
SLAC-PUB-813 
October 1970 
(ACC) 

COMPUTATION OF THE PROPERTIES OF TRAVELING-WAVE LINAC STRUCTURES* 

R. H. Helm 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

ABSTRACT 

A computer program which calculates the properties of traveling wave linac structures has 
been developed. Quantities which are computed include field distributions, quality factor (Q), 
shunt impedance (r), group velocity (v,), and ratios of peak fields to average accelerating field 
(&/E,E and A/Ee&. The computation is limited to cylindrically symmetric structures, but the 
cross section of the ceil boundary is otherwise quite arbitrary. The phase shift per cell (k&) 
may be chosen arbitrarily in the range -7~ I k$ <n. The program employs a functional expan- 
sion of the fields, rather than the mesh method. Expansion coefficients (A,) and frequency (0) 
are adjusted by the program to fit the boundary conditions according to the principle that the 
Lagrangian of the field should vanish as a function of w and A,, and should be stationary with 
respect to the A,. Comparisons with experimental results and with results of other computer 
programs are presented for several structures. 

Introduction 

The use of computer programs to aid in the design of standing-wave linac structures is now 

well established. This technique hasprovcn to be valuable, and several programs have been 

written. 1-7 These programs have been used, for example, to optimize shunt impedance, mini- 

mi?e wall losses, reduce peak fields on the metal surfaces, and obtain the desired operating 

frequency by appropriate variations in cell geometry. 

One advantage of the computer-aided design. is the saving of a tremendous amount of pains- 

taking, time-consuming model work so that the effects of variations in design parameters ma> 

be explored fully. Another advantage arises in the determination of peak fields along the metal 

boundaries. Here the experimental measurement is sufficiently difficult and uncertain thlt the 

computation may be more reliable. 

Similar computations for traveling-wave structures are less common. 
9-14 

Nakamura 
14 

has 

developed a program for traveling-wave structures which permits circular rounding of disk edges 

but is restricted to a purely cylindrical pillbox for the outer cavity. Earlier works 
9-13 lvere re- 

stricted to cases where the disk edge was also right angled. However we kno\v, e.g., from the 

Los .Alamos work4 that optimization of the rf properties requires considerable freedom in choice 

of shapes of both the disk edges and the outer cavity wallsy 

Interest in a computer program for traveling-wave structures arose at SLAC from Xeal’s 

observation 15 that the traveling-wave regime should be significantly better than standing naves 

not only in shunt impedance but also in peak electric and magnetic fields, and therefore should 

be especially desirable for a superconducting linac. Subsequently a study of superconducting 

linncs ~~3s begun at SLAC, 
1G and the program described here was developed as part of this study. 

The capabilities of such a program should include the following: (1) nrbitrary cell bolundary: 

(2) arbitrary phase shift per cell: (3) ready modifications of the input parameters describing 
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boundary shape and phase shift; (4) computation of frequency and field distribution; and (5) com- 

putation of parameters such as shunt impedance, quality factor, group velocity, and the peak 

electric and magnetic fields on metal surfaces. 

The method which has been used is similar to that of Nakamura 
14 

: the fields are represented 

as expansions in series of appropriate functions, and a variational principle is used to adjust the 

expansion coefficients and frequency to satisfy the boundary conditions. The functional expansion 

method was chosen, instead of the more commonly used mesh method, mainly because it was 

believed that greater computational speed would be attained. The computation has been restricted 

to circularly symmetric TM modes in circularly symmetric structures. 

Formulation 

Field Models 

It is assumed that the fields can be expanded in the form 

g = CA&,tf, k) ; E = CA&J:, k) (1) 

where k = w/c and a factor of e iwt is understood. The zn and 3n are functions which satisfy 

Maxwell’s equations at the operating frequency; 

vx gn = -iklJ,; b,= 0; V X 2n = ikzn; v7’gn= 0 (2) 

Note that these are not normal mode expansions, since the retention of 0 as a free parameter 

uses up one of the degrees of freedom necessary to specify orthogonalitywithinaparticularvolume. 

In a periodic structure the fields may be resolved into a forward wave and a backward 

wave. Either of these components satisfies a Floquet condition: 

EZ( z-t-1) = evia E,(z) ; EI(z+i?) = e-+J(z) (3) 

where E is the structure period and n (the phase shift per cell) is real if the structure is lossless. 

