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ABSTRACT 

In this paper we investigate two differing approaches to the 

three-body scattering problem: that of Faddeev and that of Lovelace. 

We find a simple operator connection between the two methods and 

use this connection to give a physical justification of Faddeev’s resi- 

due prescription for determining three-body scattering amplitudes. 

Based on these results we present derivations for the integral equa- 

tions, which directly give breakup and rearrangement amplitudes as 

solutions. 
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I. INTRODUCTION 

There exist in the literature of the three-body scattering problem essentially 

two different methods of defining the physical scattering amplitude. The first, 

widely used in the literature is that typified by the work of Lovelace [l, 23. The 

second, somewhat neglected because of its apparent complexity, is that developed 

by Faddeev [3]. Although it is known [I] that the two methods eventually lead to 

same physical S matrices the connection between the two approaches is somewhat 

obscure. In particular, although Faddeev’s method is easy enough to describe 

mathematically, it does not have (at least in Faddeev’s work) a direct physical 

motivation. This fact and the neglect of Faddeev’s approach is unfortunate, since 

the method leads to the simplest available integral equations for describing three- 

body scattering when two-particle bound states are present in the initial and/or 

final configurations. Among the desirable properties of these integral equations 

is that solutions give the observed physical amplitudes without any integrations 

over the asymptotic channel wave functions such as are needed in Lovelace’s ap- 

proach in order to obtain the physical amplitudes of interest.‘ 

The principal aim of this paper is to clarify the interconnection between 

Lovelace’s and Faddeev’s approaches to defining three-body scattering amplitudes. 

To this end we find a simple operator connection between Faddeev’s amplitudes 

and the Lovelace-type amplitudes in the form introduced by Alt, Grassberger and 

Sandhas [4] . This interconnection leads to a simple physical explanation of 

Faddeev’s approach. We also provide a derivation- of the integral equations which 

the physical breakup and rearrangement (including elastic scattering) amplitudes 

satisfy. Finally, we give a new set of integral equations for these amplitudes in 

which only the on-shell rearrangement amplitudes enter. 
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II. FADDEEV EQUATIONS 

In this section we give a summary of Faddeev’s results. In particular we 

recount Faddeev’s method for determining the physical amplitudes for breakup, 

rearrangement and elastic scattering. Throughout we will use most of the same 

notation for operators and kinematic variables as one finds in Faddeev’s book [3]. 

Let us denote by Ho the three-particle kinetic energy operator. In momentum 

space [3, p. 61 

where c@y are the cyclic labels of the three particles, and ma is the Q! particle 

mass; p ~ is a two-particle reduced mass 1-1, = (mPm 
4 

/(mp +- m 
J 

; nQ! is a three- 

particle reduced mass, na = ma(m 
P 

+ mJ/(ma, + mP + m,$. The p, represent 

the individual particle momentum in the three-body center-of-mass; i. e., ka = 

trnapp - p 02 p m p )/(m + m r’. If we describe the interaction between any pair <pr) 

of particles by the potential Va9 then the total three-body potential is 

v= kva 
O!=l 

(11.‘2) 

and the resulting complete Hamiltonian is 

H=Ho+V. (II. 3) 

Faddeev analyzes the scattering solutions of the three-body problem by studying 

the behavior of the complete Green function G(z) = (H - z) -1 in the complex z plane. 

G(z) satisfies the well known Hilbert identities 

G(z) = GO(z) - Go(z) V G(z), VW 

’ = Go(z) - G(z) V GO(z), (II* 5) 
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where Go(z) = (Ho - z) -1 is the unperturbed Green function. The study of this 

singular (as z -real axis) operator is facilitated by writing G(z) with I;he aid of L 

Eqs. (4) and (5) in the form 

G(z) = Go(z) - Go@) T(z) GOP), m* 6) 

where T(z) is defined to be 

T(z) = V - V G(z) V. tn. 7) 

Clearly knowing T(z) determines G(z) via Eq. (II. 6) and so the study of the singular 

G(z) can be replaced by the study of the less singular operator T(z). 

