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ABSTRACT

In this paper we investigate two differing approaches to the
three-body scattering problem: that of Faddeev and that of Lovelace.
We find a simple operator connection between the two methods and
use this connection to give a physical justification of Faddeev's resi-
due prescription‘ for determining three-body scattering amplitudes.
Based on these results we present derivations for the integral equa-
tions, which directly give breakup and rearrangement amplitudes as

solutions.
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I. INTRODUCTION

There exist in the literature of the three-body scattering problem essentially
two different methods of defining the physical scattering amplitude. The first,

widely used in the literature is that typified by the work of Lovelace [1, 2]. The

by Faddeev [3]. Although it is known [1] that the two methods evéntually lead to
same physical S matrices the connection between the two approaches is somewhat
obscure. In particular, although Faddeev's method is easy enough to describe
mathematically, it does not have (at least in Faddeev's work) a direct physical
motivation. This fact and the neglect of Faddeev's approach is unfortunate, since
the method leads to the simplest availablé integral equations for describing three-
body scattering when two-particle bound states are present in the initial and/or
final configurations. Among the desirable properties of these integral equations
is that solutions give the observed physical amplitudes without any integrations
over the asymptotic channel wave functions such as are needed in Lovelace's ap-
proach in order to obtain the physical amplitudes of interest.

The principal aim of this paper is to clarify the interconnection between
Lovelace's and Faddeev's approaches to aefining three-body scattering amplitudes.
To this end we find a simple op‘e-rator connection between Faddeev's amplitudes
and the Lovelace-type amplitudes‘ in the form introduced by Alt, Grassberger and
Sandhas [4] . This interconnéction leads to a simple physical explanation of
Faddeev's approach. We also provide a derivation of the integral equations which
the physical breakup and rearrangement (including elastic scattering) amplitudes
satisfy. Finally, we give a new set of integral equations for these amplitudes in

which only the on-shell rearrangement amplitudes enter.



II. FADDEEV EQUATIONS

In this section we give a summary of Faddeev's results. In particular we
recount Faddeev's method for determining' the physical amplitudes for breakup,
fearrangelnent and elastic scattering. Throughout we will use most of the same
notation for operators and kinematic variables as one finds in Faddeev's book [3].

Let us denote by H 0 the three-particle kinetic energy operator. In momentum

space [3, p. 6]
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where ofy are the cyclic labels of the three particles, and m, is the « particle
mass; p  is a two-particle reduced mass By = (mpm})/(mp + m_Y); n isa three-
particle reduced mass, n,= ma(mﬁ + m))/(ma + mﬁ + my). The P, represent
the individual particle momentum in the three-body center-of-mass; i.e., ka =
m - m /(m_+m ). I we describe the interaction between any pair
(m,Bg = MgP, )/ (m g+ M, ) y pair (87)

of particles by the potential Va’ then the total three-body potential is

n ’ ,
V=2V, (IL. 2)
a=1
and the resulting complete Hamiltonian is
H=Hj+V. (11. 3)

Faddeev analyzes the scattering solutions of the three-body problem by studying
the behavior of the complete Green function G(z) = (H - z)—l in the complex z plane.
G(z) satisfies the well known Hilbert identities _

G(z) = Gy(2) - Gy(z) V G(2), (IL. 4)

.= Go(z) - G(z) V GO(Z), (II.5})



where GO(z) =M, - z)—1 is the unperturbed Green function. The study of this

0
singular (as z —real axis) operator is facilitated by writing G(z) with the aid of
Eqgs. (4) and (5) in the form

G(z) = G(z) - G(z) T(2) Gyfa), (L. 6)

where T(z) is defined to be
T(z) =V -V G(z) V. (IL. 7)
Clearly knowing T(z) determines G(z) via Eq. (II.6) and so the study of the singular
G(z) can be replaced by the study of the less singular operator T(z).
In order to find a nonsingular linear integral equation from which T(z) ma;}
be determined, T(z) is broken up into components Maﬁ(z)’ which are suggested

by the form of Eq. (II.7),

M,6(2) = 8,8 V,, -V, G(2) Vs (0. 8)
3 3
T(z) = 2, 25 Mg(2). (IL.9)
a=1 B=1

The derivation of integral equations for Ma 8 is a straightforward algebraic exercise

and one finds [3, p. 12]