A positive a represents a wave travelin, u in the forward direction; the complex conjugate of (3) is 

n backward-wave solution. Thus it is only necessary to specify the fields within one cell in order 

to obtain a general solution. 

Condition (3) may be considered a boundary condition to be applied at the periodic cell bound- 

aries, or it may be incorporated explicitly in the field model. 

Discussion of accelerator fields will be restricted to circularly symmetric TR’I modes in cir- 

cularly symmetric structures, so that the only field components are Ez, Er, and H6. A con- 

venient representation is given by Fourier-analyzing Eq. (3). This results in the wkll-known 

space-harmonic esTansion, which in the present case may be written 

- ik,z ik 
EZ =CEnJO(Knr) e 

-iknz -iGz 
: Er = CEn -$ J1(Knr) e : -HO = ZEnt J1(Knr) e (4) 

n 

A +2T;n 
Ivhere kn = 7 and K”, = k2 - ki, n = 0,*1,*2.. . When kz > k2 we have Jo(Knr) = 10(lKn(r) 

and J1(Knr)/Kn = I1(I~n( r)/lKn(. For a “synchronous” space harmonic, kns = k and K~ = 0, we 

have JO(Knsr) = 1 and J1(Knsr)/Kns = r/2. 

Expansion (4), although very useful near the axis, may have poor convergence at large r, 

bccausc of the exp( lKn\r) behavior of the IO and II functions. Consequently, following Walkinshaw 

and 13~11’ and Nnkamura’4, we.may divide the cell into two annular regions and employ Eq. (4) 

in the inner regions and a different - hopefully better behaved - expansion in the outer region. 
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(See Fig. 1.) The expansion which has been used for the outer region is 

E~=~{[Bmcosm~ -iCmsinq] JO&,‘) + prncosy -iG, sin?] Hr)@,r)} (54 

E,“=c PT 
N 

Bm sinmT + iCmcosy 1 Jlolmr) -I- +iGmcosF ] H(ll)Ol,r)} 
Hz= C i { pBrn cos y + Cm sin?] Jl&,r) + pF,cos y +Gm siny]Hr)(Clmr)) :2 

m 
where 2 

p’,=k”-y , 
( ) 

m= 0,1,2... 

Here the expansion period 2L may be chosen appropriately for a particular cell geometry, but 

usually will be taken as L=8= the cell period. Note that for mn/L > k, we have pm= ilp,(, 

H~)@mr)=-(2i/TI)Ko(J~m/r) and Hr)Or,r) = -(2/n)K1(/1*mlr). 

The present representation [Eqs. (4) and (5)] is essentially the one used by Walkinshaw and 

Bell, ’ except that in the present case the geometry in the outer region is not simple so there are 

no explicit relationships between coefficients of a given order. 

Boundary Conditions 

The frequency (or propagation constant k) and the coefficients of the series expansions must 

be chosen to fit appropriate boundary conditions. The boundary types of interest here are (see 

Fig. 1) metal surfaces, periodic cell boundaries, and the interface between the inner and outer 

annular regions. 

The metal boundary will be treated in the usual lossless approximation in which case it is 

sufficient to require 
gxg=I&= 0 (f-3 

where n is the outward normal at the surface. It is of course also necessary that the normal 

component of g vanish. However by applying the “flux theorem, ‘I $ $. c$$ = - ik I g. E d.4, to an 

infinitesimal surface element, we see that vanishing of :X2 implies that ,H * 2 vanishes (but not 

the conrcrse). 

The condition at the interface between regions is simply continuity of the fields. However,-’ 

by using the flux theorem (above) and its analogue, $ E . q = ik s 2 . g dA, we readily see that 

continuity of the normal components is implied by continuity of the tangential components. Con- 

sequently \ve only need to require 

($I-$) x g= 0 and (I$- $)X2= 0 (7) 

at the interface. 

At the periodic cell boundaries the fields must satisfy the Floquet condition, Eq. (3). Again 

as in the previous case, only the tangential components need by considered; 

[z(+) - FJ-)ewiA] X2= 0 and [g(+) - ,H(-)eeiA] x s= 0 (8) 
where Xz(h) = pd(z=Q/2), etc. 

