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ABSTRACT 

A simple qualitative model for hadronic two-body amplitudes is proposed. 

The model combines the two-component theory of duality with the ma.in idea of the 

absorption model. The qualitative predictions of the model for elastic .differ.en:tial 

cross sections andpolarizations correctly reproduce several interesting reg.ularities 

of the data. Tn particular, the presence of dips. in nonexotic elastic processes and 

their absence in exotic reactions is explained. 
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4 Introduction 

Prior to the introduction of iduality g) into hadron dynamics, high energy 

hadronic reactions were usually analysed only in terms of the allowed t-channel 

exchanges. On the basis of such an analysis, one would expect processes such 

as K+p and K-p elastic scattering to show a similar qualitative behavior at high 

energies, since both processes allow the same exchange mechanisms. 

Duality tells us, however, that the s-channel quantum numbers are also 

relevant at high energies and that ~the t-channel exchanges should obey constraints 

which are imposed by the s-channel picture. Since K+p and K-p scattering have 

completely different s-channel quantum numbers, we then expect the s-channel 

picture to lead to a different qualitative behavior of these two processes at high 

energies. This different behavior’ is actually observed in the energy dependence 

of the total cross sections and in the angular distribution of the elastic cross 

sections. 
1 

In fact, it has been known for some time (5) that severa empirical regularities 

.relate the s-channel quantum numbers of hadronic elastic processes and the pro- 

perties of the corresponding total &nd elastic cross sections at high energies. 

These regularities are summarized in Table 1. 

The first regularity listed in the table is the approximate constancy of exotic 

total cross sections as opposed to the energy variation of nonexotic total cross 

set tions. This correlation has been explained (2) in a very simple way within the 

framework of the v two-component ~kheory” of duality in which the imaginary part 

of any hadronic amplitude is descrmed as a sum of a Pomeron exchange term and 

a contribution of all s-channel resonances (z,&). 



The second regularity listed in th table has not been explained, so far. 

Empirically, the angular elastic hadronic pro- 

cesses exhibit dips somewhere between f = - 0.4 and t = - 0.8 Be?. The exotic 

processes do not show such dips. This behavior is schematically displayed in 

Figure 1, which should be considered as a 

t 

rough guide rather than an accurate 

presentation of data. The dips appear a, fairly low energies and slowly disappear 

as the energy is increased. One can always make the trivial statement that these 

0 dips are “causedf by the s-channel res ~ nances, and that they should therefore 

appear only in nonexotic processes. Th$s statement (which is probably correct) 

does not explain, however, why the dips are produced, why they appear around 

t-, - 0.6 Be? and how they are related 
t 
o the resonances. 

In this paper we present simple 4 alitative answers to these questions 

within the framework of a simple dual t h eory involving Regge cuts or absorption 

corrections (depending on one’s favorite language). 

We will briefly touch on the third egularity of Table 1 - the shrinking of 

exotic elastic distributions and the abse n ce of shrinking in nonexotic elastic pro- 

cesses. 

II. A simple dual m ocj el including absorption r 

Following ideas that have been proposed several years ago (2) in the context 
I 

of various optical or geometrical model 
1 
., we construct a qualitative dual model, 

based on these assumptions: 

(i) The imaginary part of any hadronic two-body amplitude is a sum of two 
I 

components: The first component represents the total contribution of all s-channel 

resonances z the contribution of all ft ordinary” (Non-Pomeron) t-channel 

I 

. 



exchanges. The second represent 

background. All s-channel reso= 

are assumed to be nonexotic. The 

a single trajectory or particle, as 

Pomeron and a single trajectory. 

(ii) The first component (re ‘onances = ordinary exchanges) is dominated by 

the most peripheral partial waves 

c. m. momentum k, the dominant ( 

P N kR. Qualitatively, this means 

helicity amplitude obeysl: 

where AA is the absolute magnitud 

is the ordinary Bessel function of 

! of the total s-channel helicity change and JAA 

rder A.A . riJfr 

: 

AA refers to a function which has the 

I- it has zeroes, minima and maxima at the qualitative features of JAA , name: 

same t-values. ” Jzh could be, fl or example, 

etc. The details of “J& 
I 

e A tJAX (Rm) or f(s) JAh (R’p), 

cannot b determined without additional assumptions 
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I Pomeron exchange or a nonresonant s-channel - 

aces and all “ordinary” t-channel exchanges 

c 

lfordinary” exchanges include the exchange of 

well as the exchange of a cut produced by a 

Such cuts are also nonexotic. 

within the radius of interaction (R N 1 f); At a 

ontributions correspond to angular momenta 

that the first component of any s-channel 

concerning the energy dependence cd the amplitude at fixed t-values or the precise 

relative strength of the various contributing partial waves. However, its general 

features are common to the many geometrical and optical models that assume 

the dominance of peripheral contri utions (2). 