In order to find a nonsingular linear integral equation from which T(z) may 

be determined, T(z) is broken up into components M,@(z), which are suggested 

by the form of Eq. (lI.7), 

Map(z) = 6 @j v, - vawv,, (II* 8) 

T(z) = 5 5 MLypW W.9) 
a=1 p=1 

The derivation of integral equations for M 
4 

is a straightforward algebraic exercise 

and one finds [3, p. 12) 

M&l = $,,, TJz) - & Ta(z) Go(z) “‘rp;“’ (II. 10) 

and 

May(Z) GO(z) Tp(4- (II. 11) 

In these equations the operator T@(z) which determines both the driving term and 

the kernels is the two-body t-matrix defined in the three particle Hilbert space, 

namely, or in t,erms of matrix elcinents 1 

T,‘= Va + Vol(z - II 0 - varlva, 

T,(p,kcr;p’$:,;z) = s3(pa - 
P2 

pL) ta z - * . 
01 

(II. 12a) 

(II. 12b) 
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The tar appearing in the right-hand side of this relation is just the @?I) off-,&e11 

two-body t-matrix appropriate for the (pr) scattering in the (pr) center-of-mass 

system. 

The Eqs. (II. 10) and (II. 11) are singular in the following sense. The driving 

term Tel(z) has a delta function in the pa! variable which will also appear in the 

solution M 
W’ 

Thus, it is advisable to consider the subtracted quantity 

w,p(z) = M@(Z) - $gJz) (II. 13) 

which satisfies 

and 

W&&z, = W$b - c W (~1 G (~1 T (~1 Y#P cl! O @ ’ 
with 

(II. 14) 

(II. 15) 

(II. 16) 

The matrix elements of Wzi( ) z are easily seen to be free of any delta-function 

singularities, (0) though there may be.infinities in WQP(pa, ka; p’ , k’ ; z) for some 
P P 

values of the arguments. The W 
Q!p 

equations are the basic equations that Faddeev 

analyzes in detail. The mathematical nature of the solutions, W 
@’ 

is such that 

they are functions of z with just pole and branch cut singularities. Specifically, 

they are not distributions. 

We now turn to the description of the physical amplitudes in terms of the W 
aF 

‘s. 

The W 
@!p 

has two distinct types of singularities. When the three-body kinetic energ 
2 is such that the ol-channel energy z-11,/2n is at a two-body bound state energy“then 

TQ! has a pole in the variable pi/2n. This type of singularity arising from either 

Tel or T 
P 

is called a primary singularity [3). This type of singularity is present 

in the driving term, any finite iteration of the driving term, and the exact solution. 

-5- 



The existence of these singularities is associated with the different physically 

realizable asymptotic states of the system. The other type of singularity, called 

a secondary singularity [3], arises from the possibility in W” 
aP 

that the denominator 

of the Go(z) portion of the matrix element may vanish. This type of singularity does 

not persist for third or higher order iterates of Eqs, (II. 15) and (II. 16). 

We now decompose W 
a@ 

by explicitly factoring out the primary singularities. 

To do this we need to expand tcr around its bound-state poles. This pole decom- 

position is in the case of only one bound state 

t@(k) k’ ; z) = 
(b,oq-v 

z+ x; 
+ Pa(k) k’; z), (II. 17) 

where $a! is a ‘vertex function,” that is related to the two-body bound-state wave 

function, $ Q!, corresponding to the energy - Xz, by 

(II. 18) 

The only singularity the nonpole term ?“, will have will be the discontinuity across 

the scattering cut for positive energy values. The addition of more than one bound 

state in each channel complicates our formulae but the procedure remains unchanged. 

Now W 
QP 

may be written in the form 

; z) = So$(kp;k’p’; z) + Q$kp;p~; z) 
qjty 

*2 
z+x2-% 

P 2n 

- The residue functions, :F CL!@’ 9 ap’:Q-j’ ( YY og’ in the expression above will not have 

any primary singularities , but may have secondary singularities.2 It i.s easy to 
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see that Eq. (II. 19) is mathematically correct. Clearly, W” 4 
(z) will, by its 

definition Eq. (II. 16), have an expansion of the form of Eq. (II. 19). Also any 

finite iterate, whose structure is sum of terms like 

will have the representation, Eq. (II. 19). Thus it is plausible that the exact solu- 

tion W ap will have the form Eq. (II. 19). Faddeev in fact gives a‘ proof of this [3, 

Ch. 6-j. 

