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ABSTRACT 

The renormalization group method of Gell-Mann and Low is applied 

to field theories of strong interactions. It is assumed that renormaliza- 

%ion group equations exist for strong interactions which involve one or 

several momentum-dependent coupling constants. The further assumption 

that these coupling constants approach fixed values as the momentum goes 

to infinity is discussed in detail. However, an alternative is suggested, 

namely that these coupling constants approach a limit cycle in the limit 
+ - 

of large momenta’.’ Some results of this paper are: 1) The e - e annihi- 

lation experiments above 1 GeV energy may distinguish a fixed point from 

a limit cycle or other asymptotic behavior. 2) If electrodynamics or weak 

interactions become strong above some large momentum A. then the re- 

normalization group can be used (in principle) to determine the renor- 

malized coupling constants of strong interactions, except for U(3)XU(3) 

symmetry breaking parameters. 3) Mass terms in the Lagrangian of 

strong, weak and electromagnetic interactions must break a symmetry 

of the combined interactions with zero mass. 4) The AI= l/2 rule in 

nonleptonic weak interactions can be understood assuming only that a 

renormalization group exists for strong interactions. 
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I. INTRODUCTION 

At large momenta radiative corrections in quantum electrodynamics grow 

logarithmically. At an energy of about 10 40 eV the radiative corrections are of 

order 1 instead of order a! (a! is the fine structure constant) and at infinite energy 

the radiative corrections are infinite. As a result the Born approximation to 
40 quantum electrodynamics is unreliable at energies of 10 eV or higher. This 

raises a challenge: can one find an approximation to electrodynamics which is 

valid for these energies ? 

The academic nature of this challenge is evident. Quantum electrodynamics 

neglects the interactions of photons with hadrons and the weak interactions of 

electrons, not to mention interactions not yet discovered. Any of these interactions 

could appreciably alter the electron-photon interaction at high energies. In any 
40 case, 10 eV is an energy hopelessly beyond the range of any conceivable accel- 

erator . Nonetheless, some notable authors have tried to meet this challenge. 192 . 

This paper is concerned with the work of Gell-Mann and Low, 1 who studied in 

particular the behavior of the photon propagator in the limit of large k2, k being 

the photon momentum. To study the photon propagator, Gell-Mann and Low used 

a method which has since become known as the renormalization group approach. 

The renormalization group was invented by Stueckelberg and Petermann, 3 its role 

in the Gell-Mann-Low analysis is discussed in the book of Bogoliubov and Shirkov. 4 

Gel&Mann and Low suggest that their analysis may apply to theories of strong 

interactions as well as electrodynamics, and that in strong interactions their results 

might apply at energies more accessible than 10 
40 eV. In practice the storage ring 

experiments to measure the total e+ - e- annihilation cross section into hadrons 

above 1 GeV momentum transfer (and perhaps the SLAC deep inelastic scattering 

experiments) explore a range of momenta relevant to the Gell-Mann-Low theory. 
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Clearly the time has come to explore in detail the consequences of the Gell-Mann- 

Low theory for strong interactions. 

The basic formula in the Gell-Mann-Low theory for electrodynamics is a dif- 

ferential equation for a quantity eA. Let the renormalized photon propagator be 

written k -2 dc(k2/m2, 2 e ) where k is the photon four-momentum, e is the renor- 

malized electron charge, and m is the renormalized electron mass. Then eA is 

defined by the equation 
2 = e2 dc(-1 2 2 2 

eA /m , e ) (I-1) 

Gell-Mann and Low set up a generalization of the usual renormalization procedure 

in which eA is defined to be the renormalized coupling constant, for some arbitrary 

ohosen value of A, in place of e. They also argue that e A’ considered as a function 

of A, interpolates between the physical charge e and the bare charge, namely 

eA for h 0 is e and eA for A is the bare charge. The bare charge will be 

denoted e J in this paper. The GelliMann-Low formula is of the form 

de: 
-= 
dQn A2 

$ (m2h2, ei) (1.2) 

Gell-Mann and Low suggest that $ m2/A2, ( 
ef) has a nonzero limit as m -to, i.e., 

2 
G 0, eA ( ) 

exists and is not identically zero. If this is true, then for A >> m, eA 

satisfies approximately 

. 
\ 

det/d(Qn h2) = e(o, ef) (1.3) 

Gell-Mann and Low assume that this equation holds for any value of ef, although 

it can be justified, at best, only for small ef; they then discuss qualitative features 

of the large momentum behavior of eh based on qualitative features of I+. In particu- 

lar, they show that the limit eoc of eh must either be infinite or if finite must be a 

root of the equation $ = 0. In either case em is independent of the value of 

the physical charge e. 
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The purpose of this paper is to propose that the Gell-Mann-Low theory when 

applied to theories of strong interactions can produce some startling consequences. 

For example, it will be shown that if strong interactions are described by one of 

the popular renormalizable models (e. g. , the gluon model5 or the o-mode16) then 

one can use the renormalization group equations (analogous to Eq. (I. 2)) of the model 

to determine one or more of the renormalized coupling constants of the model. In 

order to derive this result a physical assumption is made, namely that strong inter- 

actions will cease to be isolated from weak or electromagnetic interactions at some 

cutoff momentum A much larger than 1 GeV, and that any model theory of strong 

interactions is valid only below the cutoff. There will be small cutoff-dependent 

errors in the prediction of the renormalized coupling constants. 

This is a consequence of the Gell-Mann-Low theory of theoretical interest. 

An experimental consequence which is a possible but far from certain prediction 

of the Gell-Mann-Low theory is that the cross section qToT(q2) for e3- - e- annihi- 

lation into hadrons at large momentum transfers q will oscillate as a function of q2. 

To be precise the oscillations would have the form 

o;roT(q2) = (q2F1 f(Qn q2) (1.4) 

where f(t) is a periodic function oft with period to. The period to and the amplitude 

of the oscillations cannot be predicted. This behavior is only one of the alternatives 

made possible by the Gell-Mann-Low theory, and it is possible only for theories 

with at least two renormalized coupling constants. For the gluonmodel which has 

only one renormalized coupling constant the prediction for CT ToT(q2) at large q2 

is that q2 c ToT(q2) be a constant. If q2 oToT(q2) is constant at large q2 it is 

likely (according to the Gell-Mann-Low theory) that strong interactions are scale 

invariant at short distances. The hypothesis of broken scale invariance has been 

extensively discussed elsewhere. 
7 
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The renormalization group differential equations such as Eq. (I. 3) are best 

understood by setting up an analogy with equations of motion in classical mechanics 

or electric circuit theory. Let t = fin h2 and x = et; then Eq. (I. 3) becomes 

2 = 9(0,x) (1.5) 

This is a simple equation of motion with JI being the analogue of a time - 

independent force (except the equation involves dx/dt not d2x/dt2). If the field 

theory has two renormalized coupling constants, say x and y, the corresponding 

renormalization group equations have the form (neglecting masses, as in Eq. (I. 3)) 

dx -& = ‘CI, (X>Y) 

g = $2 (X,Y) 

(1.6) 

P-7) 

i. e., they are two coupled equations with time-independent forces. 

The crucial feature of the renormalization group equations is that they must 

be solved over a large or infinite range of t, namely from h of order m to. A = ’ 

or 00, leading to the range Ln m2 < t < (enA2 or oo) for t. Furthermore the equations 

are nonlinear (in perturbation theory $(O, x), or 9,(x, y) and $2(x, y), have power 

series expansions in x and y and are not linear in x and y). The essential question 

in solving the renormalization group equations is to determine the behavior of the 

solution in the limit of large t. This analogous to the central problem of nonlinear 

mechanics . 8 Nonlinear mechanics is concerned with finding equilibrium points or 

other asymptotic solutions of equations like Eqs. (I. 5) or (I. 6) and (I. 7) and studying 

the stability of these solutions. The predictions for strong interactions cited earlier 

arise from applying the theory of asymptotic solutions and their stability to the re- 

normalization group equations. 

The most serious drawback of the Gell-Mann-Low theory is that it is highly 

speculative; it requires extrapolation of functions like $(O, x) from perturbation 
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theory (small x) to strongly interactions (x - 1) and there is no way to check the 

validity, even qualitatively, of this extrapolation. Furthermore, as one studies 

the consequences of the theory for strong interactions it becomes clear that there 

is a glaring omission in the Gell-Mann-Low equations. The omission is the omis- 

sion of coupling constants associated with nonrenormalizable interactions. In 

perturbation theory there are well known reasons for distinguishing renormalizable 

interactions from nonrenormalizable interactions, but in strong coupling this dis- 

tinction becomes blurred, as will be shown. 

It is beyond the scope of this paper to discuss how to incorporate nonrenor- 

malizable interactions into the renormalization group, but one can see that however 

this is done the resulting differential equations will be very complicated. This is 

because there are an infinite number of nonrenormalizable interactions. Hence it 

is important to understand the practical importance of the renormalization group 

for strong interactions, and to understand the reasons why one must add nonrenor- 

malizable interactions to the renormalization group. For these reasons it is 

worth discussing the renormalization group without nonrenormalizable interactions 

even if nonrenormalizable interactions are necessary for a correct treatment. The 

emphasis in this paper will be on qualitative features of solutions of the renormali- 

zation group equations resulting from the existence of equilibrium or other asymptotic 

solutions; this analysis is generalizable to any number of coupling constants. 

Anyone who has studied the Gell-Mann-Low theory, either in the original paper 

of Gell-Mann and Low’ or in the review of Bogoliubov and Shirkov, 4 has found it 

extraordinarily difficult to understand. Accordingly, Section II and the Appendix 

of this paper give a thorough review of the Gell-Mann-Low theory for electrody- 

namics. However there will be no attempt here to show that the limit of 

J, (m2/A2, ef) for m -0 exists beyond fourth order in eh; there will only be a brief _ 

review of work done on this question. 
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In Section III solutions of the renormalization group equations will be discussed 

in detail, including applications both to strong and electromagnetic interactions. 

It will be shown that if the asymptotic solution is a fixed point then the corresponding 

field theory exhibits broken scale invariance. In Section IV the possible mechanisms 

for breaking scale invariance will be discussed, and the renormalization group will 

be extended to include a A-dependent mass y. In Section V the renormalization 

group for strong interactions will be discussed based on the work of Sections III and 

IV. It will be argued that mass terms in strong, electromagnetic, and weak inter- 

actions must break a symmetry common to all three interactions. In Section VI it 

will be argued that the AI = l/2 rule in weak interactions can be understood if strong 

interactions have a renormalization group, independently of the type of asymptotic 

solution of the renormalization group equations. Section VII contains final remarks. 
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II. DERIVATION OF THE RENORMALIZATION GROUP EQUATIONS 

However one defines a renormalization program for quantum electrodynamics 

to all orders in perturbation theory, there is one stage in the program where one 

makes infinite or cutoff-dependent subtractions in the n th order vacuum polarization, 

electron self energy, and vertex function. In addition to the cutoff-dependent sub- 

tractions, one makes finite subtractions which can be chosen arbitrarily. This 

arbitrariness is customarily removed by specifying ad hoc normalizations for the 

renormalized fields and by specifying that the renormalized mass and charge 

parameters are the physical mass and charge of the electron. Gell-Mann and Low 

define alternative conditions for removing the arbitrariness: Gell-Mann and Low 

specify unconventional normalization conditions for the fields and define a charge 

parameter eh which is not the physical electron charge. However they use the 

conventional definition for the renormalized mass. The Gell-Mann-Low conditions 

involve a “renormalization parameter” h which one can choose arbitrarily. The 

renormalized fields of Gell-Mann and Low for any given value of A are related to 

the conventional fields through a finite renormalization. The reason for considering 

the unconventional renormalization conditions of Gell-Mann and Low is that they 

apparently define fields which are finite off the mass shell when the electron mass 

is zero. 