(iii) The second component (I?omeron = background) involves significant con- ’ 

tributions from all partial waves I! YZ kR. The t-dependence of this component may 

or may not show structure (dips, p e aks, zeroes). For example - equal contri- 

butions from all 15 kR partial waves would yield a dip around t N - 0.6 Be 3 



L4- 

(for R y 1 f) but a Gaussian distribution over the relevant partial waves would 

yield a structureless exponential t-depbndence. In the absence of convincing 

theoretical arguments for one possiblity or the other, we shall appeal to experi- 

ment and show in the next section that the t-dependence of this term is probabily 

structureless. 

(iv) The Pomeron (= background) term conserves the s-channel helicfties (5). 

It therefore contributes only to Ah = 0 &nplitudes. 

(v) The real parts of all amplitudes can, in principle, be determined from 

the corresponding imaginary parts (exdept for possible real polynomials). This 

can be done either by using fixed-t di.spersion relations, .or by applying theorems 

which relate the high energy behavior of an amplitude to its phase (1). We return 

to this point in section IV. 

The qualitative picture which is outlined by these assumptions can be applied 

to elastic as well as inelastic hadronic ireactions. Parts of it have been applied to 

inelastic processes in various forms by many people. Our assumptions here are 

consis tent with most versions of the absorption model, as well as with the basic 

ideas of duality. Note, however, that we apply the geometrical-optical ideas only 

to the imaginary part of the amplitude, i insisting that the correct relation between 

energy dependence and phase is obeyed; This relations is often ignored in absorp- 

tion models @. Our motivation for restricting assumption (ii) to the imaginary 

part is based on the belief that the peripheral resonances are actually the dominant 

contributors. It is .well known that resonance dominance assumptions can apply 

locally only to the imaginary part of the amplitude. 
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ILL Elas ic hadron reactions 

The imaginary part of any el stic scattering amplitude should, in principle, 

include the resonance contribution s well as the Pomeron term. Using the 

assumptions of the previous sectio we learn that: 

bnf;A=o = “P” + “J;’ 

linf~~=1 = “Ji’ 

” 

I. 

where ” P” is the Pomeron contrib tion and ‘I J “, 0 “Ji’ have the features outlined 

in Figure 2. 

At extremely high energies, 

,lower energies, we can define a ‘l 

Pomeron term presumably dominates. At 

of contributions to the differential 

cross sections: 

(A) Contributions which are I ntirely due to the Pomeron term - (“P’f)2, 

(B) Interference terms betw en the Pomeron and the resonances or the 

ordinary exchanges - (“P”) (“J”) 

(C) Contributions which are ntirely due to non-Pomeron terms - (“J”)2. 

In the zeroth approximation t e Pomeron tel;m (A) determines gross features 

such as the approximate constancy f elastic cross sections or the small ratio 

between the real and the imaginary parts of the amplitude. 

We propose here that the 

: 

nex approximation (which is presumably valid at 

moderate energies of several BeVl ) is given by considering only contributions of 

the types (A) and (B). In that case differential cross section of an elastic 

process will be roughly described y an expression of the form: 



. _ 

i& - (~‘p”)~ + 2 (“P”)(“JO”) . 

where all contributions of type (C) are eglected and the real part of the Pomeron 

term is assumed to be small. 

numbers, the ” Jd’ 

channeZ resonances. In such cases, if e neglect terms of type (C), we find: 

g N 

I 

‘lp”)2 . 

The observed t-dependence of a 

for I t I < 1 BeV2 (Figure 1). 

*(pp) indicates no dips or bumps 

that “P” has no structure2, 

as’ already hinted in section II. K-p, ~+p, R-P and pp elastic 

- 

scattering must therefore come from th (r’Prr)(rr Jolt) term.which is present in 

these processes Since “P” is positive and 

since it is a sum of s-channel resonances 

in an elastic amplitude. Hence - ~ 

. $%Qso ’ $K+P t=O ; $EP)~=~’ $@p)t,o 

(ii) At t N - 0.2 BeV2, ‘rJorr chang s sign. Consequently, 

g (K-P) - g (K+P;J t [g V-P) -’ g (T+P)] and [ $6~) - g (PP;] 

I 
should all change sign around this t-val 

Y 
3 e. 
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(iii) At t - - 0.6 Be?, “Jd” has a minimum (a maximumin absolute 

magnitude). Hence the elastic difYerentiaI cross sections for K-p, r+p, ryp 

and cp scattering should all have :.ninima around this t-value. Furthermore, 

since at t = 0, $n-P) ’ g (r’p),, the t = - 0.6 dip in n-p scattering should be - 

deeper than that in n+p scattering: The difference $%‘) - $(xp, should 

have a maximum in absolute magnitude at t - - 0.6 (for x = n+, K+, p). 