It will be necessary on account of practical computing limitations to approximate the field 

csQansions with a finite number of terms; hence in general the boundary conditions can only be 

fit approsimately. The variational approach which will be described next provides a rational 

means of choosing the e.xpansion parameters to optimize the approximation. 
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Variational Principle 

The steady-state fields within a lossless, bounded, charge-free region should satisfy the 

conditions that (1) the electric and magnetic energies are equal and (2) that the Lagrangian of 

the fields is stationary. This principle may be stated as 

a) L(k,An) = 0 and b) aL=O fQ&, An) = aA; (9) 

(The derivative may of course be taken with respect to either An or A: since the expression and 

its conjugate contain the same information.) The Lagrangian may be defined as either a volume 

integral or a surface integral: 

a) L=&J(~**E-~*.&)dV or b) L=& J c,H* “El * ,“a (10) 
V S 

where S is the surface which bounds the volume V and ,n is the outward normal on S. Equation 

(lob) results from (lOa) by application of Maxwell’s equations and Gauss’ theorem. The surface 

integral form (lOa) clearly is related closely to the boundary conditions [Eqs. (6), (7), (8)] . 

In order to adapt the variational principle to a series expansion in a domain which may be 

divided into two regions, let us redefine the expansion (1) by finite series such that the terms 

which define $ and $ are enumerated by 15 n < NI and the terms which define E II .‘a. and $I are 

enumerated by N1 < n I N1 + N2. The fields in either region will be designated simply 

N 
E= CA&, and ;= ~AJJ, (11) cc 1 1 

where N = NI + N2, and with the understanding that 

f, = zn = 0, n >NI (in region I); 

zn=zn= 0, l<_nINl (in region II). 

Now since L is quadratic in the An and transcendental in k, it is appropriate to use the 

technique of linearized iterative fitting. Considering small variations in the parameters we write 

$+I) = $1 + 8k(i); Atiil) = Ati) + 8A(i) 
11 n n (12) 

(13) 

(14) 

in which we treat k on the same basis as the An by making the identifications 

Ati) = k(i) ; (i) _ a&(‘) 
Eo = 

(i) _ ,J$‘) 
0 - $I< ’ a, - al; (15) 

The superscript denotes the current value of the iteration indes. The objective will be to start 

with an initial guess k(O), A:), and to use the variational principle in a linearized form itera- 

tively to obtain corrections for the parameters. If the initial guess is good enough, the proce- 

durc should converge to the correct values 
( 
k(i) -k and A!) -A,) after a few iterations. 

In order to es-press the linca.rized form of the variational conditions, it will be convenient 
first to divide the Lagrnngian into three parts: 

L = L’ I L” + L”’ (1’3) 
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where L’ represents the contribution of the metal surfaces; L” represents the contribution of the 

interface between the inner and outer regions; and L”’ represents the contributions of the periodic 

cell boundaries (see Fig. 1). 

Treating the metal boundaries first, we expand the Lagrangian expressed by Eq. (lob) and 

obtain 
L,(i+l) = 1 

/ 47rikti) S’ 

Now since the normal component of g* x ,E can involve only tangential components of the 

fields, and since zt is supposed to vanish on the metal boundary, we consider g to be a first- 

order small quantity in the above equation. Consequently the terms (i%J* xEJ and (aI&* x 6;) 

both are second order. The linearized form of L’ then is 

L,(i+l) = ,,(i) 
+& /( 

s’ E, y*yy ,,p). pa (174 

Similarly, the variational conditions [Eq. (9b)] may be expanded giving 

aL,(i+l) 0) 
eA; -pis (17b) 

Equations (17a, b) may be written as 
N 

Lf(iil) = Lti) + ngo L+%$ 6AE), O<nlN n (18) 

with the definitions 
1 

Lb = L’ = 4aik S, 1 --s 
(H*xg) * +S, (19a) 

L:,=& 
J S’ 

o?;x g, - p% Pgb) 

1 
Lbn, = - J- 4aik S, M W*X5;,,) * ~a, (19c) 

L&, = 1 
4nik s g;“Ix &.p) * !p7 WW 

S’ 

in which the range of the indices is 1 I n I N, 0 I n’ I N. A superscript (i) (iteration index) is 

understood. 

