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" - ABSTRACT

A simple qualitative model for hadronic twé—body amplitudes is proposed.
The model combines the two-component theory of duality with the main idea of ::the
absorption model. The qualitative predictions of the model for elastic differential '
cross sections andﬁolarizations correctly reproduce several interesting regularities

of the data. In particular, the presence of dips in nonexotic elastic processes and

their absence in exotic reactions is explained.
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L. Ttroduction

Prior to the in‘t’roductioxz of duality () into hadron dynamics, high energy
hadronic reactions were usually analysed only in terms of the allowed t-channel
exchanges. On the basis of such an analysis, one would expect pi‘ocesses such

as K+p and K p elastic scattering to show a similar qualitative behavior at high

energies, since both processes allow the same exchange mechanisms.

Duality tells us, however, that the s-channel quantum numbers are also
relevant at high energies and that?the t-channel ekchanges.should obey constraints
which are imposed by the s—channtél picture. Since K+p and K p scattering have
completely different s-channel quantum numbers, we then expect thé s-channel
picture to lead to a different qualiitative behavior of these two processes at high
energies. This different behavior is actually observed in the energy dependence
of the total cross sections and in: tjhe angular distfibution of the elastic cross
sections.

In fact, it has been known jfojt' .some time (_2_) that sevefal- empirical regularities
‘relate the s-channel quantum nufnﬁjers of hadronic elastic processes and the pro-
perties of the corresponding total énd elastic cross sections at high energies.
These regﬁlarities are sumnarize@ in Table 1.

The f'irst regularity listed m the tablé is the approximate constancy of exotic
total cross sections as opposed fo the énergy variation of nonexotic total cross
sections. This correlation has bee;n explained (3) in a very simple way within the
framework of thé " two-component ‘theory" of duality in which the imaginary part
of any hadronic amplitude is desér ibed as a sum of a Pomeron exchange term and

a contribution of all s-channel resonances 3,4).
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The second regularity listed in the table has not been explained, so far.

Empirically, the angular dis t_i"ibutidns for all nonexotic elastic hadronic pro—' '

cesses exhibit dips somewhere.between lt ==-0.4and t=-0.8 BeVz. The exbtic

processeés do not show such dips. This Lehavior is schematically displayed in

. Figure 1, which should be considered asLa rough guide rather than an accurate

presentation of data. The dips appear at fairly low energies and slowly disappear

. as the energy is increased. Onme can al\ivays make the trivial statement that these

dips. are "caused" by the s-channel resLnances, and that théy should therefore
appear only in nonexotic processes. Thﬁs statement (which is probably correct)
does not explain, however, why the dips} are produced, why they appear around
t~ -0.6 BeV‘2 and how they are related to the resonances.

In this paper we present simple qualitative answers to these questions
within the framework of a simple dual t%eory ihvolvhig Regge cuts or absorption

corrections (depending on one's favorite language).

We will briefly touch on the third %egularity of Table 1 — the shrinking of

-exotic elastic distributions and the abseﬁce of shrinking in nonexotic elastic pro-

cesses.

I. A simple dual model including absorption

Following ideas that have been prcposed several years ago (5) in the context
of various optical or geometrical models, we construct a qualitativé dual model,
based on these assumptions:

(i) The imaginary part of any hadronic two-body amplitude is a sum of two

components: The first component represents the total contribution of all s-channel

resonances or the contribution of all "ordinary' (Non-Pomeron) t-channel
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(iii) The second component (Pomeron = background) involves significant con-

tributions from all partial waves £ = kR. The t-dependence of this component may

or may not show structure (dips, peaks, zeroes). For example — equal contri-

butions from all £= kR partial wave

s would yield a dip around t~ -0.6 BeV2




(for R ~ 1f) but a Gaussian distribution over the relevant partial waves would

yield a structureless exponential t;-depjbndence. In the absence of convincing

theoretical drguments for one possiblitiv or the other, we shall appeal to experi-
ment and show in the next section that the t-dependence of this term is probabily
sfructureless.