M, ﬁ(z) = aaﬁ T, (2) - y?a T (2) G4(2) My £(?) (1. 10)
and _
M (z)=8 T (z)- M (z) G(z) T o(2). (L. 11)
af af B v/ A 0" g

In these equations the operator Ta(z) which determines both the driving term and
the kernels is the two-body t-matrix defined in the three particle Hilbert space,

. . 1
namely, or in terms of matrix elcments

- -1
T, = V‘J‘ TV (z-H -V )V, (IL. 12a)
2
T (p k p' ki) =8%p -p'yt |k k' ;z- Yo (IL. 12b)
oV et o’ o o o\ o o’ 2na ) :
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The ta appearing in the right-hand side of this relation is just fhe (B7) off-shell
two-body t-matrix appropriate for the (87) scattering in the (By) center-of-mass
system. ‘

The Egs. (II. 10) and (II. 11) are singular in the following sense. The driving
term Ta(z) has a delta function in the P, variable which will also appear in the
solution M_ ,. Thus, it is advisable to consider the subtracted quantity

op
Wop(® = Myp(z) = 8 0T (2) (II. 13)

which satisfies

W, 5(2) = Wég)(z) - y;a T,(2) Go(2) W 4(2), (II. 14)
and |
W,5(2) = Wé%)(z) - %‘;ﬁ W,(2) Gg(2) Tg(2), | (IL. 15)
with
ng(z) = =B 5 To(2) Gyl2) Tg(@), g = (1= 8,). (I1. 16)

The matrix elements of W(a(g(z) are easily seen to be free of any delta-function

singularities, though there may be infinities in W(O)(pa, ka; pt, k{';; z) for some

af

values of the arguments. The Wa 8 equations are the basic equations that Faddeev
analyzes in detail. The mathematical nature of the solutions, Wa g’ is such that
they are functions of z with just pole and branch cut singularities. Specifically,
they are not distributions.

We now turn to the description of the physical amplitudes in terms of the Wa

ﬁ’s.

The Wa B has two distinct types of singularities. When the three-body kinetic energy

2 . .
is such that the a~channel energy z~pa/2n is at a two-body bound state energy then
Td has a pole in the variable pi/ 2n. This type of singularity arising from either
Toz or T,B is called a primary singularity [3] This type of singularity is present

in the driving term, any finite iteration of the driving term, and the exact solution.



The existence of these singularities is associated with the different physically
realizable asymptotic states of the system. Thé other type of singularity, called
a secondary singularity [_3], arises from the possibility in WZ g that the denominator
of the G 0(z) portion of the matrix element may vanish. This type of singularity does
not persist for third or higher order iterates of Eqs. (II.15) and (II. 16).

We now decompose Wa 8 by explicitly factoring out the primary singularities.
To do this we need to expand toz around its bound-state poles. This pole decom-

position is in the case of only one bound state

¢, (K (K

+
zXa

A
1. = .
ta(k, k';z) = + ta(k’ k'; z), (. 17)

Do

where ¢oz is a "vertex function” that is related to the two-body bound-state wave

function, l[fa, corresponding to the energy - X Z, by

$ ) = <k2/2ua +X2 )y 0. (IL 18)

A
The only singularity the nonpole term ty will have will be the discontinuity across
the scattering cut for positive energy values. The addition of more than one bound

~ state in each channel complicates our formulae but the procedure remains unchanged.