To evaluate the integral along the interface boundary between the inner and outer regions, it 

is convenient to make the additional definition (at the interface) 

z(i) = ; ($ + gy) ; 
w 

*p = ; (E,II _ &(i) 
(2 0) 

gi’ = $ (5’ + If)“‘; A$i) = ; (3” - I$(‘) 

whence 
E1, ti+l) = $I, (i+l) = [z + AZ + @]@) 

HI, ti+l) = H’I, ti+‘) = [z + ajj + 8g11](i) 
24 ‘5 

(21) 

After some manipulation rve obtain the equivalent of (18) with L’ replaced by L”, where the 

definitions now are 
2 L” = - 

0 J 
(-Ti*xAz -t Ail Xi?*) * I “, 4;ik s,, * w - .w dS (22a) 
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and W'b) 
(22c) 

(22d) 

where again the range of the indicies are 1 5 n IN, 0 I n’ I N and the iteration index (i) is under- 

stood. Note that the outward normal vectors are related by E’ = -2’ along the interface. 

On the periodic boundary, we adopt the notation $(z=i1/2) = EJ*), etc., and in analogy with 

Eqs. (20) and (21) define 

$i) = 1 2 z(f) + lZ(-) e-a](i); 
[ 

A$i) = $[,(+) - FJ-) eeC](i) 
(23) 

+ If(-) ema](i); Affi) = $[,(+) - Ii(-) eTalti) 

whence 

E(i+l) 
H 

(+) = [g + Ag + SE(+))(‘); and $i+q(-) =[(g - Ag) eiA + gs(-)l(i) (24) 

and similar expressions for H(i+l) (+). The linear system equivalent to Eq. (18) again is found, 

with L’ replaced by L”‘, and the following definition s: 

2 L’T’ = - 
0 4ir ik J[ ~~*xAE-A~x~]~ do 

S”’ d 

L”’ = 4zTik s,,, n -J cc 
4:,/ [ 

(+I + [3$-l e 
-iA * 

T ) 
XAE-&iX $,(+)+$(-)e 

( *n 
-iA 

) - (7 ’ 1 
L&r = - 

ij* x f 
i; r S”’ *u ( an’ (+) - 6 l-) e an” tin ,(+I - zn,l\-) e -IA x5* ds ) 1 Z 

(25a) 

(25b) 

(25C) 

1 L”’ = - 
nn’ J[ v(+) x $,,(‘I - ge, x &y(-) 1 z ds 4xik S,,, an 

(25d) 

with 1 I n I S, 0 <_ n’ I N; superscripts of (i) are understood. It is readily seen that Eqs. (25) 

all vanish identically for any model which explicitly satisfies the Floquet condition; e.g., the 

traveling-ivave space harmonic expansion [Eq. (4)]. 

We may now put the parts together and state the linearized variational conditions as .T 

with LE’ = (Lh + Li + Li1)(i) and L(i, = (LL, + L&, + Lti&, )(i) given by Eqs. (19), (22) and (25), 

recalling the definition A0 = k [Eq. (15)]. 
(itl) 

Solutions of the linear system given by (26) with Ln 

set equal to 0 gives the corrections &An (i) = (Ni, &A1 . . . &A#) in terms of the current approxi- 

mation k(i), A?‘, . . . , A;). 

Other RF Properties 

The quantities shunt impedance, quality factor, and group velocity are given by well-known 

formulae. For the present purposes we use the following definitions: 

4ZOE lEtot12 . 
rtot/Q = li --y--- . 

4zO’ IEeffj2 
r,/Q = k ___ U 

(26); (27) 

Q qp-: 

W 

m, 
vg!c = -y- (28): (29) 
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where r tot = total shunt impedance; r0 = synchronous shunt impedance; Q = quality factor; v = 
g 

group velocity (actually “energy velocity”); ZO = the impedance of free space (377 fi in practical 

units or 4x/c in gaussian units); and the remaining quantities are defined as follows: 

IEtot12= $; /EZ(r’O)I” dz; Eeff = +j-;- EZ(r=O) e 
iwz/v, 

dz (30);(31) 

u = sv ($* E, + H* H) dV a: stored energy; (32) rD.*r 

P, = P 

f\F S’ zO 
g* g dS = wall losses; 

P, = m2 4 (E x g*)z dS = power flow; 

(33) 

(34) 

where ve = particle velocity; p = resistivity of metal walls; f, denotes integration over the 

metal walls; and fA denotes integration over any transverse &oss section of the waveguide. 

