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ABSTRACT 

We have determined the single variable analyticity in the complex 

x-plane of the inelastic electron scattering structure functions, with s 

kept fixed and real, to all orders of Feynman perturbation theory. We 

find that its Landau singularities, which move as a function of s, rapidly 

approach their asymptotic s-independent position once s is large. We 

discuss how this observation offers a possible explanation for a rapid 

approach to “universality” of the inelastic electron scattering structure 

functions and shows that sW2(s,q2/s) should “scale” faster than vW2(s,x) 0 

Recent experimental data’ on inelastic electron scattering indicate that for 

fixed x the structure functions W1 and v W2 become approximately independent2 

of s once s is far above the resonance production region (s > 4 GeV2). We will 

call this region the “deep inelastic region”. This fact has been referred to as 

“scaling” of the structure functions. 334 We consider two forms of “scaling’*. 

The first is the s independence of the magnitude of the structurwfunctions for 

fixed x=q2/(2P*q), which we call “universality of magnitude”, The second is 

the s-independence of the shape of the curve of the structure functions versus x, 

which we call the “universality of shape”. 
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We propose that a rapid approach to a universal shape for the uW2 (or WI) 

curve for s>> 4 GeV2 can be understood as a consequence of the rapid approach 

of its physical x-sheet singularities to their s-independent asymptotic position 

once s is large enough. This is provided the %trengths** of these singularities 

(i, e. : residues of poles and discontinuities across cuts) are slowly varying 

functions of s for large s. We ignore spin and other quantum numbers since they 

affect only the **strengths** of these singularities and not their position. We 

analyze the Landau singularities of the Feynman integrals contributing to the non- 

Born term part of the inelastic structure function W,(s, x) for fixed real s. In a 

more detailed publication we will show to all orders of Feynman perturbation 

theory that the only Landau singularities on the physical sheet of the complex 

x-plane are the s independent normal q2 threshold branch points (for real time 

like q2) and the set of anomalous singularities like x,(s), which move with s, and 

correspond to the single loop box or triangle reduced graphs shown in Fig. 1. ’ . 

Their equation is given by5 

G(s) = T+K - (M2-P-f9(s-~-p)/(W) f (1/2p)[A(M2,P, K) A@, T, p)]1’2 

h(x,y,z) = [x-(Jy+ Jz,2J[x-(Jy- Jz)2]= h(z,x,y), etc. 

x&4 = ‘I 2 /(I- qM2*) = -l/w&) where qa(s) = c&s-a) 
Mf 

(1) 

(2) 

(3) 

We define the class of variables 7, for various values of the real parameter Q! 

to show, later, that in general the quantity (s-a) W2(s, TV) %cales** at much 

lower s than vW2(s, x or w) ., 

Since for a nonzero absorptive part s > (& + &Q2 therefore ~(s, r,p) > 0. 

So in case (Euclidean) the lower vertex is internally and externally stable, then 

A(M2, P, K) < 0 and x* represent a pair of complex conjugate ordinary anomalous 

Landau singularities. On the other hand, in case (pseudo-Euclidean) A(M~,P;K) > 0 
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then x4 represent a pair of virtual anomalous singularities on the time-like part 

of the real x-axis0 

To understand the origin of these singularities we consider the contribution 

to Wi from a single peripheral graph leading to a two particle final state’ 

Wi(s,q2) N (?r/2){A(s,q2,M2)}-1’2~~2S(+)(b2-@$dt2@+t2-.)j 
$.&t2, b2, 

dk2(k2-/c)-2 

$&t2, b2, 

(4) 
The first integration of the double pole leads to a pair ,of simple poles 

which survive the remaining integration to give a pair of poles in the final answer0 

If the final state was not two particles or there were form factors at the vertices, 

then the S(+) functions would be replaced by less singular functions and the poles 

[K -k2(rnn’)] -’ would be **smoothed** into a cut on successive integrations. The 

**nature*’ of the final singularity, therefore, will depend on the nature of the final 

state and form factors. However, its position always depends on the sum of the 

masses of various lflegslf’ shown in Fig. 1, 

From Eqs. (1) , (2)) and (3) we see that when s is large compared to a suitable 

combination of the internal masses the singularities x*(s) (or q,&(s)) approach 

their asymptotic positions x,(m) (or q(xA(~)) in the complex x (or q,) plane. The 

rapidity of this approach to llasymptopiaff can be deduced from these equations, 

Since no resonances are observed in the deep inelastic region we ignore the 

Born terms which give nonanalytic (delta function) contributions to the inelastic 

structure functions D If we assume4 (a) that the **strengths** of these singularities 

and the asumptotic values. vW2(s, 1x1 = co, 0) are finite and sufficiently slowly 

varying functions of s for such large s, then we may expect the vW2(s, x) (or 

W,(s,x)) versus x curve to assume a universal shape rather rapidly. This is 

because one can see from the Cauchy’s theorem that under our assumptions the 



significant variations in the shape of such curves are only caused by the motion 

of the dominant singularities. 