The renormalization group equation results from comparing renormalized 

theories for two different values of the renormalization momentum h; if these 

theories both exist for zero electron mass then the Eq. (I. 2) derived from these 

theories also exists for zero electron mass. 

In this section a modified form of the Gell-Mann-Low renormalization condi- 

tions will be defined; then the Gel]-Mann-Low renormalized theory will be expressed 

in terms of the conventionally renormalized theory, and finally the renormalization 
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group differential equation, Eq. (1.2) will be derived. In the Appendix the motivation 

for setting up the Gell-Mann-Low renormalization conditions will be reviewed in 

detail with illustrations from low orders of perturbation theory. 

The renormalization conditions of Gell-Mann and Low can be applied to any 

method of renormalization. This means one does not have to use or understand 

Ward’s renormalization program’ used in Gell-Mann and Low’s paper. One can 

have the Bogoliubov-Parasiuk-Hepp 10 or any other method in mind in reading 

this set tion. 

The Gell-Mann-Low conditions consist of one restriction on vacuum polariza- 

tion, two on the electron self-energy and one on the vertex function. There is con- 

siderable arbitrariness in how these conditions are formulated but it seems to be 

inevitable that they look awkward due to spin complications. The conditions pro- 

posed here will not be the ones given by Gell-Mann and Low; Bogoliubov and 

Shirkov evade the problem of stating precise conditions for the electron self-energy’. 

For comparison purposes the restrictions used in conventional renormalization 

theory will be stated also. 

It is convenient to use the following notation. Let Il +,(kL X&P), and 

Icp(p, q, k) be the vacuum polarization, electron self-energy, and vertex function 

for conventionally renormalized electrodynamics. In the vertex function p and q 

are electron momenta and k = q - p is the photon momentum. Let %/Jk), .E ,(P), 

and I? 
A/J 

(p, q, k) be the corresponding renormalized functions satisfying the Gell- 

Mann-Low restrictions. It is convenient to define invariant functions, as follows. 

n,,,(k, = \gpvk2 - $$,) nc(k2) 

‘$Jk) = ( gppk2 - k&,) n A(k2) 

xc(p) = mi A,(P’) 3- Bc(p2) 

(II. 1) 

(II* 2) 

w 3) 
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I 

(II. 4) 

%Jp7 p2 O) = r,rc,@2) + Ppr,2(P2) + Yp $rc3(P2) + pp$ rc4(p2) 

(where p is ?j*py). One looks at the vertex function for k = 0 because it is con- 

nected to the electron self-energy by Ward’s identity: 

I&(P,P, 0) = Y P - ~Z&P)/@ PC” = Q - r,Ac(p2) - 2p Pi ~A,(P~)/~P~ - 2pP aBc( p2),‘8 p2 

(II. 7) 

$(P,P, 0) = ~,-Y~A,(PZ)-~~~P~~~(P~)/~P~-P~~B~(P~)/~P~ (II. 8) 

These identities give 

rcltp2) = 1 - A&p21 (II. 9) 

rc2(p2) = -2 2 Bc(p2)/ap2 (II. 10) 

-$3(P2) = 0 (II. 11) 

rc4tp2) = -2 JA,(P~)L~P~ (n[. 12) 

and analogously 

rAltp2) = 1 - %(p2), etc. (II. 13) 

There are four subtraction constants to be fixed, namely 1 constant independent 

of momentum in each of the following functions: flo(k 2 ), Ac(p2), Bc(p2), and 

rcl(p2). These subtraction constants are conventionally determined by the following 

conditions : 

II&O) = 0 (II. 14) 

C,o]+m = mAc(m2) + Bc(m2) = 0 (II. 15) 

raZc(~J/~PI]+m = Ac(m2) + [2m2aAc(p2)/dp2 -I- 2m~Bc(P2)/ap2]p2~m2 = 0 

(II. 16) 
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and 

rcltm2) + mrc2(m2) + m21c4(m2, = I (II. 17) 

The conditions on the electron propagator are chosen so that neither the 

mass nor the residue of the pole of the electron propagator at $= m are changed 

by interaction. The subtraction constant in Ac(p2) is determined by Eq. (II. 16) 

(note that the derivatives 8Ac(p2)/8p2 and 8Bc(p2)/8p2 do not involve the subtraction 

constant); the subraction constant in Bc(m2) is then fixed by Eq. (II. 15). The 

peculiar equation for rcl(m2) is dictated by the requirement that rcl(m2) satisfy 

the Ward identity. Due to Eqs. (lI.9) to (II. 12), the condition for rcl(m2) is a 

consequence of Eq. (II. 16). (As part of any renormalization program one must 

prove that all Ward identities are satisfied if the subtraction constant in the vertex 

function is chosen so that the vertex function satisfies one Ward identity at one 

value’ of the momentum. ) . 

The alternative conditions of Gell-Mann and Low (somewhat modified by the 

author) are as follows: 

rI,(-A2) = 0 

c,(p)! yj= m 
= mAA(m2) + Bh( m2) = 0 (II. 19) 

(II. 18) 

Ah(-h2) = 0 

2 r,,(-1 ) = i 

(II. 20) 

(II. 21) 

The first restriction on X.Jp) ensures that the mass m in the free electron propa- 

gator is the physical electron mass. This restriction determines the subtraction 

constant in B,(p2). The third equation (II. 20) (which was one of many possible 

choices) fixes the subtraction constant in A,(p2). The last equation fixes the 

subtraction constant inrhl(p2) and is consistentwith the Ward identity (Eq. (II. 13)) 

for r,,tP 
2 

1. 
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These conditions are chosen so as not to introduce singularities in the re- 

normalized functions when the renormalized electron mass is zero. This is 

explained in detail in the Appendix for low orders of perturbation theory. The 

Gell-Mann-Low renormalized amplitudes are also free of infrared divergences 

when the photon mass is zero and the electron mass is nonzero. This is also 

explained in the Appendix. 

Will the Gell-Mann-Low subtraction conditions combined with a renormaliza- 

tion program to all orders give renormalized amplitudes which are finite for m- 0 1 

in all orders ? This is a hard question and cannot be pursued here. Baker and 

Johnson” have an indirect proof that the photon propagator as renormalized by 

r 

Gel&Mann and Low is finite for rn. 0; the author has not checked their proof. 

Kinoshita 12 did an extensive study of mass singularities in field theory but did not 

study the effects of renormalizing according to the Gell-Mann-Low specifications. 

A full proof of the existence of the zero mass limit does not exist to the author’s 

knowledge. If the zero mass limit does not exist in higher orders the conclusions 

of this paper may be incorrect. 

Given that electrodynamics renormalized according to the Gell-Mann-Low 

specifications differs only by a renormalization from conventionally renormalized 

electrodynamics, 13 it is possible to express all the amplitudes of the Gell-Mann- 

Low theory in terms of the conventional theory. The formulae connecting the two 

theories will now be obtained. Let the conventionally renormalized electromag- 

netic potential be AcP(x) and the conventionally renormalized electron field be 

qua. Let the corresponding fields of the Gell-Mann-Low theory be %(x) and 

qA(x). Then one requires that 

A$$4 = (Z3p2 A(p) (II.22) 

(II.23) 
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The Cell-Mann-Low theory is parameterized differently from the conventional 

theory; the coupling constant in the Gell-Mann-Low theory is denoted eA. The 

mass parameterization is in terms of the physical electron mass m in both theories. 

The restrictions (II. 18) - (lI.21) imposed on the Gell-Mann-Low theory are suffi- 

cient to determine z2h, z~~, and eA in terms of conventionally renormalized am- 

plitudes; when these are known all amplitudes of the Gell-Mann-Low theory are 

determined through Eqs. (It. 22) and (II. 23). 

It is convenient to rewrite two of the Gell-Mann-Low restrictions in terms of 

the complete propagators. Let S,Jp) be the electron propagator. One has (in the 

Feynman gauge for the exact propagator14) 

D$v (9 = -gpv k2 - gpvk2n,(k2, (II. 24) 

S;‘(P) = rd - m - tipl,(p2) - BA(p2) (II. 25) 

It is convenie;t to introduce invariant functions related to D A,Jk) and SA(p), and 

indicate explicitly their dependence on m, A, and eA as well as momentum: 

Then 

d(k2/h2, m2/h2, ef) = (1 ’ n,(k2))-1 

2 s 
( 
p2/A2, m /A 2, e$ 5 il - t(p2)}-l 

DQV (k) = -gPv(k2)-1 d(k2/A2, m2/h2, ez) 

(II. 26) 

(II. 27) 

(II. 28) 

There is a second invariant function for the electron propagator which will be 

defined later (Section IV). In the zero mass limit one has y5 invariance, which 

means BA(p 2 ) is zero. In this limit one has 

S#O = (tiY1 s(P2h2, 0, e:) (II. 29) 

The functions d and s are dimensionless 15 which is why they are functions only of 

ratios of the variables p2, m2, and A2. The Gell-Mann-Low restrictions (II. 18) 
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and (II. 20) become 

d(-1, m2/h2, ef) = 1 

s -1, m2/A2, e!$ = 1 

(II. 30) 

(II. 31) 

There are corresponding functions dc(k2/m2, e2) and sc(p2/m 2 2 , e ) for the con- 

ventionally renormalized theory; d, satisfies 

dc(O, e2) = 1 (II. 32) 

The conditions on Z,(p) cannot be expressed in terms of sc alone. 

From the relations (II. 22) and (II. 23) one must have 

D7yLvw = z31 DcpvW (II. 33) 

SA(P) = z2h c s (P) (II. 34) 

which in turn means that \ 

d k2/‘A2, m2/h2, ei) = ~~~d~(k~/rn~, e2) (II. 35) 

s i 
2 2 2 

p2/h2, m /A , eA = z2A sc(P2/m 1 
2 2 

, e ) (II. 36) 

Putting k2 and p2 equal to -A2 and using the conditions (II. 30) and (II. 31) one gets 

(z3$-l = dc(-h2/m2, e2) (II. 37) 

(z~~)-~ = sc(-A2/m2, e2) (II. 38) 

In order to determine eA in terms of e one must know how TAp(p, q, k) and 

rcp(p, q, k) are related to vacuum expectation values of the fields. The formulae 

are as follows: 

rQP, 4, k) = @,I 
-1 -1 

s 04 DApv -’ U-9 F; (P, q, k1 S,‘(s) (II. 39) 

Fhv(p,q,k) = - eip’ xe-iq’ ’ <aIT +Jx)$.JY) Ahv(0)b>d4xd4~ (II. 40) 
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I I 

The factor ehl occurs in the definition of I? 
ti 

(p, q, k) along with the inverse propa- 

gators to ensure that I’+(p, q, k) in lowest order is yfi (not ehyp); using the inverse 

of the exact propagators in Eq. (II. 39) is necessary to remove self-energy insertions 

from external lines of vertex graphs. 