Equations (30) through (34) presume gaussian units. The Q calculation is for normal (not super- 

conducting) materials. 

General Description 

Computer Program 

A program called TWAP (for Traveling Wave Accelerator Program) has been written in 

Portran lV for the IBM 360/91. After reading in data which describe the problem, TWAP may 

perform the following functions: 

1. Calculate the parameters (frequency and the expansion coefficients) using the variational 

fitting principle described previously; 

2. Punch out these parameters on a card deck suitable for input into a subsequent run; 

3. Perform the integrals necessary to evaluate r/Q, Q, and vg, [see Eqs. (29). . . (37$ 

above and search the metal boundaries for maximum electric and magnetic fields. 

Each of these three functions may be performed in any order (or not at all) under input data 

control. 

Input Data 

Data are read in via punched cards. The input.includes the “initial guess” for frequency and 

expansion coefficients; the number of expansion coefficients in each of the two annular regions; 

designation of which of the parameters will be allowed to vary in the fitting routine: auxilliary 

quantities such as phase shift per cell, particle velocity, the desired fitting accuracy, and the 

maximum number of iterations; and physical description of the cell. The cell is described by a 

sequence of data elements each of which def-r i ,.cs a boundary segment of the longitudinal cross 

section. Optional elements are provided for segments of axis, periodic boundary, a plane of 

structure symmetry, interface between regions I and II; and several shapes of metal wall sec- 

tions including straight lines, circular arcs, and elliptical arcs. An arbitrary number of mesh 

divisions is designated for each segment, and an arbitrary resistivity is specified for each metal 

segment. 

Parameter Fitting 

The vector Ln and matrix Lnr, [Eq. (26)] are generated by numerical integration of Eqs. 

(19), (22): and (25) usin, u Simpson’s rule weighting of the values of the integrand evaluated at the 

boundary mesh points. A linear system routine then solves for the corrections &A,, this -yr;,::ir,e 
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automatically reduces the dimension of the matrix if the matrix is singular or nearly singular, 

in which case some of the An are not varied. After correcting the An, the program decides. 

whether to make another iteration; the iteration is terminated if the fit is sufficiently good, if the 

system seems to have become stationary, or if the maximum specified number of iterations has 

been performed. 

Since the solution An = 0, (1 < n I N) satisfies the fitting criteria, it is advisable to hold one 

of the coefficients, e.g., the dominant space harmonic, constant. Depending on symmetry or 

other structure properties it may be possible to hold some of the parameters at zero. Fitting 

of the structure geometry parameters must be done by changing the input data on successive 

runs; the program does not do this automatically. 

Other RF Properties 

The integrals given by Eqs. (30) through (34), and required to calculate r/Q, Q, and vg/c 

[Eqs. (26) - (29)], are computed by Simpson’srule numerical integration using the preset 

boundary mesh points. The volume integral, Eq. (32), is performed by first integrating over an 

annular shell associated with each boundary mesh point, and then doing the radial integral over 

the shells. The electric and magnetic energy integrals are performed separately, and the quan- 

tity (k - u,)/u (proportional to the Lagrangian) is calculated as an independent check on conver- 

gence of the fit. 

In addition to the quantities r&Q, r,,/Q, Q, reff, and vg/c, the integration subroutine 

also finds the ma,titudes of the peak electric and magnetic fields, e and #I. 

Typical Results 

Test cases have been run for several structures for which the properties are available both 

from experiment and from other computer programs. 

SLAC Constant Gradient Structure 

Figure 2 shows the geometry of the cells in the existing SLAC constant gradient structure. 