Now Wozﬁ may be written in the form

¢ 5(kp)
Waﬁ(kp;k'pv;z) = g'aﬁ(kp;k'p';z) + {gozﬁ(kp;pél?;z) “_"—B"'ﬁ_'f

B

2
z+Xﬁ o

¢, (k) &, )7, (0, 5 03 D) G5 (T)

e s ot bl . Tt
2 apPo i EP2)F < o2 p'.z» '
2 _‘a 2 _ o ,.x2_ L
Z+on 2n Z+Xa 2n <Z+X[3 2n

Q2

-+

(IL. 19)

. id . T 0 (:f,v . - \55i .
The residue functions, /aﬁ’ % upr Gap J(’aﬁ, in the expression above will not have

any primary singularities, but may have secondary singularities.” It is easy to



see that Eq. (II.19) is mathematically correct. Clearly, W [J,(z) will, by its
definition Eq. (II.16), have an expansion of the form of Eq. (II.19). Also any
finite iterate, whose structure is sum of terms like

TaGOTyl GOT_YZ Gy - .GOTynGOTﬁ, (a # 7y # Yo £... ;Z'yn;éﬂ),

will have the representation, Eq. (II.19). Thus it is plausible that the exact solu-
tion Waﬁ will have the form Eq. (II.19). Faddeev in fact gives a proof of this (3,
Ch. §]. | |

We now have all the ingredients necessary to write down Faddeev's identifi-
cation of the various scattering amplitudes in terms of the quéntities defined in
(11.19). Let the incoming asymptotic state of our system be in channel g-i.e.,
particle § is incident with momentum p'p onto the bound state pair (oy), bound
with energy - X[2-3' Then the S-matrix for scattering into channel o (where o may
be equal to 8) with a final state described by momentum P, and bound state energy
-X‘Z is [3, p. 81]

(2, P 2 P 2,0
aﬂ(P ,pﬁ) [88 (pa~p&)—-27r18<X +——— +Xﬁ 5 ﬁ) [3< ’pﬁ ﬁ n‘3+10>.
(I1.20)

The amplitude for breakup is related to the following linear combination of

and ¢

¢ (K

)
- RO RN o o )
‘/{Q‘B(kp,p'g,é) - gaﬁ(kpapﬁaz) + pz c// ﬁ(p >pﬁ Z) (]121)

2 o
Z+Xa 5n

specifically, the S 0p matrix for the breakup of channel 8 is
k2 p2 p' 5‘2 2
N = - 1 4 — ..__.._ -+ z n! - - 3
SO{f(kp’pﬁ) 27idy — 2“ on” o E JL k,p,pﬁ, Znﬂ Xﬁ + 10>
(11. 22)



The final amplitude we shall write down is the scattering of three frce particles to

three free parl:icles3

Soolkps K'p') = 8k~ 18 (p - p")

2 2 2 2 2 2
(K. p K _p et K P
- 27T15<2u Y om T T m Z% Maﬁ kp;k'p'; o + S 10
?
j (1. 23)
Faddeev's method for establishing the validity of Eqs. (II.20), (II.22) and (II.23)

N

is long and arduous. ™ One particularly disappointing asbeot of Faddeev's approach
is that there is noégg_@_gr_i physical reason why the functions inti‘oduced in Eq. (II.19)
are (with appropriate linear combinations like Eq. (II.21)) the physical scattering
amplitudes. In the next section we give a simple argument which allows one to

understand the decomposition, Eq. (II.19), somewhat more physically as well as

to prove the validity of Eqs. (II.20) - (II. 23).
OoI. LOVELACE-ALT APPROACH

A second approach to setting ﬁp and defining three-body scattering amplitudes
with a related set of integral equéttions is given in the work of Lovelace [1, 2] and
later modifications of it by Alt, Grassberger, and Sandhas [4]. This method pro-
ceeds by determining, from the oﬁtset, a three-body operator whose matrix elements
between the eigenstates of the asymptotic channel Hamiltonians, Ha’ Hﬁ’

is known to be the physical scattering amplitude. This section gives an outline

or H0

of this method. The results are then used to obtain simple operator interconnection
between the Lovelace and Faddeev viewpoints. Finally we use this interconnection
to provide a simple independent justification of Faddeev's S-matrix equations.