Analogous formulae with e replacing eX and S,‘, Diiv etc. replacing 
-1 -1 

sh , DApv, etc., give the vertex Tc,u(p, q, k) . It follows from these formulae and Eqs, 

(11.22), (II.23), (II. 33), and (II.34), that 

e&$-4 q,W = (~~~1 
-1 

(~~~1 
-l/2 

er,$p, q, 9. 

A particular consequence of this equation is that 

2 
eh r,,(P 1 = (z2h) 

-1 
(z31) 

-l/2 
ercl(P2) (II. 42) 

(II. 41) 

Using the Ward identities (11.9) and (II. 13) and the definitions of s and sc, this 

becomes 

2 eh s 
H 

2 p2h2, m /A , eA)j 2 ’ -’ = (z~~)-~ (z~~)-~‘~ e[sc(p2/m2, e2d -’ (II. 43) 

Comparing with Eq. (II.36), one must have 

eh = (z3A)-1’2 e 

Using Eq. (11.37), this is 

2 2 2 2 
eA - - e2dc(-h /m , e ) 

(II. 44) 

(II. 45) 

(This is Eq. (I. 1) of the introduction. ) 

One can now completely reconstruct the Gell-Mann-Low form of renormalized 

quantum electrodynamics if the conventional renormalized form is known. To con- 

struct d k2/h2, m2/h2, et , for example, one uses -Eqs. (Il. 35) and (II. 37) to give 

d(k2/h2, m2/h2, ei) = dc(k2/m2, e2)/dc(-~2/m2, e2) (II. 46) 

To reparameterize the ratio dc(k2/m 
2 2 2 2 2 

, e )/de{-h /m , e ) in terms of et one must 

first solve Eq. (II.45) to give e2 as a function et. In perturbation theory this is a 

tedious but straightforward process and gives e2 2 as a power series in eh. 

- 15 - 



To derive the renormalization group equations one looks at the formulas con- 

necting the Gell-Mann-Low renormalized fields for two different values of A, say 

A and A’. The two sets of fields are connected by renormalization constants: 

where 

Z3Ah' = Z3h 3h' /Z (II. 49) 

Z2hh' = Z2A /Z 2h' (II.50) 

In consequence, one has 

d(k2/h2, m2/h2, ei) = z3hh, d(k2/h12, m2/hf2, efl) (11.51) 

= z2hh, s.,p2/h’2, m2/h1 
2 2 , eh, (II. 52) 

Also, from Eq. (II.44) one has 

ef = (Z3M’F’ {, 
It follows from putting p2 = k2 = -A2 that 

(z~~,)-~ = d(-h2/h,2, rn2/A12, ef,) 

(Zaps,)-’ = s (-A2/A12, rn2/A12, e;,) 

2 e?L = et, d(-h2/h12, m2/Af2, et,) 

(II.53) 

(II.54) 

(II.55) 

(lI.56) 

The advantage of these equations is that they remain finite when m--c 0. It should 

also be noted that the function s 
( 
p2/h2, 

222 - m /hi , eh > does not have infrared diver- 

gences for finite mass m while the function sc(p2/m 
2 2 , e ) does. This means z2A 

is infrared divergent but z2Xh, is not. 
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In the limit m -,O, Eq. (II. 56) becomes (with h and h’ interchanged, for no 

good reason) 

2 
eA’ = ef d -hr2/h2, 0, ei (II. 57) 

This is an equation which is true for any h’ and A provided both are nonzero. As 

a result it defines a rather simple transformation group on a single variable x. 

Think of x = ei as a point on the positive real line; let Ts be the transformation 

which takes x into the point x1 = ef, , i. e., 

x’ = xd(-s, 0, x) (II. 58) 

with s = h12/h2. So Ts is a transformation on a space of coupling constants. The 

transformations Ts have the group property: if 

s2 = sls (II. 59) 

then 

T =T T 
s2 sls 

To prove this one first defines 

(A”)2 = s2(h2), i. e., s2 = hff2/A2 

(II. 60) 

(II. 61) 

Then 

s1 = s2/s = (P/q2 (II. 62) 

Consider any point x > 0. Choose ef = x. Since Eq. (lI. 57) holds for any hf, one 

has in addition 
2 

ey, - h - e2 d(-h,12/h2, 0, e;) 

Since A is arbitrary one also has 

h,,2/h’2, 0, et,) 

(II. 63) 

(II. 64) 

Let x, be et, and x,, be 2 e Al” Then Ts takes x to x, and Ts 
1 

takes x, to xl,; but Ts 
2 

(by Eq. (II. 63)) takes x directly to x’,. This proves the group property. In other 
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words, if one is given the coupling constant ei for subtraction momentum A, the 

corresponding coupling constant ei, for subtraction momentum A1 is given by Eq. 

(Il. 57); the coupling constant ef,, for subtraction momentum hl, is given by Eq. 

(II. 63). By ,,correspondingf, is meant that et, ei,, and et,, all lead to the same 

physics but in different parameterizations. Now since et, and ef+, lead to the 

same physics they too must be related, namely by Eq. (II. 64); this is what gives 

the group property. The group has an identity transformation, namely the trans- 

formation Tl; this is the identity due to the normalization condition (II. 30). The 

transformation inverse to Ts is T s-l * 

The group of transformations Ts will be called here the renormalization group. 

This is a less ambitious definition than is given by Bogoliubov and Shirkov4 or 

Petermann andStueckelberg;3 however, it is easier to work with the transformations 

Ts than to consider the more complex transformations which make up the 

Petermann-Stueckelberg renormalization group 4 

The transformations Ts are nonlinear, because xd(-s, 0, x) is nonlinear in x. 

So the renormalization group is different from the symmetry groups of quantum 

mechanics which are groups of linear transformations. Instead the renormaliza- 

tion group is analogous to the group of time translations in classical mechanics. 

In classical mechanics with time-independent potentials the equations of motion 

define infinitesimal transformations on phase space; the corresponding finite trans- 

formations are also nonlinear and also form a one parameter group. The analogy 

to classical mechanics will become important in the next section. 

In practice one works mostly with the infinitesimal transformation of the 

renormalization group. The infinitesimal transformation determines the derivative 

def/a2. It is convenient to derive an equation for de:/dA2 which is valid for finite 

mass. This is obtained by differentiating Eq. (T.I. 56) with respect to h and then 
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I 

setting A, = A. The result is of the form 

d (e$d(h2) = Aw2$(m2/h2, ei) 

where 

-s, m2/h2, ef /as s=l ) 1 

(IL 65) 

(II. 66) 

The function 4 has a limit for m - 0 because d does, and the function $( 0, x) gives 

the infinitesimal transformation of the renormalization group. In practice one 

can replace ,/J 2 /A 2, ef) by JI(0, ef) when A2 x m2; hence solutions of the equation 

def/dA2 = Am2$(o, ef) (II. 67) 

give the asymptotic behavior of eh for A >> m. The function $( 0, x) is explicitly 

known to order x3 when x is small:4 

qJ(O, x) = (12 a2)-l \ x2 + (3/16?‘r2)x3 + . . . (II. 68) 

One can also derive differential equations for .z2A and ~3~. However z3A is 
2 related to eA by Eq, (11.44) so we only give the equation for Zig. First differentiate 

Eq. (II. 55) with respect to A2 and then put AI2 = A2 (and note that z 2M = 1): 

(II. 69) 

where 

Since z2A = (Zaps,) (zZh,) one has 

dz2,/d(~2) = (dz2-@A2) z2~; 

Putting hf2 = A2 gives 

aZ,,/dA2 = (h2)w1 z2Ac(m2/A2, ef ) 

(II. 70) 

(II. 71) 

(II. 72) 
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The function F has a zero mass limit because the function s does, so when h >> m 

one has approximately 

dz2A/dA2 = (A2)-l z~~c(O, e$ (II. 73) 

Bogoliubov and Shirkov4 also write down differential equations for the whole 

vertex function; they will not be needed here. 
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III. SOLUTIONS OF THE RENORMALIZATION GROUP EQUATIONS 

A. Introduction 

In the previous section the basic equation of the Gell-Mann-Low theory for 

electrodynamics was derived: 

(III. 1) 

valid for A >> m. 

Imagine now that equations similar to this hold for other field theories besides 

electrodynamics, in particular for possible field theories of strong interactions 

(e. g. , the gluon model or the o model). l6 Imagine also that the renormalization 

group equation is valid for large values of the coupling constant (e. g. , large values of 

ei in the case of electrodynamics). 

To do a general analysis of all possible renormalization group equations would 

be a hopeless task. One has no information on the behavior of 0, ei,\ when et is 

of order one or larger, and in some theories of strong interactions the renormali- 

zation group equations involve coupled differential equations for several h-depen- 

dent coupling constants (e. g., Eqs. (I. 6) and (I. 7) of the introduction). However, 

as pointed out in the introduction, the renormalization group equations are analogous 

to equations of motion in nonlinear mechanics; in this analogy ti2 is analogous to 

the time t and et is analogous to a coordinate x. 

In classical nonlinear mechanics there are standard types of asymptotic be- 

havior for large t which occur in many different kinds of systems. The simplest 

asymptotic behavior is a fixed (equilibrium) point. For Eq. (HI. l), a fixed point 

is a point x for which $(0,x) = 0. For Eqs. (I. 6) and (I. 7) a fixed point is a pair 

of values x, y for which $J~(x, y) and $2(x, y) both vanish. It is quite common 

especially in electric circuit problems to have a system which starts off with a 
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transient (time dependent) behavior but which settles into a time-independent state 

(fixed point) as t - ~0 ; this can occur no matter how many dependent variables 

(x, or x, y, or etc.) are needed to describe the system. A limit cycle is another 

type of asymptotic behavior which also occurs in many systems. A limit cycle is 

a periodic solution of a nonlinear set of equations of motion; because of the non- 

linearity the amplitude of the solution is fixed as well as the period. 17 Other types 

of asymptotic behavior are also possible but are not so easily characterized. 

The purpose of this section is to discuss the possibility that the asymptotic 

solution of the renormalization group equations is either a fixed point or limit cycle. 

These are not the only possibilities but other possibilities are more difficult to 

analyze. Studying the consequences of a fixed point or a limit cycle makes clear 

the importance of the renormalization group for field theory. 

The asymptotic behavior of the solution of the renormalization group equations 

is important for several reasons. For example, there are two experimental 

quantities which should reflect directly the qualitative behavior of the coupling 

constants for large A. One is the total cross section for e+ - e- annihilation into 

hadrons discussed in the introduction; the other is the Callan-Gross integral over 

deep inelastic electron scattering cross sections. 18 The latter involves a more 

complicated analysis and will not be discussed further here. The consequence of 

a fixed point or limit cycle behavior for e -!- - e- annihilation will be discussed 

later in this section. Contrasting fixed point behavior with limit cycle behavior 

suggests experimental tests which distinguish fixed points from limit cycles and 

probably from other types of behavior as well. (For example, if the cross section 

oToT(q2) for annihilation of e3- 
,. 