We now have all the ingredients necessary to write down Faddeev’s identifi- 

cation of the various scattering amplitudes in terms of the quantities defined in 

(II. 19). Let the incoming asymptotic state of our system be in channel p - i. e. , 

particle p is incident with momentum pp ’ onto the bound state pair (oly), bound 

with energy - Xf . Then the S-matrix for scattering into channel 01 (where CY may 

be equal to /3) with a final state described by momentum p, and bound state energy 

-Xz is [3, p. 813 

* 

(II.20) 

The amplitude for breakup is related to the following linear combination of ;le 

(rL21) 

specifically, the S 
OP 

matrix for the breakup of channel p is 

S (kp;p’ ) = -2ni6 
OP P 

(11.22) 
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The final amplitude we shall write down is the scstt,ering of three free particles to 

three free particles3 

Soo(kp; k’p’) = 3 6 3 (1~ - k’)S (p - p’) 

( 

2 
- 27riF !5-+ 

3-4 
g+ c) & MOlp(kp;klpt; $ + g+iO). 

, 
( (II. 23) 

Faddeev’s method for establishing the validity of Eqs. (II. ZO), (II.22) and (11.23) 

is long and arduous. 4 One particularly disappointing aspect of Faddeev’s approach 

is that there is no a priori physical reason why the functions introduced in Eq. (II. 19) -- 

are (with appropriate linear combinations like Eq. (II.21)) the physical scattering 

amplitudes. In the next section we give a simple argument which allows one to 

understand the decomposition, Eq. (II. 19), somewhat more physically as well as 

to prove the validity of Eqs. (II. 20) - (II. 23). 

III. LOVELACE-ALT APPROACH 

A. second approach to setting up and defining three-body scatteri.ng amplitudes 

with a related set of integral equations is given in the work of Lovelace [1, Z] and 

later modifications of it by A.lt, Grassberger, and Sandhas [+I. This method pro- 

ceeds by determining, from the outset, a three-body operator whose matrix elements 

between the eigenstates of the asymptotic channel Hamiltonians, Ha, H or I-I 
P’ 0 

is known to be the physical scattering amplitude. This section gives an outline 

of this method. The results are then used to obtain simple operator interconnection 

between the Lovelace and Faddeev viewpoints. Finally we use this interconnection 

to provide a simple independent justification of Fsddeev’s S-matrix equations. 

We begin our discussion by reviewing a wave function description [S] of scat- 

tering genera1 enough to account for the multichannel character of our three-body 

scattering problem. Let Ic, (*I be an exact scattering eigenstate of the total 
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Hamiltonian, H, 

H$,t’) = E,,,t*) (III. 1) 

which corresponds asymptotical.ly to a state @. The -k subscript on I,!J indicates 

the scattering wave function that corresponds to Q, in the remote past, while the - 

superscript describes the wave function which corresponds to @ in the infinite 

future. Total conservation of energy in the scattering process is satisfied by 

demanding that @ be an eigenstate of the asymptotic Hamiltonian, Ho, with energy 

E, 

HO@=E@ 0 (III. 2) 

If one defines the scattered part of the wave function by 

qp) zz c&+x(*), (III. 3) 

it follows from Eq. (III. 1 - III.3) that 

(H - E)X(*) = -(H - E)@. (III. 4) 

Adding an * k, E > 0, to H - E so that we may invert the operator H - E, we have 

x(*) = -G(E I ie)(H - E)@ (III. 5) 

or, equivalently, 

qt*) = @ - G(E * ie)(H - E)@ . tm* 6) 

In a multichannel scattering process the initial asymptotic Hamiltonian, Hoi, 

may be different from the final asymptotic Hamiltonian, H Of. So the interaction, 

Vi, for the incoming wave is generally not the same as the interaction, Vf, for the 

outgoing wave. These channel potentials are defined by 

H = Hoi + Vi = Hof -I- Vf. (III. 7) 