We begin our discussion by reviewing a wave function description [5] of scat-
tering general enough to account for the multichannel character of our three-body

scattering problem. Let l,ll(i) be an exact scattering eigenstate of the total



Hamiltonian, H,

) = gyt (IIL. 1)
which corresponds asymptotica]ly to a state . The + subscript on  indicates
the scattering wave function that corresponds to ¢ in the remote past, while the -
superscript describes the wave function which corresponds to ¢ in the infinite
future. Total conservation of energy in the scattering process is satisfied by
demanding that ¢ be an eigenstate of the asymptotic Hamiltonian, HO’ with energy
E,

H0¢= E¢ . (I1. 2)
If one defines the scattered part of the wave function by

W = @ x ' (1. 3)
it follows from Eq. (IOI.1 - III.3) that
@ - e x® = 1 - p)e. (IIL. 4)

Adding an =+ ie, € >0, to H - E so that we may invert the operator H - E, we have

X®) - _G(E  ie)H - E)P (III. 5

or, equivalently, ° e
| v =P - GEigH - B . (IIL. 6)
In 2 multichannel scattering process the initial asymptotic Hamiltonian, HOi’

may be different from the final asymptotic Hamiltonian, H So the interaction,

of°
Vi’ for the incoming wave is generally not the same as the interaction, Vf, for the
outgoing wave. These channel potentials are defined by
H=H0i+vi=H0f+Vf.‘ (. 7)
The channel wave functions, which are eigenfunctions of H, are given by
W) =P - GE # ie)(H - B)P. - (III. 8)
i(f) i(f) if)



Potentials are introduced into this equation by using .
H=E1y0) = Boigny * Vi = ity = VinPiqry (I )

The S-matrix, S.., is defined as the inner product of ll/g) with lll§+). One now

fi’
obtains the scattering amplitude by expanding the S-matrix about the diagonal

element: Employing the identity

CH iS(H ~
\!Jf(i) zpf( i) + 27r16(§ Ef( )) f(1)¢f(i) (II.10)
which is a direct consequence of Eq. (III.8), one obtains.
(4/( ) 41(““)) (4,(+) + 27i§(H~ E )vdi,t/;(*))
= Sﬁ - ZﬂiS(Ei— Ef) ((b , fopf’)) . (1. 11)

The fi channel scattering amplitude is then (d) g fopg +)) and the transition operator,

corresponding to this amplitude is defined by

(2 V9, = (2 ")

=(¢f, [vf - V,G(E + ie)vi]q:ai), (1. 12)

+
Uggs

or, equivalently,

U (2) = V; - VG(2) V. (III. 13)

Instead of expanding tl/j? in Eq. (III.11), we could expand !II:- with Eq. (III.10).

This leads to a second expression for the fi channel amplitude, namely

Sp; = gy ~ 2TIS(E; - Ep) (lll—f-, vicpi). (II. 14)

Consequently, a second operator for the fi channel amplitude is
Up(2) =V, - VG(?)V (II1. 15)
The ambiguity in the choice of transition operators, U?i does not have any physical

conscquences since the difference of the two operators may be written as H,. - H

0i of

which vanishes when evaluated befween the channel states qbi and ¢ £

- 10 -



The U;i(z) are operators that Lovelace [1] uses to investigate the three-body
problem. Specifically, in the three-body problem, with only pair-wise potentials
present, we have Hi——“Ha + Va’ S0

Vl‘-:(H"'H +VC¥):V_V :VO!” 01:0,1,2,3, (m'16)

0] o

where V,= 0. The Lovelace operators can then be written as

U'(;ﬁ(z) =V, V, 60V, | (ITL. 17)
U(;ﬁ(z) = 'Vﬁ - ’\Ta G(2) “\7ﬁ (111 18)

*
The problem of determining Ua ﬁ(z) is made tractable by finding an integral

+
equation whose solution is Uaﬁ(z)' By substituting the identities5

V., G(z) Vy = U;;S(z) G,(z) T5(2) (IIL. 19)
and
Vs G(z)'if'ﬁ = Tg(2) Gy(2) Ug[g(z) (TI1.20)