-I- e- to hadrons behaves as l/q2 for large q2 then 

the asymptotic solution of the renormalization group for strong interactions is 

probably a fixed point. See Section III. H), hence one may learn from experiment 

whether one must study asymptotic behaviors other than the fixed point. 
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In order to discuss the possibility of a fixed point one must study functions 

$( 0, x) which have fixed points. Tt is convenient to discuss a function $(0,x) which 

has at least three positive roots x; this allows one to consider various types of 

behavior connected with fixed points. Only the case of one coupling constant, as 

in Eq. (III. l), will be discussed explicitly; the discussion is easily generalized to 

the case of two or more coupling constants. 

To discuss a limit cycle one must have at least two coupling constants so the 

limit cycle will be discussed using Eqs. (I. 6) and (I. 7). 

In applying the renormalization group to strong interactions one must distin- 

guish two situations. The first alternative is that strong interactions remain dis- 

tinguishable from weak or electromagnetic or other interactions for arbitrarily 

large momenta, and that there is a theory of strong interactions valid for all mo- 

menta which neglects these other interactions. Given this alternative the discus- 

sion of the renormalization group for strong interactions, assuming fixed point 

asymptotic behavior, is similar to Gell-Mann and Low’s discussion of electro- 

dynamics . 1 In particular one can predict the values of the bare coupling constants 

of strong interactions but the physical coupling constants are undetermined theo- 

retically and can only be found experimentally. The second alternative is that at 

some cutoff A large compared to 1 GeV the electromagnetic or weak or other 

corrections to strong interactions become too large to be treated as a perturbation. 

In this case a theory of strong interactions in isolation is only valid for momenta 

small compared to the cutoff and one must allow for large corrections to the h- 

dependent coupling constants when h is of order A . The consequence of this (as 

will be shown below) is that the physical coupling constants are predictable theo- 

retically if one knows the precise form of the renormalization group equations (and 

if the solution of these equations is a fixed point for A >> 1 GeV but h << A ). Both 
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alternatives will be explained in detail when the fixed point hypothesis is applied 

to strong interactions. 

The renormalization group equations can be derived in detail only after a field 

theory has been solved since the function $(O, x) is defined in terms of a propagator 

of the interacting theory (in theories other than electrodynamics, JI depends on 

vertex functions as well), and the propagator is not known unless the theory has 

been solved. Any property of the field theory which one deduces by solving the 

renormalization group equations ought in principle to be discernable directly from 

the solution of the theory, making a discussion of the renormalization group 

equation unnecessary. However, one does not have solutions to field theories 

except in perturbation theory; the analysis of the renormalization group equations 

described here is one way of groping towards the nature of strongly interacting 

field theories; , 

B. Integration of the Differential Equation 

Now consider solutions of the renormalization group equations with fixed point 

asymptotic behavior. Equation (III. 1) for electrodynamics will be discussed ex- 

plicitly but the analysis applies to other field theories as well. Suppose that the 

function $(O, x) has at least three positive roots x1, x2, and x3 with 0 < x1< x2< x3. 

Let these roots all be simple roots. From the perturbation theory formula (II. 68) 

+( 0, x) has a double root at x = 0 and is positive when x is positive and small. 

Suppose that $( 0, x) is bounded, continuous, and differentiable for all x. One con- 

sequence of these assumptions is that $(O, x) is positive for 0 <x < x 1’ negative for 

x1 < x < x2 and positive again for x2 < x < x 3 . The range x >x3 will not be discussed 

here. A function $(O, x) with these properties is shown in Fig. 1. These assump- 

tions are made so that the solutions of the renormalization group equation will 

illustrate several forms of fixed point asymptotic behavior; there is no way of 
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knowing whether these assumptions are true for quantum electrodynamics or any 

other given field theory. 

For +(O, x) to be negative contradicts the Kalle/n-Lehmann representation 19 

for the photon propagator. The K&n-Lehmann representation gives 

dc(k2/m2, e2) = 1 + k2 s 
Qo 

,o(kf2/m2, e2) 1 dkY2 (m-2) 
0 k2 _ kf2 - ie 

where p is a positive spectral function. This equation holds provided no sub- 

tractions are needed to make the integral converge. It follows from this formula 

and Eq. (lI.45) that 

&t/ah2 ’ = e2 s 
co 2 I-. (k’ 2 /m 2 1 kt2 , e dk,2 

0 (h 2 +k12)2 
(III. 3) 

which is positive but might go to zero when h- ~0. 

The function $(0,x) will be permitted to be negative anyway. The reason is 

that Eq. (III. 1) is regarded here only as a prototype for the renormalization group 
A 

equations for arbitrary field theories; 
2 

in most of which de,/dh2 involves vertex 

functions as well as propagators and can be negative. Also, it is known from the 

example of the Lee 20 model that a renormalized theory does not necessarily satisfy 

the requirement of a positive definite metric which is assumed in the proof that 
2 2 

p(kr2/m , e ) is positive. So it may be that $(O, x) does go negative even in elec- 

trodynamics. 

Now consider the renormalizationgroup differential equation Eq. (III. 1). This is the 

zero mass equation; the effects of a finite mass will be discussed later. The zero 

mass equation can be integrated to give 

!n(A2) - Ln(hr2) = F (ef) - F (e:I) 

where h and A1 are arbitrary, and 

FW = S x $qo,x~)]-l dx' 
-C 

(III. 4) 
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and c is an arbitrary constant which cancels out in the difference 

F(e;) - F(e;,)* It is convenient to distinguish three ranges of the variable x: 

O<x<xl, xl< x(x2, andx2< x<x3. The region beyond x3 will not be discussed 

here. First suppose x is in the range 0 < x <x1. Let c also lie between 0 and x1, 

so the integration region in Eq. (III. 5) does not cross any zeros of $. F(x) has 

the following properties in the range 0 < x < xl: it is increasing (since +( 0, x1) is 

positive for 0 <x1 < xl), it goes to + a0 logarithmically as x--x1 (due to the simple 

zero in $(0,x’) for x1-x1), 
-1 and it goes to -CO proportional to x when x- 0 

due to the doublezero in $(O, x1) as x’ - 0. The function F(x) is plotted in Fig. 2. 

Now look at Eq. (III. 4). Let h’ be fixed, and let ef , be chosen arbitrarily but 

in the range 0 < et, < x1. As A increases, !M2 increases; therefore F ef 
( ) 

must 

increase and this means e 
2 
h must increase. For A 

2 
-do ,, F 

( 
et\ must go to m 

I 
2 

also, which means eh - x1. (This argument should be checked using Fig. 2. ) 

In the other limit h2-0, Qnh2 goes to - ’ and this forces et to go to 0. This is 

true for any value of et, in the range 0 < e2 < x1. A’ In fact, if one lets f(y) be the 

function inverse to F(x) (i.e., x = f(y) if y = F(x)) then the solution to Eq. (III. 4) is 

2 eA = f 
C 
Qn(A2) - Qn(ht2) +-F (et? (III. 6) 

which means a change in ef, is equivalent to translating the solution for ei by a 

fixed distance in the 9ime” variable Qnh2. A set of solution curves for ei as a 

function of M2 is shown in Fig. 3. All the curves which lie in the range 0 < ef< x1 

go to x1 
2 asA -00; they all go to 0 as X2 -0. 

Similar analyses can be performed for solution curves lying in the intervals 
2 2 

xl< e h < x2 andx2< eh<x3. The curves lying in the range xl< ez < x2 go to x1 

for h2 ---a0 and go to x2 for h2 - 0; curves lying in the range x2 < ei< x3 go to 

x3 for h2- co and go to x2 for h2-0. 
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There are also special solutions of the differential equation,namely the fixed 

points: 2 eA z 0, e2 = 2 h-x1, eAz%, or ef-x3. 

What one sees from this analysis is that in the limits h2 -00 or h2 ‘0 any 

solutionof the zero mass differential equationEq. (III. 1) must approach one of the fixed 

points 0, x1, x2, or x3. This is despite the fact that for a fixed and finite h, et 

is continuously variable. Underlying this result is an amplification and deampli- 

fication effect in the solution of the differential equation. Suppose one considers 

two initial conditions xA and xB for x at t = 0 and then integrates Eq. (I. 5); one 

gets two solutions xA(t) and x&t). Suppose that xB= xA. As t increases, the 

difference x,(t) - x,(t) may increase,in which case the difference can become . 

large when t is large: this is amplification. It occurs, for example, if xB and 

xA are both near x2, * it is clear from Fig. 3 that the solutions x,(t) and xA(t) will 

separate as t increases. (If x,(t) and x,(t) both approach the limit x1 or both 

approach xB when t - - 9 the separation will eventually reach a maximum and then 

decrease again. ) It is also possible for the curves x,(t) and x,(t) to approach each 

other as t increases, becoming equal as t--oo; this is deamplification. Amplifi- 

cation and deamplification can be discussed quantitatively by defining solutions 

x(t, xA) of Eq. (I. 5) which depend on the initial value: 

x(0, xA, = “A 

and then looking at ax(t, xA,/8xA. If there is strong amplification between 0 and t 

then a”(t,xA,)/8xA will be much larger than 1. Strong deamplification means that 

6x(t, xA)/8xA<< 1. Since the function x( t, xA) satisfies 

ax at 
one gets by differentiation 

r 

(h xA) = + [O, x(t, xA, ,- (me 8) 

tm- 9) 
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If one thinks of a~+? 0, x(t, xA)- /ax as being a known function u(t), this equation can 

be integrated. One needs a boundary condition: from the boundary condition (III. 7) 

one has 

The result is 

& (O, xA) = ’ 

q tt7 xA) = expf u(P) dtr} (III. 11) 

(III. 10) 

If a$/ax is positive, ax(t,xA)/axA increases with t; if @-/~/ax is negative ax/axA 

decreases. To make ax/ax, be near zero or infinity requires that the integral in 

the exponent be large. With the form of $(O, x) being postulated here aJl/ax is not 

itself large and a large integral can come only from a large value of t (near + , 

or - 00). 

Now the case of finite mass will be discussed briefly. The main qualitative 

effect of having finite mass is that large amplification and deamplification effects 

are confined to the region A X= m. What happens for A << m is that ~?,IJ/~x is pro- 

portional to A2/m2 and is too small to cause much amplification and deamplification. 

The appearance of the factor A2 is best seen from Eq. (II. 45): differentiating it, 

one gets 

+(m2/h2, e;) = A2 d [e:]/dA2 = (h2/m2J [adc(y. e2)/ay]y = -A2,m2 (I** 12) 

2 2 
The function d, is well behaved for A ---0 when m is finite, hence adc(-AZ/m , e )/ah2 

is finite for h -0 (or perhaps mildly singular due to the 3 photon contribution to the 

spectral function, which has a threshold at k2 = 0). -Expressing e2 in terms of ef 

causes no trouble, at least in perturbation theory, nor does differentiation with 

respect to ef . So d$(m2/A2, x)/ax has a factor h2/m2 when X C-C m, which is 

,2,2t in terms of t, which makes the region t<<Qn m negligible. Thus large 
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amplification and deamplification effects which require azCi/ax to be finite over a 

large range of t occur only for h >>m. For qualitative purposes one can avoid 

integrating the finite mass equation, instead integrating the zero mass equation 

but stopping at h = m instead of going to h = 0. The value of e”, obtained this way 

should qualitatively be similar to e2 obtained from integrating the exact equation; 

in particular 8 e2 should be neither very small nor very large. 