(iv) The Pomeron (= backgroundﬂ term conserves the s-channel helicities (6).

It therefore contributes only to AA =0 ;a,mplitudés.

(‘v) The real parts of all amplituéles can, in principle, be determined from
the corresponding imaginary parts (exdept for possible real polynomials). This
can be done either by using fixed-t di.spfersion relations, or by applying theorems
which reiate the high energy behavior ojf an amplitude to its phase (7). We return
to this point in section IV. | ‘

The qualitative pictufe ‘which is outlined by these assumptions can be applied
to elastic as well as inelastic hadronic reactions. Parts of it have been applied to

inelastic processes in various forms by many people. Our assumptions here are

.consistent with most versions of the absorption model as well as with the basic

ideas of dualbity. Note, however, that we apply the geometrical-optical ideas only

to the imaginary part of the amplitude, insisting that the correct relation between

energy dependence and phase is obeyed. This relations is often ignored in absorp-r ,
tion models (5). Our motivat-ion for restricting aséumption (ii) to the imaginary
part is based on the belief that the peri?hefal_ resonances are actually the dominant
contributors. It is well known that resonance dominance assumptions can apply

locally only to the imaginary part of the amplitude.
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cpmes .

(i) Att~ -0.6 Bev?, "Iy has a minimum (2 maximum in absclute
magnitude). Hehce the elastic differential cross sections for K p, 7r+p, T p
and pp scéttering should all have minima around this t-value. Furthermore,
since at t = 0, g—g (T p) > g-;g (‘7r+p),, the t =-0.6 dip in 7' p scattering should be
deeper than that in 1r+p scattering; The difference g‘—g &p) - ‘3’% (xp) should
have a maximum in absolute magnimde att~ -0.6 (for x = 1r+, K+, p).

(iv) Since the energy dependence of the ("P")("J o) term is different than
that of the ("P")2 term, all the above features should slowly disappear as the
energy increases. g—g (xp) should approach :—11% (xp) and the t ~ - 0.6 dip should

disappear.

All of these qualitative predictions are obeyed by the data (Figui:e 1). The
observed difference between the K|p and K+p cross sections, for exémple, re-
sembles the schematic "J 0" of Figure 2a.

It is clear that our crude model is very far from being a quantitative theory.
At the same time it is gratifying that a simple sgt of “reas;)nable é'ssumptions
_(none of ‘which Were speéifically designed to explaiin the eiastic data) is so suc-
cessful. The presence of dips, their approximate positions, the crossover
pPhenomenon and the .relative sizes of the cross sections are all correctly pre-

dicted by this q\;alitative picmre.4

IV. Polarization in elastic scattering

The pbl\arization in elastic vri_ and Kip séattering is given by‘cross' terms
between the AX = 0 and AX =1 amplitudes. The Pomeron bsr .itself gives mo
polarization since it presumably contributes only to AX = 0. I we use the approxi-
mation of the previous section and neglect type (C) .terms we find that the leading

contribution to the polarization is givén by:
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Any structure in the polarization will therefore be determined by RefZ)Fl.
We can detéfmine the real part of an ampl’_itude at high energy from its
imaginary part, if the asymptotic energy dependence is known. Assume that

Inf -~ v®%as v — « for fixed t. We then know (7) that for a crossing-even
amplitude, (Ref)/(Imf) —~ cot 7—72-9! and for a crossiﬁg—odd amplitude (Ref)/(Imf) —
mn‘%g . Logarithmic ‘terms in the energy dependence will not change tl;is result,
except for cases in which the ratio is infinity. In such a case a logarithm can
make it finite and the ratio is ambiguous 5. I we know the imaginary pa_rt and the
ene%gy dependence we can therefore predict the real part, for -1 < a < 1in the

case of a crossing-odd amplitude and for o # 0 in the case of a crossing-even

amplitude. If our ffn=1 is crossing-odd it will have the form:

t
Re fZ}\:l ~ (nJln) @%.Q.