+
into Egs. (IO.17) and (IIL. 18) one obtains integral equations for Uaﬁ(z)’ viz.,

U;ﬁ(z):va- U;y(z) Ggla) T(2), (I11. 21)

v#B

U (2)=7V, - T (z) G(2) U_ (2). (I11. 22)
af B. via ¥ 0 Y8

These equations share with Faddeev's Eq. (II. 11) a well-defined nonsingular mathe-

matical behavior — that is acting a suitably restricted Banach space [3, Ch. 5] the

kernels of these equations generate compact operators. Physically the Banach space

is not very restrictive since it only requires that the momentum space fﬁnctions

fall off for large momentum (fast enough to be squa.re integrable) and that they

satisfy a Holder smoothness property (so that the i prescriptions are well defined).
The disadvantages of Lovelace's operator equations Eqgs. (IIl.21 - III.22)

relative to Faddeev's are that Lovelace's equation involve two distinet off-shell

- 11 -~



extensions of the transition matrix and that they are not equations which give three-
body amplitudes entirely in terms of the off-shell two-body t-matrix operators.
Both of these disadvantages are removed by modifications introduced by Alt et al.,[4].
A more symmetric approach for defining a channel dependent transition

operator is to define Uozﬁ as

G(z) = Gy (2) 85~ Gyl2) Upg(®) Gp(2) (TIL. 23)
If one substitutes the identities ‘

G(z) = G (2) - G (2) Va G(z) (III. 24)

and

G(z) = G(2) -~ G(z) Va' G (2) (IIL. 25)
into themselves, it follows that;
Uppl® = By - 2) Uzﬁ(z) = -8 4B, = 2) + U g(2). (I11. 26)

For z = E £ i0, the difference between U¥ and U vanishes on shell when acting on

appropriate channel eignestates. Thus U_, retains the interpretation of the physi-

op

cal transition operator in the o to B channel scattering process. Integral equations

for Uaﬁ follow from Egs. (III.21) and (III. 22) and the relation, Eq. (III.26), between

Ugp 20d vl g

Uyp(@) = - 8aﬂ(HO - z) - ygp Ut G(2) T, (2) (ITL. 27)
and

Uap(z) = - Eaﬁ(HO ~zy- 3, Ty(z) G (2) U%B(z). (TII. 28)

y#o
The Lovelace-Alt Egs. (II.27 - III.28) involve only one off-shell extension and do
not include any direct reference to potentials.

We shall now study the interconnection between the Lovelace-Alt formulation

and Faddecev's. 6

- 12 -



Consider the operator sz ﬁ(z) defined by
w! p(z) T (z) Gylz) U ﬁ(Z) G (2) 48(2) . (III. 29)

We will show that Waﬁ = Wc'vﬁ' Let us premultiply Eq. (II.28) by _l‘a(z) Go(z) and

postmultiply by Go(z) Tﬁ(z) then Eq. (IIL.28) becomes
Wi g(2) = -3 6T (z) G (2) Tg(2) -VZa T () Gy(2) Wg(2), (III. 30)
S0 W;)z 8 satisfies the same integral equation as Woz 3 Faddeev has proved that this
equation (even in the limit + ie —0) has unique solutions for any z not equal to a
three-body bound state energy. Consequently, Wozﬁ and W'a 8 are equal. In passing
we point out an important difference between the Alt et al., U's and the U:t of Love-
lace. If we had used Lovelace's U* in an equation of the kind (II.29), we would
not be led to any simple connection to Faddeev's W's.
We may now use Eq. (IIL. 29) to give a direct physical interpretation of Faddeev's
primary singularity decomposition (II. 19) of Wa g Equation (IIL. 29) tells thatbresidues
| of the primary singularities of Woz B are just the matrix elements of Uoz 8 We already
know from the Lovelace approach that the on-shell channel mailtrix elements of Uoz 8

are the physical amplitudes. In detail, the formulae for elastic scattering and re-

arrangement, obtained from Faddeev's prescription Eq. (IL. 19) and Eq. (IIL.29) are