C. Fixed Point Solutions and Scale Invariance 

What is the significance of the solutions described above of the renormalization 

group differential equation? First the special fixed point solutions will be discussed. 

Consider for example the solution et = x1 for all h with m being zero. It will now 

be shown that this solution defines a scale invariant field theory. 21 Consider a 

dimensional analysis of the fields A%(z) and $,(z) with ei being a constant inde- 

pendent of h and m being zero. The only variables left are z and h. In the free 

field limit the dimensions of AAp(z) and I./L(Z) are fixed by the canonical commuta- 

tion rules giving A ,,(z) the dimensions of mass and &(z) the dimensions (mass)3’2. 

When one does perturbation theory with a finite cutoff the dimensions of the 

unrenormalized fields are still fixed by the canonical commutation rules. The re- 

normalized fields differ from the unrenormalized fields by cutoff-dependent fat tors 

which in principle could carry dimensions; 
22 in practice the renormalization con- 

ditions (II. 30) and (II. 31) imposed on the renormalized fields ensure that they also 

have canonical dimensions 23 and that the renormalization constants are dimen- 

m2/h2, ef -1, m2/h2, ei equal 

to 1 for all ef means that d and s are dimensionless for all eh, not just eh = 0, 

and this means the dimensions of A 
AP 

and $J, are also independent of eh. One 

can apply dimensional analysis to an arbitrary vacuum expectation value of the 

fields, e. g. , 

Tcly (zl, z2-z3> z4, A) = .+AAp(Z1) A~vtz2)~~(z3)~~(z4)‘~, (III. 13) 
/ 
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The product A-5 Tpv(zl, z2> z3, z4> h) is dimensionless and can depend only on the 

products zlh, z2h, z3h, and z4h. Similar results apply to arbitrary vacuum 

expectation values. These results can be represented schematically by the 

equation 

A 
-1 

AA&z) = Al&W (III. 14) 

(III. 15) 

(Alp) means AAfp (z) with h’ = 1; h’ is put equal to 1 whenever an arbitrary fixed 

value of h’ is needed.) These equations are to mean that vacuum expectation 

values such as T ,uv 1”2”3”4’ (z h) satisfy the identities that result from making 

the substitutions (III. 14) and (III. 15) in the vacuum expectation value. The equations 

cannot be understood as operator relations since one might have instead 

A 
-1 l- 

AQp) = Uh Alp@4 Uh 

h 
-1 + 

b-p) = Uh 4Jp4 Uh 

(III. 16) 

(III. 17) 

where Uh is a unitary transformation; these equations will also reproduce the 

result of dimensional analysis on T TV 1’ ‘2”3’ ‘Qh)- (z 

In addition to the dimensional relations there are the renormalization relations: 

A&z) = (~~~4 
l/2 

Alp(Z) (III. 18) 

qp) = (54 
l/2 $1(z) 

For T 
PV 

these relations give 

T tz TV 1,z2fz3~z4,h) = z 3hl Z2hl TJzl’ %’ 23’ z4’ l-1 

(III. 19) 

(III. 20) 

Using both Eqs. (III. 14) - (III. 15) and (III. 18) - (III. 19) one can eliminate the fields 

AAP(z) and Jlh(z), leaving formulae relating Al&z) and 3,(z) to Al$Lz) and 

$l(hz) i. e. , scaling relations. First we need to determine z3hl and z2A1. 
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The constant z3A1 has the form (from Eq. (II. 53)) 

e2/e2 =3hl= 1 h (III. 21) 

Since et is constant, e: = e: and z3A1 is 1. To obtain z2A1 one solves Eq. (II. 72) 

for Zig; since z2hl is z2A /Z 21, one obtains 

Z2hl = A 
2cr 

(III. 22) 

with 

f-J- =u(O,xl) (III. 23) 

Thus one obtains the relation 

A5Tpv(hzl,Az2, hzg,hz4, 1) = T (z , z pv 1 2”3”4’ h) = h2ffT (z z ,u,v 1’ 2”3’ ‘4’ 1) 
(III. 24) 

This equation gives a scaling law for T pv 1’z2’z3’z4’ (z 11 namely it is equal to 
h5-2cr 

T~v(hzl,Az2,hz3,hz4,1). The scaling law for arbitrary vacuum expectation 

values is represented schematically by the equations 

Alp(z) = h Al&9 

$(z) = A3’2 -$$(hZ) 

If Eqs. (III. 16) and (III. 17) hold then the actual operator relations are 

+ 
Uh AQp) Uh = h Al/p) 

Uh $(z) u; = A 3’2-u qy(hz) 

(III. 25) 

(III. 26) 

(III. 27) 

(III. 28) 

As a result of these equations the unitary transformations Uh generate scale trans- 

formations of the fields A 
1P and $I2 so the theory is scale invariant. I cannot 

justify Eqs. (III. 27) and (III. 28), but in any case all vacuum expectation values 

of A 
1E.t 

(z) and $,(z) scale as if the theory were scale invariant, which presumably 

means the theory is scale invariant. 
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The quantity 3/2 -o is the “scale dimension” of the field $,(z). Unless o- 

is 0, the scale dimension of e,(z) is different from its dimension in mass units. 

The field h-o$h(~) is (from Eqs. (III. 19) and (lII.22)) equal to 1+5,(z) and therefore 

independent of A; this field has both scale and mass dimensions 3/2 - u. The fact 

that interacting fields can have different scale dimensions from free fields has 

been noted in many circumstances. 
24-26 The scale dimension of A 

l/J 
(z) is 1, 

from Eq. (111.27) and is not changed by interaction. This is presumably because 

of the field equation which makes o%~(z) proportional to the electromagnetic 

current jhp(z). The scale dimension of the current has to be 3 in order that the 

equal time commutator 

[jlot~I z,L +&I zo) =. S3tz -2) ++Y, zo) 6s (III. 29) w 

be scale invariant. Hence q A 
11-1 

(z) must have scale dimension 3 and A 
11-1 

(z) itself 

must have scale dimension 1. 

D. Renormalization Group, Fixed Points, and Strong Interactions in Isolation 

Suppose now that Eq. (III. 1) is the renormalization group equation for strong 

interactions . This would mean that there is only one renormalized coupling 

constant in strong interactions, as in the gluon model. The coupling constant e 

is interpreted in this section to be the renormalized coupling constant of strong 

interactions, and m will be assumed to be a typical strong interaction mass (about 

1 GeV). Assume that strong interactions can be isolated from other interactions 

approximately for all momenta (the opposite assumption will be discussed later). 

In this case the renormalized coupling constant e is an arbitrary parameter in the 

theory and the finite mass renormalization group equation should be solved with 

the boundary condition eh-e as h - 0. In practice it is more convenient to 

discuss the zero mass renormalization group equation; the solution eh of the finite 
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mass equation satisfies the zero mass equation approximately when h is much 

larger than m. One can now discuss a solution ei of the zero mass equation such 

that e’-eA as A-Q), A the difference being some power of m. 

The quantity em should depend in a reasonable way on e, that is, one does 

not expect large amplification or deamplification effects in the dependence of em 

on e. So in the following em will be taken to be the input parameter instead of e, 

and we shall discuss only the zero mass renormalization group equation. In the 

following we shall write eA for ei. The function $!J will be assumed to have the 

form discussed in Section III. B. Suppose for convenience that e”, lies between 

0 and x2. If this is so et will approach x1 as A- *. It is not necessary for h 

to be enormous before ei is close to xl: Since J/( 0, x) is of order 1 when x is of 

order 1 (except when x is near x1,x2, etc. ), the solution curves change reasonably 

rapidly with A and soon approach x 1, 2 The only exception is if em is close to x2 or 

0; but if e”, is an arbitrary parameter fixed by experiment it would seem unlikely 

that it would be close to any preassigned number such as x2. (It is also assumed 

that em is not small.) 

One can determine the rate of approach of ef to. x1 as h .a. Let x(t) be near 

x1. Then one can expand $(O, x) about x = xl: 

4.40, x) = 9w4 x1) + [x(t) - x1 dv, x,)/h (III. 30) 

It is convenient to introduce the constants 

a = 8$(0,x )/ax 
n n 

(III. 31) 

for each fixed point. Then, approximately 

dx/dt = al[x(t) - xl] (III. 32) 

The solution of this equation is 

x(t) = x1 + cle alt (III. 33) 
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where cl is an arbitrary constant. It is evident from Fig. 1 that a1 is negative, 

so x(t) --x1 as t -Q) exponentially. Translated in terms of ei, this gives 

2 2al eAz x1 + clh (III. 34) 

The constant cl will depend on the initial condition e”,. If e”, - x1 is small also 

then cl will be linear in e”, - x1, but if e2m - x1 is large the linearized Eq. (III. 32) 

will be incorrect for t near 8,m2 and the relation of cl to e2 - x will be nonlinear. m 1 
In any case ef approaches its limiting value x1 as an inverse power of h. 

When eh was introduced in Section II it arose as an alternative definition of 

the renormalized coupling constant; in the Gell-Mann-Low renormalization program 

all Feynman amplitudes are considered as functions of eh not e. This raises a 

problem. If one has a function such as d 
( k2/h2, m2/h2, et) which depends on e2 A’ 

one would suppose that a small change in ef implies a small change in d. But if 

h is very large a small change in e2 h away from x1 is amplified to give a large and 

nonlinear change in e2 2 
m ; so e m and any quantity which depends directly on e”, will 

not change just a little when ef changes a little. This means it is not very appro- 

priate to use ef for a large value of h as one’s renormalized coupling constant 

for amplitudes which are best parameterized in terms of e”,. Another way to say 

this is that physically the qualitative nature of a given amplitude should be deter- 

mined by a qualitative knowledge of the physical couplings which determine that 

amplitude. If one has to specify a coupling constant to 1% accuracy in order to 

determine the amplitude to 50% accuracy, there is something wrong. The response 

to this problem is, I think, to consider the coupling constant ez for different ranges 

of the momentum h to be physically distinct coupling constants governing distinct 

physical processes. The natural thing to expect is that eh with h - m governs 

amplitudes with momenta of order m or less; eA with A cv 10 m covers amplitudes 

whose momenta are of order- 10 m, and so forth. Within a particular order of 

- 34- 



magnitude range of momenta one can specify arbitrarily the exact value of A for 

which eh is the coupling constant. 

If h is much larger than m the amplitudes for which ef is the relevant coupling 

constant are off-mass-shell amplitudes with virtual masses of order h, such as 

the photon propagator with k2 N h2. A scattering amplitude with large energies 

and momentum transfers, but for particles on the mass shell,cannot be said to 

involve only ef for h large; the mass shell condition suggests that the amplitude 

will also be strongly affected by the value of e”,. The behavior of scattering am- 

plitudes at large energies and momentum transfers is outside the scope of this 

paper. 

The way this picture shows up in perturbation theory is that a function such 

as d 
( 
k2/h2, m2/h2, ei > has a perturbation expansion in ei whose coefficients 

are of order 1 (apart from factors of 27r which are considered to be of order 1 in 

this paper) when k2 is of order h2; but if k2/h2 or h2/k2 is large the coefficient 

of et n ( ) contains the large factor 27 [Qn(k2/A2) n which makes d much more 

sensitive to changes in ef . So perturbation theory confirms the hypothesis that 

et is the appropriate coupling constant for momenta of order h and not so appro- 

priate for momenta much larger or smaller than h. 