The channel wave functions, which are eigcnfunctions of H, are given by 

- G(E * ie)(H - E)Q). 
1vl* tm* 8) 
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Potentials are introduced into this equation by using 

tH - T)@i(f) = tI-IOi(f) + vi(f) - E)@i(f) = ‘i(f)@i(f)* (III. 9) 

The S-matrix, Sfi, is defined as the inner product of I/J!-) with $if). One now 

obtains the scattering amplitude by expanding the S-matrix about the diagonal 

element: Employing the identity 

$6) = ‘$*I 
f(i) f(i) + 2’i’tH- Ef(i)) vf(ij@f(i) (IL 10) 

which is a direct consequence of Eq. (III. 81, one obtains 

Sfi = ‘($k), $:I) = ($r) + 2ni6(H- Ef)Vf@f, $r)), 

= afi - 27ri6(E i-Ef)kf, vf”r’) e (III. 11) 

The fi channel scattering amplitude is then Cp,, Vf I,!J~ 
( 

t 4 
) 

and the transition operator, 

Ut, corresponding to this amplitude is defined by 

(of’ ‘nisi) = (of’ ‘fan’) 

= (#Sf, Vf - TrfG(E -I- ie)Vi Gi , 
( c I) (III. 12) 

or, equivalently, 
-I- Ufi(z) = Vf - VfG(z) Vi. (III. 13) 

Instead of expanding $i in Eq. (III. ll), we could expand +: with Eq. (III. IO). 

This leads to a second expression for the fi channel amplitude, namely 

Sfi = ?ifi - 2?‘ri6(Ei - Ef) ($I, ViGi). 

Consequently, a second operator for the fi channel amplitude is 

Ufi(z) = Vi - VfG(zjVi. - 

(III. 14) 

(III. 15) 

The ambiguity in the choice of transition operators, rf fi does not have any physical 

consequences since the difference of the two operators may be written as Hoi - H Of 

which vanishes when evaluated between the channel states oi and Gf. 
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The $(z) are operators that Lovelace [l] uses to investigate the three-body 

problem. Specifically, in the three-body problem, with only pair-wise potentials 

present, we have Hi-Ha + V@, so 

Vi = (H - Ho -I- VQ) = V - Va! = vQ, a = 0,1,2,3, (III. 16) 

where Vo’ 0. The Lovelace operators can then be written as 

U;,(z) = vQ - va G(z) “p, (III. 17) 

U&(z] = VP - ya G(z) Tp. (III. 18) 

The problem of determining U* 
@ 

(z) is made tractable by finding an integral 

equation whose solution is U* ,+z). By substituting the identities5 

va G(z) V8 = U;,(z) Go(z) T$z) (III. 19) 

and 

Vs Gus = T$z) Go@) U&(z) (III. 20) 

into Eqs. (III. 17) and (III. 18) one obtains integral equations for U* ,ptzf, viz., 

U+--(z) = is - I-J+ Cl! r#P ay tz) Go@) Tytz), 

U&(z) = Tp - Tytz) Go(z) UypW 
YfQ 

(III. 21) 

(III. 22) 

These equations share with Faddeev’s Eq. (II. 11) a well-defined nonsingular mathe- 

matical behavior - that is acting a suitably restricted Banach space [3, Ch. 51 the 

kernels of these equations generate compact operators. Physically the Banach space 

is not very restrictive since it only requires that the momentum space functions 

fall off for large momentum (fast enough to be square integrable) and that they 

satisfy a Hiilder smoothness property (so that the i prescriptions are well defined). 

The disadvantages of Lovelacers operator equations Eqs. (III.21 - III.22) 

relative to Faddeev’s are that Lovelace’s equation involve tx~o distinct off-shell 
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extensions of the transition matrix and that they are not equations which give threc- 

body amplitudes entirely in terms of the off-shell two-body t-matrix operators. 

Both of these disadvantages are removed by modifications introduced by Alt $z aJ.,[4]. 