¢ (k )Uaﬁ(pa,ka;pﬁ 5 ; Z) ¢ﬁ( p)dkdk'

CZ(OZ

P g Pl ) = A Ca— (. 31)
p k p k
oo W BB _,
2n 2y Zn 2y
2
p' B 2 o 2
Taken on shell, z = -X, +£i0= ==~ X, £ i0 this equation becomes just
2n P 2n B
(2
S p"E—E—XziiO =f§ ¥y (k YU P, N 4 B X +i0 l[/(k)dk dk!
ap\Pa’Pp>2n "7 o) VapPea Py 6 B AN
| (ITL. 32)

- 13 -



The right-hand side of this relation is just (¢oz’ Ua [3(E + io)qbﬁ) since the asymptotic
channel wave function is

) 3
1 . = " _

, q’a(pa’ ka’pa) o (poz poz) l’l’oz(kcu) (L. 33)
Here we have proved explicitly that the physical interpretation of J/Kaﬁ as the rear-
rangement or elastic amplitude is correct.

Next let us examine the breakup process. Faddeev's prescription tells usto construct

'%z/x[i' Doingso, we have

2
p
P STl ol .
ta<ka,kgl,z 2n> U g (P 5K Dhs 2) (k) Akl iy

- ) =
'-/{aﬁ(}cpspp ’ Z) pz kz '2 kz H)
@, o Pg %8 (III. 34)
=+ 5 -z — + -z
2n 2n 2n 2u
where the sum over « = 1,2, 3 gives the entire breakup amplitude. On-shell, with
p'2
Z = —B X2

5 B + i0, it is clear that the right-hand side of Eq. (III. 34) when summed

over o becomes equal to , U, (z)@,) where according to Eq. (III.28) the Lovelace-
0’ ~08 B

Alt breakup operator is

3
Ugg®) = ~(H, - 2) - Ojél To(2) Gy(2) U (), B#0 (I0. 35)

and

¢0(p1|,1<!1;p,k) — Sg(p!l - p) 83(1<H - k)’

2 2 p'z
ot 51 = on XB Re z (1I. 36)

The four equations (III.31 - III. 34) provide an explicit justification of Paddeev's

residue prescription for defining the physical amplitude.
IV. INTEGRAL EQUATIONS FOR THE PHYSICAL AMPLITUDES
Sections II and I have provided us with detailed interconnections between the

Faddeev and Lovelace-Alt formalisms with particular attention to the definitions

- 14 -



of the physical amplitudes. Here, by starting from the Lovelace-Alt equations we
derive a set of integral equations for simple and natural extensions of the physical
amplitudes A& and . half- off-shell.

We shall confine our attention to the scattering problem in which the initial
state is in the f-channel, i.e., the pair (o) is bound and particle § is free. The
Lovelace-Alt equation appropriate to this problem is Eq. (III.28). A useful inter-

mediate integral equation is obtained by multiplying Eq. (III.28) by

2 2 -1
p' 1_«:1___ . . . S 1
ﬁ(lﬁ < + M z) and integrating over dk,B' Defining Aaﬁ(kp,pﬁz) by
' 5(kp k'p)¢p( ) kg .
Aaﬁ(kp E ;2) = k' (Iv.1)
2n _27 -z
we have,
Aaﬁ(kp'pb;z)
2
< kﬂ p5>8 (p H)A (kﬂp” kl .Z) dl ‘Hdpﬂ
= 3 _ fo\s? 5°”~ 2m o A
Pap® g~ ) %) ; <,,2 o ) |
o LA S
2n " 2. (IV. 2)

The equatioh for A will become an equation for the physical amplitudes if we
multiply from the left by operators like Ta(z) G 0(z). Let us introduce a notation
sufficiently general to handle évariety of cases. We define a generalized bound

state pole expansion of toz by

2 2

199 _( ' P >
1 =) - . _
t\K Kz 5] = £ (0, 2) ¢, () 6 (k) +E Nk K5 am 5= ) (IV.3)

where arbitrariness of the expansion depends on the choice of f (p., z) The”
pa \—l

definition of t, is specified once fa is chosen. TFor fa(pa, z) = (z - 5 + X )

Eq. (IV.3) just reverts to Eq. (IL. 17).