In summary one defines a sequence of coupling constants, say em, e10 m, 

elOOm’ etc’ All of these have to be specified in order to determine qualitatively 

the physics at arbitrary momenta, due to the large amplification or deamplification 

effects that can occur in the relation between different coupling constants in the 

sequence . 

For large momentum A, ef is close to x1 and m/h is small; this means 

propagators and other amplitudes at large momenta will be close to the scale 

invariant amplitudes for ez = x1 and m = 0. 
A. 

So scale invariance is a broken 
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symmetry of the theory. Furthermore, as seen earlier in the case of the field + 

one must expect scale dimensions of local fields to differ from free field dimen- 

sions as was assumed in Ref. 24. One consequence of broken scale invariance 

is that CT ToT(q2)y the e+ - e- annihilation cross section into hadrons, behaves as 

tq2r 1 when q2 is large. 25 

E. Strong Interactions with a Cutof !P8 

Suppose now that there is a cutoff momentum A beyond which one cannot dis- 

tinguish strong interactions from other interactions. It will be assumed that 

A,>m, i. e., A is much larger than 1 GeV. The effect of the cutoff is to shift 

the boundary condition on the renormalization group equation from h = m to A = A. 

The reason is this. With a cutoff, the strong interaction theory that one develops 

for laboratory energies is no more than an infrared approximation to a more com- 

plicated theory combining strong and other interactions. The more complicated 

theory covers energies of order A or less; strong interaction theory is valid only 

for momenta much less than A. The coupling constant eh for A of order A will 

now be determined by properties of the more complicated theory rather than by 

strong interactions alone. Under these circumstances, the chances are negligible 

that eh with h w A will be close to the fixed point x1, since the location of x1 is a 

property of the isolated strong interaction theory and not of the combined theory. 

Another way of saying this is that if weak interactions, say, become strong at 

momenta of order A, then there will be large corrections to eh when h 

A due to weak interactions, making it unlikely that e-t will be near x1. 

therefore that ef has a random value, 

between x1 and x3. (The case that e; 

but for convenience assume that 

is less than x1 will be discussed 

renormalization group equation, Section III. G. ) Now if one solves the 
3 

is of order 

Suppose 

it lies 

later: see 

one sees 

from Fig. 3 that ei rapidly approaches x2 as h decreases. In fact, one sees that 

- 36 - 



for h :<A , et has the form 

2 2a2 
“A E x2 + c2(h,‘A) (III. 35) 

n 

where a 2 is given by Eq. (III.31) and c 2 is a constant of order 1 since e’ A differs 

from x2 by of order 1. In particular e”, has the form 

e2 2a2 
m 2 x2 + c2(m/A) (III. 36) 

This means e”, is very little affected by the exact value of ei; the dependence of 

e2 m on e: is through the constant c2 and this constant is multiplied by the small 

coefficient (m/n) 2a2 . This in turn means that the ordinary renormalized coupling 

constant e2 is also only slightly dependent on the value of e2 A. This assumes that 
2 eA is restricted to the range x1 < e2 < x3; A if ei lies outside this range e2 will be m 

very different. 

The consequence of introducing the cutoff A and requiring ei to be arbitrary 

is that e”, and therefore e2 is fixed precisely except for corrections which are 

small when m/A is small. In other words there is a bootstrap condition for the 

renormalized coupling constant, apart from small cutoff dependent effects. The 

bootstrap condition is not a consistency condition: the field theory of strong inter- 

actions in isolation exists and is (by assumption) well behaved for any value of e; 

it is the influence of other interactions at the cutoff A that forces e to be the solution 

of the bootstrap. 

F. Precise Formulation of the Bootstrap 28 Condition 

The bootstrap condition will now be discussed inmore detail. Consider the 

exact equation for 2 e h, Eq. (II. 65), with finite mass. The equation is to be solved 
2 with the value of en being the boundary condition. It will be assumed that e2 lies A 

somewhere between x1 and x 3; what happens when ei is outside this range is dis- 

cussed later in this section. It is also assumed that all cutoff-dependent effects 
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2 are absorbed into the constant eA and do not, for example, change the function 

+(m2/A2, et). This assumption is surely an oversimplification, but the essential 

features of the bootstrap are not changed by making this simplification. It will 

also be assumed that A/m is sufficiently large so that over a sizable range of A, 

m/h and h/A are both small. In the range h < A but h >> m the exact function 

$ (m2h2, ef ) is approximately $(O, et) ; h t erefore the solution et behaves as 

shown in Fig. 3 and is close to x2 for A << A. This suggests that one define a 

solution of the finite mass equation which is exactly x2 when h >> m, and compare 

this solution with the exact solution. So one has two functions, say eh and ehl, where 

def/d(1ti2) = $m2/A2, ef ) (III. 37) 

detl/d(W2) = $(m2/hz, &) (III. 38) 

and e2 Al satisfies the boundary condition 

2 ;Fw eAl = x2 (IlI.39) * 

while the boundary condition for ef is the value of ei. The functions { 2 and ehl 

are illustrated in Fig. 4. 

The functions -ef and eil are both close to x2 in the range h >> m but h <<A. 

This means that ei is close to et1 for h of order m also because the differential 

equation deamplifies the difference between et and et1 as h decreases (see below). 

The advantage of defining ehl is that it has no cutoff dependence. It is also 

uniquely defined since ehl must satisfy the zero mass renormalization group 

equation for large h, and only one solution of the zero mass equation goes to x2 

when h- 00. This is a situation reminiscent of the one dimensional Schrodinger 

equation in the bound state region; the Schrodinger equation has one solution which 

goes to zero at infinity, while it has many solutions which blow up at infinity. 

Since ehl can depend only on h and m and is dimensionless it must have the form 

2 
eAl = 5(h2/m2) (III. 40) 
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for some function 5. In particular the value of eTl for h = 0 is ((0) which is a 

fixed number independent of the mass m. 

As long as ef is near eil one can write a linearized equation for the difference 

2 2 
eA - ehl: 

d [et - e&] /d(m2) = aw/ax m2/h2, ( e&) [ef - ef,] (m.41) 

When h >> m but h CC A one has et1 N- x2 and m2/h2<C 1, giving 8$/8x = a2. Since 

a2 is positive, the difference et - eil decreases as h decreases, except that for 

h -m, 8$/8x might change sign due to finite mass effects. However large ampli- 

fication cannot occur for A 5 m (see Section IU. B) so even if 8$/8x does change 

sign for A - m, the difference et - et1 cannot bet ome large. 

More precisely, for m<< h<<A one has 
2 2 2a2 

eA - ehl- - c2(h/A) (h >> m, h<<A) 

for some constant c2. 

Using this as a boundary condition, the solution of Eq. (III.41) is 

with 

u(h2/m2) = 8$/8x(m2/A2, t [h2/m23) 

(III. 42) 

(III. 43) 

(III. 44) 

When h2 >> m2, t (h2/m2) is approximately x2, u(h2/m2) is approximately a2 and 

Eq. (III. 43) reduces to Eq. (III. 42). When h2 is 0 one has 

2 2 f A? 
e = eol +c2exp - 

ts 
(Ar2)v1 u(hV2/m2) dhf2 o 

i 

The large part of the integral in the exponent comes from the region of 

integration m << h’ << A. The result is 

e2Z 2 eol + c2(m2/n2Ja2 w (III. 46) 

(III. 45) 
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where w is a constant, namely 

fs m2 
w=exp - (v2)- l u(Ar2/m2) dAf2 

0 -&f [ 
m2 

Ar2 u(Af2/m2) - a2 
1 f 

,&12 (III. 47) 
I 

The function u(hf2/m2) - a2 goes to zero as h’--t~ * it is assumed here that it , 

goes to zero fast enough so that the region At2 > A2 is negligible. The quantity 

2 eol is t(O) and is the bootstrap value of the renormalized coupling constant; the 

actual value for e2 differs from the bootstrap value by an amount of order (m2/A2)a2. 

Note that the bootstrap value of the renormalized coupling constant is computed 

by a complex procedure. First one must locate the fixed point x2 of the zero mass 

renormalization group equation. This means solving the equation $(O, x) = 0, which 

is the bootstrap condition. Having found the solution x2, one must then solve the 
2 differential equation for eAI with the boundary condition e2 -+x as A-m; the Al 2 

value of e$, for h = 0 is the bootstrap value of the renormalized coupling constant. 

The bootstrap condition is a condition on a zero mass theory, a theory which very 

likely has no S matrix due to infrared divergences. 25 The bootstrap condition is 

determined by the function + which is in turn defined in terms of a propagator well 

off the mass shell; this is a very different bootstrap from those that have been 

proposed in the context of S-matrix theory. 

For momenta between m and A the theory is approximately scale invariant, 

since ef is close to the fixed point x2 and the mass can be neglected. How ever 

the scale invariant theory differs from the scale invariant theory associated with 

the fixed point XI; for example the scale dimension of the field + is different in the 

two cases since o( 0, x2) need not be the same as o( 0, x1). 

Whether or not there is a cutoff A, the short distance behavior of strong 

interactions is determined by a fixed point of the renormalization group. However 

a different fixed point is involved if there is a cutoff. What is the difference? 
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The fixed point x2 has the property that solutions of the zero mass renormalization 

group equation in the vicinity of x2 approach x2 as A - 0. In contrast, solutions 

in the vicinity of XI or x3 for finite h go away from x1 or x3 as A--O. One can 

say that x2 is Qfrared-stable” while XI and x3 are “infrared instable. 0 With a 

cutoff, one has to allow ei to be arbitrary which means it is unlikely to be equal 

toxI orx3, or to any infrared-unstable fixed point. Hence the solution of the 

renormalization group equation will approach one of the infrared stable fixed points 

of Icl(0,x). The infrared-stable fixed points are x = 0, x = x2, plus possibly roots 

beyond x3. If ei lies between x1 and x3 then x2 is the relevant fixed point; if ei 

is less than x1 then x = 0 is the relevant fixed point. The significance of x = 0 

as a fixed point will be discussed in Section III. G. What happens if ei > x3 will 

not be discussed here. Without a cutoff it is the renormalized coupling constant 

e2 that is arbitrary; one then follows solutions of the,differential equation out to 

A.= 00, and it is the fixed points which are stable in this limit that become the pos- 

sible asymptotic solutions of ef for large h. The possible fixed points are xl and 

x3; these might be called “ultraviolet-stable” fixed points. 

The bootstrap condition resulting from the presence of a cutoff is, precisely, 

that $(0,x) be zero and that x be an infrared-stable root. Any infrared-stable 

root is acceptable, so if there is more than one the correct one has to be deter- 

mined experimentally. 

G. Electrodynamics with a Cutoff 

To conclude the discussion of fixed points the case of electrodynamics will be 

considered. Now e, eh, and $J refer to electrodynamics rather than strong inter- 

actions. The same form is assumed for $!J as in Section III. B. While the renor- 

malized coupling constant e2 of electrodynamics is small, one sees from Fig. 3 

that e 2 
h -x1 for h --r-Q). The constant XI is fixed independent of e2 and so cannot 
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be arbitrarily small. This suggests that all particles will couple strongly to photons 

at sufficiently high momenta; but this would mean that electrodynamics and strong 

interactions would mix strongly, suggesting that pure electrodynamics is valid 

only below a cutoff momentum A. Suppose this is the case and that ei is therefore 

arbitrary as discussed earlier, but happens to be smaller than XI. Then for 

A << A, et is close to the fixed point zero. One can as before define a bootstrap 

value for the renormalized coupling constant by solving the renormalization group 

equation for a function 2 2 
e AI which goes to zero as h-m . The solution is eAIT 0. 