A. more symmetric approach for defining a channel dependent transition 

operator is to define U o!p as 

G(z) = G,(z) $-,,, - GJ4 U&J Gp(z) (III. 23) 

If one substitutes the identities 

G(z) = GaCz) - Gc,@) va G(z) (III. 24) 

and 

G(z) = G@(z) - G(z) va GJz) 

into themselves, it follows that, 

(III. 25) 

U&z) = -8 (H - z) -t U&(z) = -s&H 
aP P a - z) + U&z). (III. 26) 

For z = E & i0, the difference between 3 and U vanishes on shell when acting on 

appropriate channel eignestates. Thus U 
v 

retains the interpretation of the physi- 

cal transition operator in the 01 to p channel scattering process. Integral equations 

for U follow from Eqs. (III. 21) and (III. 22) and the relation, Eq. (III. 26), between 
QP 

U 
@ 

and U* CYp: 

U&z) = - $(Ho - z) - UayW Go(z) Ty(z) (III. 27) 

and 

uap(z) = - $&Ho - 2) - y$ Tyt4 Go(z) UypW - (III. 28) 
. . 

The Lovelace-Alt Eqs. (III. 27 - III. 28) involve only one off-shell extension and do L 

not include any direct reference to potentials. 

We shall now study the interconnection between the Lovelace-Alt formulation 

and Faddcev’s. 6 
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Consider the operator W’ ,$z) defined by 

W&(4 = Ta(z) Go(z) UapW G,(z) Tpt4 . (III. 29) 

We will show that W = W’ 
($3 QP’ 

Let us premultiply Eq. (III. 28) by :r(y(z) Go(z) and 

postmultiply by Go(z) T 
P 

(z) then Eq. (IlI.28) becomes 

w&p(z) = -F ,&$z) Go(z) ‘$tz) -ysa TJz) GotWY++z), (III. 30) 

so W’ 
OrP 

satisfies the same integral equation as W Qp. Faddeev has proved that this 

equation (even in the limit -I ie -0) has unique solutions for any z not equal to a 

three-body bound state energy. Consequently, Wap and Whp are equal. In passing 

we point out an important difference between the Alt et al. , U’s and the U* of Love- -- 

lace. If we had used Lovelace’s rf in an equation of the kind (III.29), we would 

not be led to any simple connection to Faddeev’s W’s, 

We may now use Eq. (III. 29) to give a direct physical interpretation of Faddeev’s 

primary singularity decomposition (II. 19) of Wcrp Equation (III. 29) tells that residues 

of the primary singularities of W @B 
are just the matrix elements of U ap. We already 

know from the Lovelace approach that the on-shell channel matrix elements of Uap 

are the physical amplitudes. In detail, the formulae for elastic scattering and re- 

arrangement, obtained from Faddeev’s prescription Eq. (II. 19) and Eq. (III. 29) are 

s 
-- 

X&(PQ, P;; 2) = 
q$$J Uo,,(pa!, k,, ;ppk;; 4 $(k;’ dk dk’ 

(!L+&z)(g+gvz) 

(III.31) 

Taken on shell, z = 2n - Xg * i0 thi s equation becomes just 

/“bc~~~~U~~(p.k~-‘,l~~~~ -X; *iO) $/$“i3’dkadkb e 

(m.32) 
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The right-hand side of this relation is just (QQ, UQp(E f iO)$) since the asymptotic 

channel wave function is 

(nI.33) 

Here we have proved explicitly that the physical interpretation of ,W @ 
as the rear- 

rangement or elastic amplitude is correct. 

Next let us examine the breakup process. Faddeev’s prescription tells us to construct 

. Doingso, we have 

where the sum over a! = 1,2,3 gives the entire breakup amplitude. On-shell, with 
,2 

z = 2 - X$ & i0, it is clear that the right-hand side of Eq. (III. 34) when summed 

U over a! becomes equal to (Go, op (z)@ p ) where accordmg to Eq. (III. 28) the Lovelace- 

Alt breakup operator is 

- 5 T U,p(z) = -(q-J - 2) ~=1 Q! (4 Go(z) U&z), MO (III.35) 

and 

eo(p”, k”;p, k) = a3(p” - p) S3(kn - k), 

2 ,2 
&+-= k2 %-Xi=Rez 

2r.t 2n 
(HI. 36) 

The four equations (III. 31 - III. 34) provide an explicit justification of Faddeev’s 

residue prescription for defining the physical amplitude. 