From the integral equation for A g’ we can obtain a relation involving the
. 1 .
amplitudes S/(’aﬁ if we multiply by ¢a(ka) (-——— o= - z) and use Eq. (III.31).

We obtain
. 1.
¢, (5q) Ay gk Py 3Pps2) Ak,

, (IV.4)
pZ k2
._g—- o+ -—a_ -7
and Eg. (IV.2) becomes

¢> (k”) 8(p p.)
+-——'— Z

J[&Yﬁ(pa’ pb’ Z) =

{Agﬁ(k" 230452) + 5005 2) ¢5 k”)ffsﬁ(pg,pﬁ;m} dprdk, (Iv.5)
where
_—8_ ¢ (p ,p') ¢(p 9p')
0w = gk (IV.6)
P, PPy Pg
== 4 -z
Zuﬁ my Zp,a
and

T ., TR 1
ta ka’ka’z 2n Aozﬁ(kap’pﬂ’ Z)dkoz

x et - oY = . T
Aaﬁ(kpapﬁ’ Z) <p2 kﬂz > (IV )
o, o |
2n 2u

In our notation for ¢a in Eq. (IV.6) we give pa,p'p as the argument. This is meant
to indicate the koz which is fixed by knowing pa,pb when a # 8. The.”/l(o?g is a driving
term. We obtain a closed set of equations once we add to Eq. (IV.5) a linear equation

giving Ka ﬁinterms ofTA{oZ 8 and(yfa . The necessary equation is obtained by multiplying

- AV
Eq. (IV.2) by ty, ka’kgz;z— on o + T z and integrating with respect

- 16 -



A [ R _—0 R
Aap(kp pﬁ’é) = A?ﬁ(kp,pﬁ,Z)

2
p
¥ {1 W, 0 )3 _ M
—; ta <]\a,ka;z 2n> 8 (pa pa) {X (k” p”'p' Z)
2 ’ »
o p“a l{ﬁ o a "B Th
2n - 2u B
+ 1,0, 2) $5(K") H 5Pl Di2) | dp K, (IV.8)

where

2
p
_ -5, 5t <k k(0 ,p! ;z——q’->¢(p D))
Agﬁ(kp;p[g;z): afoer o oo o P ol .

Now Eq. (IV.5) and (IV.8) are sets of solvable coupled integral equations. Actually
we have a family _of such equations since we are free to choose fa'

We consider three different choices for foz :

f,P,:2) = 0, (IV. 102)
2 -1
f . — . .Iig_ +X2 .
a(pa, Z) - Zz ~ on o ) ’ (IV. 10b)
| 2
Fp sz =m0 (n- o2 4 x2 V.10
olPgi? =71 2n al’ (IV. 10c)

Let us discuss choice @. In this case Ea = ta’ and Kaﬁ becomes according to Eq.
(TIL. 34) just Hpp — the off-shell breakup amplitude. With X o = Jt,; Ed. (IV.9)
is a self-contained three component integral equation which predicts the breakup
amplitude. The Eq. (IV.5) is just an auxiliary equation predicting the elastic or
rearrangement amplitude, ‘}”aﬁ(poz’pﬁ;z) from J»aﬁ. -
Now let us examine choice b.7 Our two sets of equations, Eq. (IV.4) and

Eq. (IV.8) together represent a six component set of integral equations for 'Waﬁ

and Koz g= ‘é?a g’ This six component set is somewhat asymmetric in that the
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components have one active variable, p, while ¥ has two, p and q. One obtains
breakup amplitudes .# from ¢ and .2 by Eq. (I.21). Our final choic;a c, is one
which only on-shell values of the elastic-rearrangement amplitude, ,:/faﬁ, appear
in the coupled equation.