The departure of e2 from 0 is therefore a cutoff dependent effect, as discussed 

earlier. Because of the special nature of the fixed point x = 0, e2 does not vary 

as a power of the cutoff. The function $(O, x) has no term linear in x for x near 

zero so one cannot find the dependence of e2 on A from a linearized equation. 

Instead one must keep the quadratic term in J/ , giving the approximate equation 

for et small: 

dez/d(bA2) = (127r2)-l ez (III. 48) 

(This equation neglects all contributions to vacuum polarization except for electrons; 

other particles will increase the factor (12~ 
2 -1 

) by a presently unknown factor. 

The boundary condition is that ei be arbitrary which presumably means of order 1. 

The solution is 

(ec>-’ - (e..)-’ = (127r2)-l j?1+4~/A~) 

or 
2 

eA = efi 1 
2 -IL 1+(127r ) e~b(A2/A2)}-1 

For h CC A, for which e2 !n(A2/A2) is large, one gets the approximate form 

(III. 49) 

(III. 50) 

(III. 51) 
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So et decreases as an inverse logarithm of h2 for X << .A. One has to have an 

astronomical value of h/m to make the renormalized coupling constant e2 be as 

small as l/137. 

In the case of electrodynamics the small cutoff dependence of the coupling 

constant is very noticeable since it is only the cutoff dependent term that makes 

2 e nonzero. For strong interactions, where the bootstrap value of the renormalized 

coupling constant should be of order 1, a small cutoff dependence would be much 

harder to detect experimentally. 

H. Limit Cycles 

If there are at least two renormalized coupling constants in strong interactions, 

as in pseudoscalar meson theory, there is an intriguing alternative to a fixed point, 

namely a limit cycle. 8,17 Toillustrate the hypothesis of a limit cycle, suppose there 

are two renormalized coupling constants; then the zero mass renormalization group 

equations have the form 

dddt = +,tx, Y) (III. 52) 

dy/dt= $2(x,~) (III. 53) 

where the functions 9, and $, are analogous to the function +(O, x), t is Bn h2, and 

x and y are the momentum-dependent coupling constants, say x = gh, y = %. The 

functions q1 and $, will be mass dependent when h is of order the masses in the 

theory, but this dependence will not be exhibited explicitly. It is assumed that 

the mass dependence can be neglected for large enough h . 

The solutions of Eqs. (III. 52) and (III. 53) will define trajectories in a two 

dimensional space with coordinates x and y. 

A limit cycle is a special trajectory which is a closed orbit, namely a solution 

{x(t), y(t)\ which satisfies 

x(t + 7) = x (t) (IlI.54) 
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and 

Ytt + 7) = y(t) (III. 55) 

where T is a constant giving the period of the limit cycle. Generally the trajectories 

in the neighborhood of a limit cycle are not closed. Instead they either approach 

the cycle as t--a,, or they move away from the cycle as t increases, in neither 

case closing on themselves. There are general conditions on the functions $J, 

and e2 which ensure the existence of a limit cycle without determining T or the 

exact form of the cycle. 8 For instance if one can find an annulus with the property 

that trajectories can go into the annulus but not out of it (that is, not cross out of 

the outer ring nor cross inside the inner ring of the annulus) then there is a limit 

cycle contained in the annulus. The condition that trajectories only go into the 

annulus is easily checked since this means that the velocity vector tvI(x, y), $,(x, y)\ 

must point into the annulus for all points lx, y, on the inner and outer rings of the 

annulus. For this theorem to hold, there must not be any fixedpoints inside the annulus. 

A detailed discussion of limit cycles will not be given here. There is one 

important observation to make. If the coupling constants gh and $ approach a 

limit cycle as A -cm instead of a fixed point, there is a chance that this will be 

experimentally observable. Consider the total cross section o- ToT(q2) for e+ - e- 

annihilation into hadrons: q is the momentum transfer. Assuming electrodynamics 

is treated to lowest order, oToT(q2) is the absorptive part of the propagator for 
/ 

the electromagnetic current of hadrons, times known factors. By dimensional 

analysis UTOT (q2) has the form 

(III. 56) 

where m stands for all possible mass parameters in the theory and a! is the fine 

structure constant. The mass dependence should be negligible for q2 and X2 large. 
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The formula is valid for any value of A. In particular, one can set h2 = q2; if 

q2 is large m2/q2 is negligible and 

uiOTtq2) = ,(q2)-l f(l, 0, gq, hs’ (III. 57) 

It is unlikely that f is independent of gh and %, since vacuum polarization in electro- 

dynamics is also the current-current propagator in electrodynamics and it is coupling- 

constant dependent. So as gq and hq change with q2, so will q20ToT(q2) and one will 

see perpetual oscillations in the e’ - e- total hadronic cross section in the limit of 

large q2. 

There are other forms of asymptotic behavior besides fixed points and limit 

cycles. There will be no discussion of further alternatives here. The example of 

the limit cycle suggests that any asymptotic behavior other than a fixed point will 

mean that q2c ToT(q2) will not approach a constant in the limit of large q2. _ 

J. Conclusions and Remarks 

There are three basic results of this section. First, if the asymptotic solution 

of the renormalization group equations for strong interactions is a fixed point, then 

strong interactions will have broken scale invariance as a symmetry. Second, if in 

addition there is a large but finite cutoff A above which strong interactions cannot 

be isolated from other interactions, the fixed point must be infrared-stable and 

there is a bootstrap condition which determines renormalized coupling constants of 

strong interactions. Third, if the asymptotic solution of the renormalization group 

equations is not a fixed point then q2 cToT(q2) for e+ - e- annihilation will not be 

constant for large q2* , if there is a limit cycle in particular, then q2 cToT(q2) will 

oscillate perpetually for large q2, with a fixed period if plotted versus Bn q2. 

All these results are crucially dependent on the assumption that functions such 

as $(m2/h2,x) have a nontrivial limit for m 0. If instead $( m2/h2, x) were to 
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go to zero as m -0 for all x, the analysis given above would collapse and the 

asymptotic limit of ei for h - would be a straightforward function of e2. If 

in perturbation theory +(m2/A2, x) were to contain logarithms of m2/A2 it would 

be easy for the sum. of the perturbation series to approach zero as m -0, for 

example if the sum of the series gave something like 

$(m2/A2, e!f) = ez exp [- ei ln(A2/m2g (III. 58) 

(a more complicated example is needed if one is to fit the known term of order ef). 

This does not mean that proving the existence of the zero mass limit for JI(m2/A2, x) 

to all orders in x is the crucial problem. The crucial problem is to determine 

whether the physics of a strongly coupled field theory is such that the results 

obtained above are reasonable. 
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IV. BREAKING OF SCALE INVARIANCE 

In the previous section it was found that the fixed point solutions of the re- 

normalization group equations for zero mass define scale invariant field theories. 

For the specific type of function $(0,x) discussed in the previous section there are 

at least three distinct scale invariant theories defined by the fixed points x1, x2, 

and x3. The purpose of this section is to study the nature of scale breaking. One 

can break scale invariance in two ways. One way is to let the mass be finite 

instead of zero. The other way is to choose a solution ei of the zero mass re- 

normalization group equations which is not equal to a fixed point. Then the vari- 

ation of ei with h breaks scale invariance, as will be seen below. Both these 

forms of scale breaking will be investigated in this section. In particular we shall 

study amplitudes at high momenta for which the scale breaking is small and develop 

a perturbation method for computing the scale breaking terms. 

A theory of scale breaking has been proposed elsewhere. 24 In this theory the 

nature of scale breaking corrections at large momenta is determined by the scale 

dimensions of the terms in the Lagrangian density which break scale invariance. 

The interaction Lagrangian density associated with the renormalized charge eh 

should be a renormalized form of the local product $(x) yP $^(x) A!(x); the inter- 

action Lagrangian density associated with the renormalized mass should be a re- 

normalized form of the product $A(x)~A(x). The problem of renormalizing com- 

posite fields such as$(x) yP$^(x) A$ x and showing that these fields are connected ) 

with the renormalized coupling constant and mass will not be discussed here. It 

will simply be assumed that the part of the Lagrangian density which determines 

the charge eh and the mass m involves two local interactions denoted ge,(x) and 

Zti(x) respectively. 
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Explicit calculations (based on the renormalization group equations) of scale 

breaking corrections will be compared with the general theory of Ref. 24. One 

result will be that the scale dimension of L?? eh (x) is 4 -+ 2an in the scale invariant 

theory defined by the fixed point xn. The constant al is negative, the constant a2 

is positive so the dimension of geA(x) can be either less than 4 or greater than 4 

depending on which fixed point one uses. It was pointed out in Ref. 24 that inter- 

actions with dimension > 4 act like nonrenormalizable interactions while interactions 

with dimension <4 act like superrenormalizable interactions or mass terms, (Inter- 

actions with dimension <4 were called generalized mass terms in Ref. 24.) So the 

interaction 9 eh (x) changes its character considerably when one switches from the 

fixed point x1 to the fixed point x2. 

To discuss the dimension of Z&(x) will require an extension of the renor- 

. 29 malization group equations to include a h-dependent mass parameter. The result 

willbe to conclude that 9 mh (x) could be either a generalized mass term or a non- 

renormalizable interaction at either x 1 or x 2, the choice being determined by 

detailed dynamics which are unknown at present. 

A. Scale Breaking Through Nonconstant eh 

To start with scale breaking due to nonconstant eh will be considered. The mass 

m is taken to be zero. Suppose that over some range of h, ef is close to the fixed 

point xn. As shown in Section III. D., the approximate form for ei as long as ef 

is close to xn is 

2 
eA = xn + cnh 2an 

P- 1) 

where c, is an arbitrary small constant and an is given by Eq. (III. 31). Equation 

(IV. 1) neglects terms quadratic in the difference (ef - xn), i.e., terms of order 

C2 n. Expansions will now be sought for z3hh,, Zig,, and vacuum expectation values, 
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also valid to first order in c n. Given these expansions, one can construct scaling 

laws for first order scale breaking terms in the vacuum expectation values. 