‘where o(t) is the "effective” trajectory determined by the energy dependence of
the crossing-odd contribution. We do not know much about the real part of the
crossing-even amplitude since a=0 presuma‘bly occurs somewhere around t ~ 0.5
and lbgarithmic terms can have important inﬂuences. The only polarization we
can predict is therefore the difference between the 7r+p and m p or K+p and K'p
polarizations. We predictsz

+ _ ("JI") tanz_r_(_zr_g__t)
P(r p) "9(7" P) =)

{
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Qualitativé behavior of

Process K'p, pp Kp, PP, TP, TD
|s-channel quantum numbers EXOTIC NON-EXOTIC
|s-channel resonances NO YES
High energy prcperties:

1. "Flat" total cross-section YES NO
. . do
II. Dipin at NO YES
t
s do
III. Shrinkage of at YES NO
|Table 1

total and elastic cross sections.
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FOOTNOTES

This expression can be derived in several ways. See e. g A. Dar,
reference (5). Basically, the idea is that in ‘the spinless case the contri-
bution of angular momentum £ is given Ey Pﬂ(cos 8} which, at high energy
and small @ is approximated by J oB J:T) where £ = kR. In. the case of

spins P!Z is replaced by dNJ but the argument is essentially the same.

This contradicts the assumptions of G. Berlad, A. Dar and G. AEﬂam,

reference (8). Their approach would encountér difficulties in K+15 and pp

scattering. It would also coﬁtradict the energy dependence of the dip at -
= ~0.6 in mp scattering, since a 'dip caused by the Pomeron would not

disappear at high energies.

This is the famous "crossover" effect.

Note that the dips are not caused by the vanishing of any term. They are
actually produced as maxima in the absolute magnitude of the difference

between the elastic particle and antiparticle cross sections.

These statements are true in spite of the fact that they are formulated in an

extremely careless way from a mathematical point of view. I we start from

a known imaginary part and multiply it by tan 32_91_ , the product must vanish

‘arountkoe = 0. Logarithmic.terms can slightly change the position of the zero

but not much else. However, when o =+ 1 we would get an infinite real part.
Logarithmic terms may make it finite and the transition from a positive

value of tan 5—29 to a negative value, which would normally occur via infinity,

Al
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could happen via zero. A predicted infinity could thus be changed by a

logarithm into a predicted zero in the real part.

I thank V. F. Weisskopf for asking the right question that led to this p_ré—

diction, during a discussion of polarization effects in absorption models.

Note that the double zero comes from the AA =1 amplitude and not by

‘multiplying two zeroes belonging to different AA's.

I thank C. Michael for pointing out to me that the Kp polarization obeys this
prediction. |

The. only absorption model which explicitely assumed an energy dependent
radius is the Dar—Weisskopf model (reference 5). One can give several
intuitive arguments for and against such an effect, and it seems that we

shall have to wait for experiments at a few hundfed BevV, before we can

settle this issue.
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Figure 2:

Figure 3:
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FIGURE CAPTIONS

Schematic representation of the experimental differential cross-
sections for elastic hadron scattéring. The incident energies are

ﬁlarked for each curve. For a detailed display of the actual data

~ see e.g. the compilation by Morrison, reference ). The curves

in the figure are free-hand drawings through data points and they
are supposed to display only the main qualitative features. (See

table L )

Typical "J o and "Jl" functions. The relevant features are thé
zeroes; minima aﬂd maxima which ére determined by the functions
IR J-1t) and J®RJ-H with R~ 11, "3, changes signat |t| ~ 0.2
and has a minimum around |t] ~ 0.8. "Jl" vanishes at t = 0 and

ltl ~ 0.6 and has a maximum around |t| ~ 0.2.

Data for the polarization differences, 3?’(7r'fp) - &(m p) and
PK'D) - PKp). The 2.74 GeV/c and the 6 GeV/c points are taken,

respectively,from the first and second references in 1.
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