To study the rapidity of approach to “universa1ity” we note that 

~~W~(s~x)~W~(m~x)I~JW~(w~X)>l} cv g IWiq(S,X)/Wi(S,X)l 8 (s-s~(G)) 

(5) 

Here W(G) i represents the contribution to the inelastic structure function from a 

given discontinuity diagram G. This corresponds to the production of an inelastic 

final state with threshold mass J”thcG, o This shows that to approach universality 

at relatively small values of s, the discontinuity diagrams G with the smallest 

relative departure from universality must give the largest fractional contribution 

to the total inelastic structure function, at that value of s. We assume (b) that 

such a situation occurs. 

It should be’obvious that our two main assumptions have a lot of physical 

content. One may find partial justification for them in the asymptotic analyses 

of Refs. 4 and in the expectation of relatively low multiplicities of the final states 

discussed in Refs. 6, But we believe that justifying them in a realistic model at 

finite s is still an unsolved problem. Predominance of low threshold (or low 

multiplicity) final states at a given s would provide the experimental justification 

for the second assumption. 

For further analysis of Eq. (5) we need to know the **strengths** and the 

“nature” of these singularities, We cannot determine these in general from our 

analysis since they depend on the nature of the couplings and final states. We do, 

however, show in Eq. (4) that the most singular situation (only as regards the 

**nature** of the singularity and not its *‘strengthen occurs for the single loop 

Feynman graph for the virtual forward Compton (VFC) scattering amplitude. 
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Such graphs correspond to a peripheral production of two particle (or resonance) 

final state. For such graphs these singularities are a pair of simple poles for 

the spinless case. Incorporation of spin turns them into a pole plus a logarithm 

but the %trength” of the logarithmic singularity vanishes asymptotically, We 

can also show that Feynman graphs corresponding to single peripheral production 

(i, e., K in Fig. 1 is a single particle or resonance) of final states with more 

than two particles lead to more singular situations than the other graphs producing 

the same final state. However, they need not always give an infinite singularity. 

Such theoretical questions and models for deep inelastic electron scattering based 

on analyticity will be discussed elsewhere. 

To illustrate our mode of analysis we consider a specific example of peripheral 

production of two particle final state (ignoring all quantum numbers) 0 For such 

graphs 
.WP 

112 
‘b (“,“I = (1+x) fG9 {A( s, 718)/(s-M2f t {(x-q(s))(X-X_(S))t-’ (6) 

where f(x) depends on the nature of the couplings. Gauge invariance and finiteness 

of photoproduction would demand f(x) w x near x=0 for fixed finite s. Using physical 

values for the various possible exchanged and final state masses (like r,N,p, w) it 

is very easy to obtain a ratherjgood fit to the latest experimental data’ with a 

sum of such terms with f(x) =‘CX(~+X)~. One of such (four parameter) slide rule 

fits for s-+00, -1 < x < 0 is: I 

VW,(X) = -x(l+xP {(O,? 1) [x2+o.022]-1 + (0,l) [(x+l)2 + 0.0223-l 

+ [(x+0.337)2’+ 0.550]-y (7) 

This is shown in Fig. 2. The first, second and third terms correspond to the 

contribution of R, N and p graphs, respectively, ‘-shown in Fig. 2. Such a 

fit cannot be expected to be realistic, unless one believes that the final inelastic 

state is dominated by peripherally6 produced pairs of particles or resonances 
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(which may decay to give more particles). But it does .indicate the utility of our 

approach. It also shows that different exchanged masses (dashed curves) con- 

tribute differently to Wi for different x at a given s. Thus one pion exchange 

dominates near photoproduction (x or q2 cu 0) while nucleon exchange dominates 

in the Bjorken region (x ‘v -1) o Rho exchange dominates in the intermediate 

regions o For these reasons one cannot expect a single type of particle exchange 

to work in all of the inelastic domain. In interpreting this fit one should remember 

that at S-CO the position of the singularity is independent of the mass A. T how- 

ever does affect the rate of approach to universality. Also the singularities closest 

to the real axis have the three momentum ( (2M) -lm)) of the exchanged 

particle (K) in the laboratory frame (M at rest) very much smaller than P/M. 

This fact and the reduced diagrams have a rather striking resemblence to the 

“Parton picture”, 4 
In fact we believe that our approach may provide an invariant 

. 
formulation of the “Part09 picture’+. 4 

To study the rapidly of approach to universality for the ‘pole model” of Eq. (6) 

we consider the p-exchange term. This is the slowest case for our model. In 

Fig. 3 we plot for this term the relative departures from the asymptotic value 

(a$(~)/$ E [4(s)-+(o~)]/$(co)) of the following quantities 

yp) = T’a+(s) + 77(Js); do(s) = Q+- io-; P,(s) = rl,+‘& (8) 

These are useful for studying the rate of approach to scaling of Wi, which are of 

the form 
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This is because 

AF(s, q,)/F = A$@‘dQ! 