IV. INTEGRAL EQUATIONS FOR THE PHYSICAL AMPLITUDES ’ 

Sections II and III have provided us with detailed interconnections between the 

Faddcev and Lovelacc-Alt formalisms with particular attention to the definitions 
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of the physical amplitudes. Here, by starting from the Lovelace-Alt equations we 

derive a set of integral equations for simple and natural extensions of the physical . 

amplitudes JI and JZ’ half-off-shell. 

We shall confine our attention to the scattering problem in which the initial 

state is in the p-channel, i. e., the pair (@y) is bound and particle ,B is free. The 

Lovelace-Alt equation appropriate to this problem is Eq. (III. 28). A useful inter- 

mediate integral equation is obtained by multiplying Eq. (III.28) by 
-1 

f#$(k;) z and integrating over dkl . 
P 

Defining A ,$“p ;p;z) by 

we have, 

Q+P’P;;~) = 

(k”p”; k’ ; z) dk”dp” 

The equation for A will become an equation for the physical amplitudes if we 

multiply from the left by operators like Tn(z) Go(z). Let us introduce a notation 

sufficiently general to handle a variety of cases. We define a generalized bound 

state pole expansion of t* by 
2 

ta! ka,kly;z- = fatpa, z) @&-J m + ka, l’; ; z- 2 , W-3) 

where arbitrariness of the expansion depends on the choice of 

definition of Ta is specified once fa is chosen. For fcr(p,, z) 

Eq. (IV. 3) just reverts to Eq. (II. 17). 
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From the integral equation for A we can obtain a relation involving the 
’ 

amplitudes 36 
Q@ 

if we multiply by ~cu(l~~) and use Eq. (III. 31). 

and Eq. (IV. 2) becomes 

e%8$(Pa, P;; z) = z$JPa. p;; z) - 

and 

x x \ 
SP Q! o! P 

(k”,” ; p’ ; z) + f8(pg’, z) $&k;)~~$#?;, pp; z) j dP”dk”, 

where 

hap(kp; P; ; 4 = 
xa k;,k”;z- /’ 

Aor (k;p;p’ ; z )dk; 
. 

P2 
P* 7) 

-3 

In our notation for Ga! in Eq. (IV.6) we give p p’ as the argument. This is meant 
a’ P 

to indicate the kQ! which is fixed by knowing p,, pb when a! # P. The J&ii is a driving 

term. We obtain a closed set of equations once we add to Eq. (IV. 5) a linear equation 

The necessary equation is obtained by multiplying 

and integrating with respect 
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A,#@ p;; z) = $#p; p; ; z) 

+ f$?“, z) $&l~“) c~Z’~~(p;, p&;z) dp” dk” , 

where 

Now Eq. (IV. 5) and (IV. 8) are sets of solvable coupled integral equations. Actually 

we have a family of such equations since we are free to choose fa. 

We consider three different choices for fa! : 

f,(Po+ = 0, 

f$?,;z) = (k- $ +.x2J 

f,(p,;z) =-&Sk- 5 + X2). 

(IV. 10a) 

(IV. lob) 

(Iv. IOC) 

Let us discuss choice (a). In this casetcr = tLY, and x 
@P 

becomes according to Eq. 

(IlI.34) just XUa - the off-shell breakup amplitude. With x 
‘$ 

= Ji& Eq. (IV. 8) 

is a self-contained three component integral equation which predicts the breakup 

amplitude. The Eq. (IV. 5) is just an auxiliary equation predicting the elastic or 

rearrangement amplitude, X’ a$?, , pp ; z) from 3Lap. 

Now let us examine choice b.7 Our two sets of equations, Eq. (IV.4) and 

Eq. (IV. 8) together represent a six component set of integral equations for ?Yfl 
QP 

and x CYp = (9 CYP’ This six component set is somewhat asymmetric in that the X 
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components have one active variable, p, while $9 has two, p and q. One obtains 

breakup amplitudes X from 9 and :YC by Eq. (lL 21). Our final choice c, is one 

which only on-shell values of the elastic-rearrangement amplitude, .YZ’ 
aP’ 

appear 

in the coupled equation. 