(iv) Since the energy depe ence of the (“Pl’)(“Jd’) term is different than 

that of the (frPfl)2 term, all the ove features should slowly disappear as the 

energy increases. approach g (xp) and the t - - 0.6 dip should 

disappear. ‘, ,. 

All of these qualitative predi tions are obeyed by the data (Figure 1). The 

observed difference betw 

sembles the schematic 7’ 

s, for example, re- 

It is clear that our 

At the same time it is gr 

, (none of which were spe 

cessful. The presence 

phenomenon and the rel 

dieted by this qualitative picture. 4 

g a quantitative theory. 

data) is so suc- 

The polar’ization in elastic 

between the AA = 0 and A,A = 1 The Pomeron by itself gives no 

polarization since it presumably c tributes only to A1 = 0. 

mation of the previous section and 
\ 

contribution to the polarization is 

Tf we use the approxi- 

find that the leading 
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(“P;‘)(Ref&l) .l---- (,,P”)2 

Any structure in the polarization will refore be determined by ReflA-l. 
. 

We can determine the real part amplitude at high energy from its 

imaginary part, if the asymptotic ene dependence is known. Assume that _ 
bnf i y”! as v - 00 for fixed t. We know (II, that for a crossing-even 

amplitude, (Re f)/(Imf) - cot F and f a crossing-odd amplitude (Ref)/(J.mf) - . 
tan?. Logarithmic dependence will not change this result, 

except for cases in which the ratio is ity. In such a case a logarithm can 

make it finite and the ratio isambi If we know the imaginary part and the 

% ene gy dependence we can therefore p ict the real part, for -1 < a! c 1 in the 

case of a crossing-odd amplitude and f a! $ 0 in the case of a crossing-even 

amplitude. If our fiA= will have the form: 

where o!(t) is the “effective t1 trajectory determined by the energy dependence of 

the crossing-odd contribution. 

crossing-even amplitude since 

and logarithmic terms can have impor 

about the real part of the 

somewhere around t N 0.5 

The only polarization we 

can predict is therefore the difference etween the ~+p and x-p or K+p and K-p 

polarizations. We predic?: 

s(?+P) - 9V-P) 
(?fJif) &n!?$.@ 

(“P”) 



where o!(t) N 0.5 + t is taken, say, 

behavior is predicted for 9(K+p) 

ff J;’ changes’ sign around it 

sign roughly at the same place. ‘I 

a double 2’7 zero around I t I - 0.6 

~rp and Kp polarization is not incor 

v. g 

We conclude with several re 

of our naive model. 

(a) The third regularity in 

elastic cross sections indicate th 

accelerator energies. This is see 

according to our approLximation, o 

elastic distributions do not shrink 

pure Pomeron term, (ttPfr)2, has 

term increases this slope (the ~101 

etc. ) As the energy increases, th 

relative importance of the (ltptr)(l 

sumably cancel each other, thereb 

(b)’ If the Pomeron term shr 

real part at large t-values. If the 

the real part of its contribution co 

I t I - 0.5 Be?. However, at leaf 

tureless and the real part of the (I 

(if anything, it would tend to deepe 

, 
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Yom the data on n-b - non. A similar 

p(K-P). 

u 0.6 Be? (Figure 2b). tan y changes 

e polarization difference should therefore have 

Se . v2 Figure 3 shows that the data for both 

istent* with this prediction. 

eluding remarks 

arks related to possl%le further applications 

ble I together with our interpretation of the 

the (1tP?f)2- term definitely shrinks at present 

in the K+p and pp elastic cross sections where, 

y ((! Pff)2 contributes. The fat t that nonexotic 

3 easily explained in the following way: The 

certain slope. The addition of the (‘7P’t)(rtJdf) 

in K-p scattering is larger than the K+p slope, 

slope of the (?P’1)2 -term increases, but the 

d’) term decreases. The two effects pre- 

producing an approximately constant slope for g. 

Iks indefinitely, it should have a non-negligible 

lope of the Pomeron trajectory is 0.5 BeV -2 , 

d be about 40% of the imaginary part at 

for I t I -C 1 Be?, this real part is also struc- 

)(I) (” Jd’ ) term would probably be fairly small 

thet- -0.6 dip). 
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(c) There are several interesting questions which we cannot answer without 

adding explicit quantitative assump’tions to our model. These include the possible 

energy dependence of the positions of the dips or the crossover points, ‘the explicit 

da separation of the Various contrl%utions to - dt ) etc* These interesting ques Cons 

are closely related to the possible ene dependence’ of the interaction radius R. 
* 

, 

’ 

However, such an energy dependence resumably at most logarithmic and its 

effects should be negligible as long as maintain our present primitive level of 

discussion. - 

(d) Important structure is observ e d in pp elastic scattering at larger t- 

values (ltI>.lBe v2 ). These effects do not disappear at high energies. 