+ {Ti - Ta a,(4 + Po$m) t-l{q a! o,(-)(Ao@/ooJ -P,(~)(AP&/~,)) {F(s)/F@)t 

Similar expressions and quantities fo, fd and fp are defined for the variables x0 

The first term in Eq, (10) represents the “error” in the “strength” of the singu- 

larity and the second term the “error” in its l+position++, 

These equations and Fig, 3 show that the rapidity of approach to universality 

depends on the variable chosen. From them we can see that the class of functions 

(s-a) W2(s, qa) become universal at much lower value of s than the class 

vlV2(s, x or cc’). In general one can choose an optimum value of o!. which mini- 

mizes the overall error in (s-a) W2(s, qQ). This value of 01 will depend on a 

combination of masses and in general will be nonnegative. For our particular 

example of the p ,exchange term, ol=O seems to give the most rapid approach to 

scaling. In fact for this case we find from Eq. (10) that 

(11) 

indicating that in terms of the variable q. = q2/s the l+error” in sW2(s, qO) just 

reflects the “error” in the residue which is given by the curve C2 in Fig. 3. It 

shows that this “error” varies from about 29% at s = 4.84 GeV2 to about 7% at 

s = 20 GeV2, On the other hand if we use the variable x then at x = -0.6 the 

“errorl+ at s = 4.84 GeV2 is 65% and at s = 20 GeV2 it is 16.5%. These are a 

factor of two larger than the “errors+’ in terms of the variable qoO To compare 

with the latest experimental data we calculate the percentage variation in 

vW2(s,x=-0. 6) from s = 4,84 to 11,44 GeV2, We find this to be 50% which is a 

factor of two larger than the variation shown by the fit to experimental data shown 
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in Figg. 14 of Refs. 1, and it is of the opposite sign, The sign difference could 

be due to the “tails” of the resonance or due to a different functional form for 

From all this we conclude that it is possible for the inelastic electron scat- 

tering structure functions to become universal at relative low values of s. Our 

equations show no single critical mass which determines the relative departure 

from universality as scritical/sO We find scritical to be a combination of the 

squares of the masses 47, &3, JK , M. We also find that the class of variables 

(s-a) W2(s, q,) can become universal at much lower s than vW2(s, xor w)” a=0 

seems to give the best case. This in fact could be the possible reason why 11scaling)7 

occurs sooner’ in terms of the variable U’ = w+ M2/q2 = 1+s/q2 than w. Because 

of the ad hoc nature of our assumptions and the disparity in the values of the 

predicted and observed departures from universality we cannot claim to have 

explained the observed rapid approach to universality, But we do feel that our 

analysis offers a possible mechanism for a rapid, rather than asymptotic, 

approach to universality by the inelastic electron scattering structure functions. 

We wish to thank Professors Sidney Drell, Michael Nauenberg and 

” Dr. Nikola Jurisic for helpful discussions. 

. 

-8- 



REFERENCES AND FOOTNOTES 

1. E. D. Bloom et al., Report No, SLAC-PUB-796 (1970) a 

2. Virtual photon momentum is q and target momentum is P. Our metric is 

(1,-l, -1,-l), v E (P*q)/M, s = (P+q)2, t = (P-P)2 = 0, u = (P-q)2, 

x = -l/o= q2/(2Mv) o 

3. J. D, Bjorken, Phys. Rev. 179, 1547 (1969). 

4. S. D. Drell, D. J. Levy and T-M. Yan, Phys. Rev. 187, 2159 (1969) and 

SLAC preprints; S, J. Chang and P. M. Fishbane, Phys. Rev. Letters 24, 

874 (1970); T. K. Gaisser and J. C. Polkinghorne, Preprint DAMTP 70/21 (1970). 

5. Ashok suri, Report No. SLAC-PUB-738 (1970), (Revised version). 

6. D. Amati, A. Stanghellini and S. Fubini, Nuovo Cimento 26, 896 (1962); 

S. D. Drell, Rev, Mod. Phys. 33, 458 (1961), Phys, Rev. Letters 2, 278 (1960); 

Go West, Phys. Rev. Letters 24, 1207 (1970); 

D. M. Ritson, preprint, University College, London (July 1970). 

7. E. D. Bloom and F. J. Gilman; Report No, SLAC-PUB-779 (1970); 

M. N. Nauenberg, 1970 Kiev conference talk. 

FIGURE CAPTIONS 

1. Typical reduced Feynman graphs leading to the anomalous box or triangle 

singularity at t=O. I&-, (K , J@ represent the sum of the masses of the in- 

ternal lines shown in the reduced graph, 

2. The “‘pole model” fit for vW2(x) at s==J. The experimental points are from 

Table III of Ref 0 1. 

30 Curves showing the s dependence of the parameters which determine the 

relative departure from universality, 
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