The merits of using (numerically or analytically) the above coupled integral 

equations to study breakup or elastic-rearrangement scattering seem clear. Our 

integral equations, for all three cases, give as their solution the physical ampli- 

tudes. No subsequent integrations over asymptotic channel wave functions are 

required. The alternative Lovelace approach, having the same physical content, 

would be to solve Eq. (IlI.28) for U 
QB 

then employ Eq. (III. 31) and (III. 34) to obtain 

Z’and 3 . This second approach involves more work as well as being less direct. 

On first inspection it may seem that the six component equations are twice as dif- 

ficult to solve as the three component equations. This is not really the case. The 

intractable nature of Eqs. (IV. 8) and (IV. 5) resides in that fact that they are integral 

equations in two vector variables (pk). The finite component structure-is not a 

serious difficulty. For example in case (b), the three components to Eq. (IV. 5) 

are functions of only one variable. If we imagine that Eq. (Iv’. 8) where turned 

into a matrix equation by discretizing the variables k and p by N points each, then 

the increased complexity represented by Eq. (IV.5) is no more than if we had used 

N -t 1 points for k in Eq. (IV. 8) instead of N. Thus, our six component equation is 

negligibly more complicated than the three component one in case (a). 

We complete this section by discussing the singularity structure of our inte- 

gral equations. As remarked in Section II there is the possibility that the driving 

terms, X0 -0 
@P 

and A 
w 

have secondary singularities. These singularities arise 

from the vanishing of the Green function denominator 

( 
p; 12 
r +P,+% -7 

P 1ny 
) 2/J, _1- 
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The scattering energy z for the incoming channel p is 

function denominator becomes 

12 
pP x2 
2n- P .P’ So the Green 

+ !iL) e(g-x;)2x; ’ 0. 

Thus the Green function denominators are bounded away from zero for all values 

ofp($ Consequently, for the scattering problem with an incoming asymptotic scat- 

tering Hamiltonian different from Ho the secondary singularities never arise. The 

driving terms 3eap andaQ, are Hijlder continuous as they stand and no iteration 

is necessary in order to obtain smooth driving terms. The only case where the 

secondary singularities are present is in the scattering of three free particles to 

three free particles. For this problem Faddeev showed that the singularities 

vanish after the third iteration. It is just these singularities that Amado and 

Rubin [6] recently studied at threshold. 
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FOOTNOTES 

1. The notation used here for matrix elements is Faddeev’s [3]. The relation to 

the usual bra and ket notation is < p,koll T ]p;k:, > = T(paka ; p;k;, . 

20 To be more explicit in the definition of the expansion, Eq. (II. 1.9), 

the residue functions g 
W’ 

‘S QP’ 
C@ 

@’ 
Z’ 

QP 
are assumed to be Hiilder con- 

tinuous in the 1~~ variables. Aside from the known secondary singularities in 

the first three iterates of Eqs. (II. 14 and II. 15) Faddeev [3] gives estimates to 

prove this. 

3. The one remaining physical amplitude of interest is the amplitude for (3 - 2), 

which can be written in + form similar to Eq. (II. 22) and involves ~6’~ and 

4. See for example, Chapters 5,6,7,9, and 11 in Faddeev’s book [3]. Actually 

no explicit proof is given i.n [3] f or Eqs. (11.20) and (11.22); however the proofs 

are not much more difficult than the one given in [3, Ch. 9] for Soo. 

5. These identities are proved by’using the Green function identity G(z) = G8(z) - 

G(z) T8G8(z) where G*(z) = (Ho -t Vs - z)-‘, together with the two-body identity 

Vs G8W = T$z) Go(z) - 

6. Lovelace proved [l, Appendix] that his and Faddeev’s approaches both give the 

same on- shell physical amplitude. The connection we give here between the 

two formalisms is both simple and more general in that the relationship is an 

operator one and consequently has a full off-shell content. 

7. The integral equations arisii& c for choice (b} co-rrespond to [3, Eq. (5.19)]. 
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