0 

They may 

be associated with the Pomeron term, ur model cannot say much about this term. 

In fact - the only information about the t-dependence of *?Prl that we have used 

(the absence of structure at I t I < 1) waL6 taken from the data and not from any 

theoretical consideration. 

(e) Our picture can be translated into a quark language and the 71 Jd’ term 

. m $ should be described by the duality diagrams (9-).. A crude quark, counting 

assumption would then predict &at the relative depths of the dips in K-p, n-p and 

r’p elastic scattering obey a 2:2:1 ratio, respectively. We do not know how to 

isolate the “depth of the dip” but it seems that this prediction is, at least, not 

completely wrong (Figure 1). We do not dare to use quark assumptions in a dual 

model for Fp scattering, in view of the famous difficulty of duality in baryon- 

antibaryon processes (lo). 

The author acknowledges many 

absorption models with many people. 

discussions on the general features of 

thanks go to M. Kugler and Y. Zarmi. 



Process 

,-channel quantum numbers 

I-channel resonances 

Iigh energy properties: 

I. v FlaV total cross-section 

da II. Dip in dt 

III. Shrinkage of $ 

Qualitative behavior c 

, 

.- ll- 

I 

C 

K+P, PP 

EXOTIC 

NO 

YES 

NO 

YES 

K-P, ;P, T+P, n-1 

t NON-EXOTIC 

YES 

NO 

YES 

NO 

Table I 

total and elastic cross sections. 
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FOOTNOTES 

1. This expression can be derived in several ways. See e.g. A. Dar, 

reference e). Basically, the idea is that in the spinless case the contri- 

bution of angular momentum B is given by PQ(cos 0) which, at high energy 

and small 19 is approximated by Jo(Rm) where 1= kR. In the case of 

spins P1 is replaced by dU but the argument is essentially the same. 

2. This contradicts the assumptions of G. Berlad, A. Dar and G. Eilam, 

reference (8). Their approach would encounter difficulties in K+p and pp 

scattering. It would also contradict the energy dependence of the dip at 

t = - 0.6 in %p scattering, since a dip caused by the Pomeron would not 

disappear at high energies. 

3. This is the famous “crossover” effect. 

4. Note that the dips are not caused by the vanishing of any term. They are 

actually produced as maxima in the absolute magnitude of the difference 

between the elastic particle and antiparticle cross sections. 

5. These statements are true in spite of the fact that they are formulated in an 

extremely careless way from a mathematical point of view. If we start from 

a known imaginary part and multiply it by tan y f the product must vanish 
‘. 

arount Q! = 0. Logarithmic terms can slightly change the position of the zero 

but not much else. However, when o = * 1 we would get an infinite real part. 

Logarithmic terms may make it finite and the transition from a positive 

value of tan y to a negative value, which would normally occur via infinity, 
\ 
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6. 

7. 

8. 

9. 

---_ 

could happen via zero. A predicted infinity could thus be changed by a 

logarithm into a predicted zero in the real part. 

I thank V. F. Weisskopf for asking the right question that led to this pre- 

die tion, during a discussion of polarization effects in absorption models. 

Note that the double zero comes from the Ahh = 1 amplitude and not by 

-multiplying two zeroes belonging to different AhIs. 

I thank C. Michael for pointing out to me that the Kp polarization obeys this 

prediction. 

The. only absorption model which explicitely assumed an energy dependent 

radius is the Dar-Weisskopf model (reference 5). One can give several 

intuitive arguments for and against such an effect, and it seems that we 

shall have to wait for experiments at a few hundred BeV, before we can 

settle this issue. 

‘. . . . 
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Figure 1: 

Figure 2: 

Figure 3: 

FIGURE CAPTIONS 

Schematic representation of the experimental differential cross- 

sections for elastic badron scattering. The incident energies are 

marked for each curve. For a detailed display of the actual data 

see e. g. the compilation by Morrison, reference (2-). The curves 

in the figure are free-hand drawings through data points and they 

are supposed to display only the main qualitative features. (See 

table L) 

Typical ‘I J fr and If J If functions. 0 1 The relevant features are the 

zeroes, minima and maxima which are determined by the functions 

JO(Rm) and J1(Rm) with R - lf. If JO” changes sign at I t I N 0.2 

and has a minimum around I t I - 0.6. ” Ji’ vanishes at t = 0 and 

ItI - 0.6 and has a maximum around I t I N 0.2. 

Data for the polarization differences, S(?r+p) -. 9(‘i~p) and 

l (K+P) - 9(Kp). The 2.74 GeV/c and the 6 GeV/c points are taken, 

respectively,from the first and second references in @). 
‘ 
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