| The merits of using (numerically or analytically) the above coupled integral
equations to study breakup or e}astie—rearrangement scattering seem clear. Our
integral equations, for all three cases, give as their solution the physical ampli-
tudes. No subsequent integrations over asymptotic channel wave functions are
required. The altérnative Lovelace approach, having the same physical content,
would be to solve Eq. (II.28) for Uaﬁ’ then employ Eq. (III.31) and (III.34) to obtain
JCand ¥ . This second approach involves more work as well as being less direct.
On first inspection it may seem that the six component equations are twice as dif-
ficult to solve as the three component equations. This is not really the case. The
intractable nature of Eqs. (IV.8) and (IV.5) resides in that fact that they are integral
equations in two vector variables (pk). The finite component structure is not a
serious difficulty. For example in. case (b), the three components to Eq. (IV.5)
are functions of onlj one variable; If we imagine that Eq. (IV.8) where turned
into a matrix equation by discretizing the variables k and p by N points each, then
the increased complexity represen.ted by Eq. (IV.5) is no more than if we had used
N -+ 1 points for k in Eq. (IV.8) instead of N. Thus, our six component equation is
negligibly more complicated than the three component one in case (a).

We complete this section by discussing the singularity structure of our inte-
gral equations. As remarked in Section II there is the possibility that the driving
terms, th’gﬁ and Kgp’ have secondary singularities. These singularities arise
from the vanishing of the Green function denominator

2 2

o pOéb p[): p,B
20 * m’y * 24 T
-4 ﬁ a
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2
t
The scattering energy z for the incoming channel g is —z—g— - X E So the Green
B
function denominator becomes

+ - == - > > 0.
2“[3 2“5 Znﬁ B B

Thus the Green function denominators are bounded away from zero for all values

of P, Consequently, for the scattering problem with an incoming asymptotic scat-
tering Hamiltonian different from H 0 the secondary singularities never arise. The
driving terms Jfa 8 and Ka 8 are Holder continuous as they stand and no iteration
is necessary in order to obtain smooth driving terms. The only case where the
secondary singularities are present is in the scattering of three free particles to
three free particles. For this problem Faddeev showed that the singularities
vanish after the third iteration. It is just these singularities that Amado and

Rubin [6] recently studied at threshold.
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FOOTNOTES

The notation used here for matrix elements is Faddeev's(3]. The relation to
the usual bra and ket notation is <paka]T]p2yk'a> = T(p K, :PLK.).

To be more explicit in the definition of the expansion, Eq. (II. 19),

3 . ‘ r (N /' . -
the residue functions gaﬁ’ €? L ‘gozﬁ’ Jfa 8 are assumed to be Holder con
tinuous in the kp variables. Aside from the known secondary singularities in
the first three iterates of Eqs. (II. 14 and II.15) Faddeev [3] gives estimates to
prove this.

The one remaining physical amplitude of interest is the amplitude for (3 —2),

which can be written in a form similar to Eq. (II.22) and involves J/Ka 8 and

S

af’

See for example, Chapters 5,6,7,9, and 11 in Faddeev's book [3] Actually

no explicit proof is given in [3] for Egs. (I1.20) and (II.22); however the proofs
are not much more difficult than the one given in (3, Ch. 9] for S 00°
These identities are proved by'us.ing the Green function identity G(z) = GS(Z) -
G(z) VS GS(Z) where GS(Z) = (Hy + V8 - Z)—l, together with the two-body identity
VBGS(Z) = Ts(z) GO(Z)‘

Lovelace proved [1, A,ppendix] that his and Faddeev's approaches both give the
same on-shell physical arﬁplitude. The connection we give here between the
two formalisms is both simple and more general in that the relationship is an

operator one and consequently has a full off-shell content.

The integral equations arising for choice (b) correspond to [3, Eq. (5. 19)].
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