives the probability

Yffsuhsequent pair of neutral particles. As expectednun A-mpdel (in whicb
v'ﬁineutral particles always appear in pairs) gives the lowest probability, and
”?I"Tithe I-model in which charged particles are forced to appear in pairs, gives
'.a smaller probability than the H-mcdel. The computatioq in the R-model is
,‘;égarstraiéhtforward; We williassume that‘any T=0 resonahce'decaying into
”éﬁo prodaces‘a.gap, and, by phase space ccnsiderationa, we cstimate that

lthe relative energy of a pair of charged particles produced by the decay

¥

of two adjacent charged resonances exceeds 3 GeV2 about 10 percent of the
time. With this figure, the function 0(n) in the R model is practically
equivalent to the one of the I-model.

5. CONCLUSIONS

The charge distributions look like a promising ground for. testing

the A, I and R models in which the various charges are sqmehow correlated'fj
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models.of particle production. They are rather easy po observe experimentally,
they lqok remarkably universal, so that the data from different reactions

can be‘combined to obtain-better statistics, and this feature of universality
hints to the independence of these distributions from the details of the
dynamics.

Encouraged by the success‘of the multiperipheral model in predicting
the energy dependence of the total multiplicity and in hinting a general‘
Poisson-like structure of the charged particle distribution, in good agreement
 with the data, we have exploited the consequences of several detailed .
assumptions on the isospin structure of the daminant exchanges. The main
resﬁlts of this analysis have beeh the following. . | | ‘_ |
-ka) The average multiplicity of each chaige_grcws logarithmieally with the'
same coefficient in each model, The difference <n+)-(n°) goes-to 0 in |
‘the H model, to a positive constant in the A and I models, and to a
hegative constant in the R-model, and cen be sizeable in the region of
intermediate energies. | .

b) The charged particle distribution function C(n ;8) shows Poisson-like
features for all the models in good agreement with the data. These distri-.
butions do not particularly favor an isospin structure over another.

¢) The function A(n+,s) that measures the correlation between heutral and
charged particles emissions is on the contrary very sensitive to the models.
The available data are rather preliminary,'but‘they seem to rule out the

. sharp decrease with n, predicted by the A-model, the nearly constant
behavior predicted at 8 = 50 Gev2 by the I-model and the n+' independence
predicted by models in which the emission of cherged and neutral particles
is not correlated (like the H-model). The resonance production (R) model

on the contrary predicts a rapid rise of A(n ,s) for low values of n_,
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the correlation being due\to the decay of the charged resonances. At large

.

values of n

¢
+ phase space effects eventually take over and .A(n,s) decreases

to a constant limit. These qua;itative features are in geasonable agreement
with the data. a

d) The introduction of a definite isospin structure in the multiperipheral
model is likely to increase the correlation between the emission of the
vériqus charges. In particular .we fbund that in.all the models considered
(A,I,R) the probability of emitting two or more neutral particles in ajroﬁ
is considerably larger than in the H-model,'that simlates independent
emiséion. In.yiew ofvthis result, we feel that the mechanism of the subsequent
emission of several neutral pafticles can be\ﬁrqpoéed as a major explanétion
of the occureﬁée of "fifeballs" in the framework of the muitiperipheral model.
e) If the total cross sections approach a constant 1limit asymptotically, it
is.enough to multiply our probability distribution by this constant to obtain
the partial cross sectionsv o(n+,no,s) for fhe various reactions. It is
clear that in this framework every individual cross section deéreases ﬁo ‘0
asymptotically like. (tn s)2n++no/s(s). It seems génerally impossible to
acconmodate a finite limit for an infinite number of partial cfoss séétion
without foreing the average multiplicity to approach a constant limit itself
(or to grcw at most as fn fn s). In the framework of the multi-Regge

> Qiffractive effects (1.e. inelastic Pomeranchuck exchange) can

bootstrap
be introduced only if the intercept of the Pomeranchuck trajectory is
slightly lower than 1 (and therefore aiso fhe diffective contributions
vanish asymptotically).

f) One of the difficulties of the multiperipheral scheme is that in any

model with direct emission of bions (including therefore the H, A and I

'
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models considﬁfed here), the value of .g2 determined from the coefficient of
the logarithmic increase of the multiplicity is unreasonably large to be
interpreted as a true coupling constant. On the contrary, this value.is
exactly what is needed to produce through unitarity a Pomeranchuk trajectory
around 1 and a self consistent meson trajectory around .5. 2,19 In a
scheme of resounance productidn, like the R scheme, the multiperipheral
production of n resonances corresponds to a final multiplicity 2n. The
coupling constant required to reproduce the observed multiplicity is therefore
one-half 6f the one needed in the direct production models, and its value
corresponds now to acceptable resonanées widths.13 The shadow function
SR(s) however also increases with a power roughly half of what is needed,
and cbnsequently the intercept of the Pomeranchuck ﬁrajectory generated by

20

the .shadow in this model is very low. This shortcoming could possibly be

overcome by introducing in the R-model a diffractive mechanism corresponding

~ for instance to a Pomeranchuck dominated large subenergy tail in the T-T

cross section.
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FIGURE CAPTIONS .

Fig. 1. Dependence of the cross section on the number of prongs at fixed energy.
The data of Ref. 4 are compared with the predictions of the R-model
(s0lid line), the I-model (dashed line), the A model (dot-dashed line)
and the H model (dotted line). ’

Fig. 2. Dependence of the cross sections with given number of prongs on the
energy. The data from the compilation of Ref. 16 are compared withv

| the predictions of the R-model. | “ '

Fig.y}. The functions Pn+(<n+)) predicted by the H-model (déshed line) and
The R-model (solid line), compared with the data from the compilations
of Refs. 3 and 6. The predictions of the other tﬁo models (A,I) are
intermediate between the H ana R-model. ‘

Fig. k4. Difference between the average number of charged and neutral particles_
prodgced in the various models.

Fig. 5. The function A(n+,s) predicted by the A,I, and R models compared with
the data of Ref. 4 on T P interaction at Plab = 25 GeV/c. The H |

model predicts a constant behavior.

Fig. 6. The function O(n) 1in the various models.
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