Table I shows properties found by experiment and computed by Nakamura’s program 
14 and by 

Ti$‘AP. Here SI, S>I, and SO (Nakamura’s designation)refer to cells from the input, middle, and, 

output end of the tapered structure. The TWAP calculations used an expansion to order 20 

(O,+l,..., 120) in the inner region and order 14 in the outer region; the corresponding numbers 

ii] Sakamura’s calculation were 12 and 12. The agreement is seen to be fairly good, with the 

~VO computer prqrams generally agreeing slightly better with one another than with experiment. 

In the TW’AP calculation the maximum boundary errors (tangential E field) occurred at the 

sharp edge on the disk tip, andwere about 10% of the peak electric field. 

Los Memos Structure 

Figure 3 gives the dimensions of a particular cell (p = 0.65) of a design used in the LOS 

Alnmos proton linnc .4 Table11 summarizes properties obtained by esperiment, by the LAW 

prqymn” 2nd by TRAP. It proved impossible to obtain really satisfactory fits with the functional 

cs?xlnsions in T1VM’ in this case; the masimum boundary errors (which occurred near the tip of 

the nose cone) n‘crc about 20% of the peak E field. Nevertheless, the agreement is fairly good 

(. OJ“C) for frfxpc11cy, although rather poor for r/Q (7.5%) and Q (4%). 
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Other Examples 

Several examples related to the SLAC superconducting accelerator study are given in another 

paper [Herrmannsfeldt et al. 17 
-- ] in these Proceedings. As may be seen from Table I of the above 

reference, the TWAP results agree rather well with both the LALA computations and the experi- 

mental results. The boundary conditions are fit rather well by TWAP in smooth-walled structures 

such as those of Herrmannsfeldt et a1.f7 maximum boundary errors are 3% to 50/o of the peak -- 
electric field. 

Summary and Comments 

The variational principle for electromagnetic fields has been used in a form which appears 

somewhat different from that used elsewhere, 
9,10,7,14 

although it presumably is equivalent. 

The ad-vantage of the present formulation is that the frequency is found along with the other unde- 

termined field parameters by a linearized fitting method which tends to converge in a very few 

iterations. 

The use of functional expansions to represent the traveling wave fields has been extended to 

.generalized (rotationally symmetric) boundaries, and is fairly successful if the boundary is not 

too complicated. The Los Alamos structure4 with its prominant nose cones is a case in which 

the present model does not work very well. Methods for extending the applicability of this kind 

of model have been suggested e.g., by Walkinshaw and Bell’ and by Nakamura l4 (following 

Gluckstern8). This matter is under further study. 
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FIG, l--Schematic illustration of cell geometry. 



//////, ,//// ( / / / / / -; t - / / / 
b / / 

g = 3.50012 cm 
8 q 0.03936cm 
p = 0.30861cm 

YC = a +0.30351 cm 
t = 0.29210 cm 

FIG. 2--SLAC 25r/3 constant gradient structure. (See Table I, below, for the 
dimensions a and b.) 

TABLE I 

Rf Properties of SLAC 27;/3 Constant Gradient Structure 

Cell Designation 

SI 

a = 1.3129 cm 

Parameter Experiment Nakamura 

b (cm) 4.1721 4.1733 

vg/c .0204 .0206 

Q 14,160 13,863 

r,/Q (R/cm) 37.5 38.5 

TWAP 

4.1736 

.0206 

13,917 

3s.9 

b (cm) 4.1328 4.1335 4.133s 

S;\I vg/c .0135 .0136 .0137 

a = 1.16605 cm Q 13,700 13, s2s 13, SS2 

r,/Q (R/cm) 41.1 41.0 41.9 

b (cm) 4.0886 4.os92 4.os93 

so T’,/C * 0065 .00652 0 00672 

a = .96096 cm G 13,230 13,791 13, s45 

r,/Q (R/cm) 45.1 43.1 46.0 



-A 
f 
I I 

-tw=0.47625cm 

Jhr2=l.0cm 

r max 

FOR vp/c = 0.65: 

L/2 = 6.0517 cm 

LDT =2.8127cm 

rmax = 14.1545 cm 

FIG. 3--Geometry of Los Alamos Cells. The structure is nominally designed 
for r-mode, but the results in Table II, below, are for O-mode. 

TABLE II 

Rf Properties of LASL /3 = 0.65 Structure 