Since z3hh, = h, h e2 /e2 (Eq. (II. 53)) one has 

Z3hh’ = L 
xn * c&h’) 

2an 
T J 

xn + cnk 
2a, -1 1 = 1 Jr (xn)-1 cn (A’) c 2a, 2a, 

- h 1 W.2) 
The equation for z2hh, is (cf. Eqs. (II. 73) and (II. 50)): 

y9Jwn h2) = Z2Ah’ u 0, e 2 ( ) h W-3) 

with the boundary condition 

Z2pp = 1 W-4) 

The solution of this equation is 

z2M, = exp{( u(0, ef,,) (A1l)-l 2M”) 

If 

cJjn 7 qo, “,, 

7 n = Ou(O, x,)/ax (Iv- 7) 

then to first order in cn 

Z2Ah’ = exp (men(A2/At2) + (Tncn/an) 
i 

[ 
h 2an _ (h,J2an] 

2 (h/A’) 2% 
t 1 

1 f $pn/an) C h 
2an 

- @‘I 
2% 

II 
(Iv. 8) 

Consider now a typical vacuum expectation value, e.g. , 

T 
PV 

zlh, z2h, z3h, z4h, mh, ei = h-5<fi;T A*@) -4Av(z2) 94~~) $&z&D 

w. 9) 

‘T/m is dimensionless so depends only on dimensionless variables, as indicated. ) 

Putting m = 0 and using the renormalization relations one has 30 

T h, z2h, z3h, z4h, 0, e2 
A/ 

= ji-5z 
3hlz2hl Tpv zl, z2, z3, z4, 0, et’ 

’ (Iv.10) 
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Write 

Tpvn(zl’ z2, z3’ z4) = Tpvtzl, z22 z3> z47 0, “,> (Iv. 11) 

UpvntZl~Z2~z3yz4) = oTp~~xtZ1~z22z3~z4> o,x)/x=x I (Iv. 12) 
n 

Then to first order in cn 

T 
( 

2 
/Jv Zl’ 22’ z39z49 0, e1 ) = Tpvntzy 22’ 23’ z4) + cn Upvn(Z1’ z2>z3, z4) (Iv. 13) 

and similarly for T 
PV 

zlh, . . . z4h, 0, Equation (IV. lo), to first order in cn, 

iS 

Tpvntzl~, . . . , z4A) +c,h 2% 
U/&&h * - *, z4h) 

(Iv. 14) 

For cn = 0 this gives the scaling law found in Section III. C: 

TPvn(hzl, . . . ,hz4) = A 
2’un- 5 

Tpvntzl, - - - 3 z4) (Iv. 15) 

The terms proportional to cn in Eq. (IV. 14) give the following result. Let 

Upvntzl~. . . , Z4) = U;vntzl,. . - z4) + Tna,’ - xi’] TPvn(zl, . . . , z4) 
[ (IV. 16) 

Then 

u;vn(hzl’ . . . ) hz4) = h 
2un-2an-5 

u/‘&z15 l * * , z4) (Iv. 17) 

One can now derive to order cn the scaling law for 

fixedath= 1, i.e., ezfixedatef: 

with h held 

T pvntzl’ * . * > z4) 

+ ens 
2un-2a,-5 

U’ (z pvn 1’ “” z4) (IV. 18) 
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Equation (IV. 18) shows that the first order change in T pv Zl’ - * ’ ,z4, 

when et # xn is to renormalize the scale invariant term T (z z uvn 1’ ‘.*’ 4 ) by the I 
and to add the term c U’ 

n pvn tz,, . . . . z4) which obeys 

a separate scaling law. It is easily seen that when the above analysis is generalized 

to an arbitrary vacuum expectation value, there is a renormalization which is 

equivalent to a renormalization of the fields: 

A,,&4 - [ 1 - l/2 cnx;ll 1 AQp 
I ’ $yz) - 1 + l/2 CnTna;yl(z) 

(Iv. 19) 

(Iv.20) 

and there is an extra term which always scales by an extra factor s 
-2a 

n relative 

to the scale invariant term. 

Now consider the Lagrangian description of scale breaking. 31 For convenience 

the subtraction momentum h will be set equal to 1. Assume that changing the 

coupling constant from xn to e; is equivalent to adding a term ( lVxn) e2 gel(z) to 

the Lagrangian density, where gel(z) is a finite local field. Then the term of 

first order in cn in T 
PV 

can be obtained from lowest order perturbation theory: 

T pvl ( Z1’ - * *, Z4’ O,eT =T 
1 pvn(‘l’ . . . . z4) 

+ ‘n J<‘l”lp(zl) Alv(Z2) eI(z3) $I(~41 sel(~)ifi > d4y (Iv. 21) 

where (from Eq. (IV. 1)) ef - xn has been replaced by cn and the vacuum expecta- 

tion value multiplying cn is computed in the unperturbed (scale invariant) theory. 

Ultraviolet divergences could arise in the integral due to singularities when 

y = zl, z2’ Z3, or z4; an infrared divergence could occur for y - a. It will be 

assumed here that these divergences are absent or unimportant. If so the scaling 

properties of the integral are determined by scale invariance. Write 

wpvtzl> - * *, Z4’ Y) = 4yp1) Alv(z2) d5(z3) $,(z,) 9elt+> (Iv. 22) 
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The scale dimension of AIC, is 1; the scale dimension of 9, is 3/2 - un (cf., 

Section III. C); let the scale dimension of Zel be de. Then from scale invariance 

wpvtszl’ sy) = s 
2un-5-d, 

. . . . 
Wpv(Z,’ l - * 3 Y) 

(IV. 23) 

Hence the scaling behavior of the integral in Eq. (IV. 21) is 

s d4y W,#j, - - -3 sz4, y) = s4 d4y1 WPv (szl, . . . , sz4, s SY’) 

=s 
2O-,-5 

S 
4-de [ 4 

d Y’ Wpv(zl> . . . . z4’Y’) 
(IV.24) 

So the prediction of the Lagrangian theory is that the term of order cn in T 
4-d PV 

scales with an extra factor s e relative to the scale invariant term. There is 

no term of order cn in Eq. (IV. 21) which renormalizes the scale invariant term. 

However, we are using the unsubtracted form of perturbation theory which means 

one has no freedom to specify a normalization for the perturbed fields. In the 

renormalization group calculation a normalization 2 specified for the perturbed 

fields, and to achieve this normalization one must expect to add a renormalization 

term to Eq. (IV. 21). Hence it is fair to interpret the explicit cn term in Eq. (IV. 21) 

as corresponding to c U’ n pvn (z,, . . . , z4). Comparing the scaling law for the cn 

term of Eq. (IV.21) with the scaling law for U’ pvn’ one must have 

4 - de = -2a, (IV. 25) 

i. e., 

de = 4 + 2an (IV. 26) 

In Ref. 24, the theory of scale breaking was stated in the form of a simple 

rule. Applied to this first order calculation the rule is that if the coefficient cn 

Of 9e1 is assigned the dimensions (mass) 
4-d, 

, then the term of first order in cn 

will have the same dimensions as the scale invariant term. The calculation per- 

formed here confirms this rule. In Ref. 24 this rule was hedged in that the terms 
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of first order (or higher) in cn might involve logarithms that would spoil a strict 

scaling law. Logarithms might occur if the integral in Eq. (IV. 21) required 

subtractions. The renormalization group calculation indicates that no logarithms 

occur in this case. 

For the fixed point x1, a1 is negative and e2 goes away from x1 as h decreases. h 

In this case the scale breaking should become important for low momenta, i.e., 

large distances. It is clear from the scaling law (IV. 18) that the scale breaking 

term does increase relative to the scale invariant term as the scale length s 

increases. The dimension of gel(z) in this case is less than four, which means 

it is a generalized mass term in the language of Ref. 24. In contrast, for the 

fixed point x2, 2 a is positive and the departure from scale invariance increases 

as one goes to large momenta or short distances. This is what one expects of a 

nonrenormalizable interaction. In this case gel(z) has dimension greater than 

four which means it is a nonrenormalizable interaction in the notation of Ref. 24. 

If gel(z) is the interaction associated with the constant el in the Lagrangian, 

a term proportional to 9’ el (z) should be present in the Lagrangian even for e =x 1 n’ 
But if gel(z) is a scale breaking interaction it obviously cannot be present in the 

Lagrangian of a scale invariant theory. Evidently, the part of the Lagrangian 

which describes the scale invariant theory must be distinguished from the term 

proportional to gel(z) which describes departures of ei from x n’ 
This dis- 

tinction must somehow arise in the process of defining the renormalized 

field gel(z). It is difficult to study this problem in the context of this paper; 

it will not be discussed further. 

In all the discussion of this paper it is assumed that none of the an are zero. 

For an to be zero means $(O, x) has a double root (at least) at x = xn and the dis- 

cussion of scale breaking is more complicated. Since the root of $( 0, x) at x= 0 
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is a double root one has some experience with the scale breaking accompanying 

a double root, from ordinary perturbation theory. For general field theories a 

double root for xn # 0 seems unlikely and will not be discussed further. 

B. Scale Breaking Through Finite Mass 

The next problem to be discussed is scale breaking due to nonzero mass. To 

analyze this problem it seems to be necessary to extend the renormalization group 

by defining a h-dependent mass rnA and obtaining a differential equation for 5. 

A method for doing this has been suggested by Ericksson. 29 The idea is to replace 

the subtraction condition on the mass shell for C,(p) (Eq. (II. 19) by a second con- 

dition at momentum equal to A. This will mean essentially that the propagator 

Sh(p) reduces to (6 - mh)-’ when p2 = h2 so the mass parameter mh is defined in 

terms the behavior of S#4 for P-h. The parameter y is then used instead of 

m to parameterize the mass dependence of amplitudes renormalized at momentum 

h. The precise form of the new subtraction condition for bA(p) has been chosen 

arbitrarily from many possibilities. The new subtraction condition is 

BA(-n2) = 0 (IV. 27) 

(BA(p2) was defined in Eq. (II. 4)). This condition replaces Eq. (II. 19). 

Because of the new condition for zh, the fields A 
ht-L 

and $A discussed below 

are different from the fields defined in Section II; also they and the functions d, s, 

etc., are functions of 2 2 
?dA instead of m2/h2. In addition to the function 

it is convenient to define a second function 

1 - AAtP2)}-l {I+ (m^)-l BA(p2)} (IV. 28) 

The relation of S$p) to Zh is 

S,ltP) = zd - mA - C,(P) (Iv. 29) 
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From this and the definitions of s and sM one gets 

sh(P) = s 
( 
P2/h2, n$/h2, ef )(fi- y 4(P2/x2, gh2, ef)}-I (Iv. 30) 

From the renormalization conditions (II. 20) and (IV. 27) one gets 

sM -1, mi/A2, ei 
( 1 

= 1 (Iv. 31) 

(The normalization conditions for s -1 
1 ( 

2 2 2 and d -1, mh/h , eA \ are that 
/ 

both equal 1, as before. ) 

Given the values of eA and mh and the functional form of s M one can compute 

the physical mass m from the condition that SA(p) have a pole for #= m, namely 

one must have 

m = 5 sM (m2/A2, 4/A2, e$ (IV. 32) 

This is in general an implicit equation for m; in perturbation theory it has a unique 

solution for m in the form 

m = mA + (power series in et) 

where the power series begins with a term of order e2 A’ 

(Iv. 33) 

The renormalization group differential equations can now be derived as in 

Section II. The equations for ef, z3h, and z2A are unchanged in form. However, 

+ and o will be different functions than the functions in Section II because of the 

different renormalization conditions; also they depend on mf/A2 instead of m2/A2. 

In addition to these equations there is an equation for mA. Since S,‘(p) must be 

S;:(p) one has in particular 

,s(p2/A2, mf/A2, e!J>-l mA sM(p2h2, mih2, ei) - 

(Iv. 34) 

- 55 - 



Using Eq. (II. 52) for z2hh,, setting p2 = -A2, and using Eq. (IV. 31), one gets 

(lv.35) 

Differentiate with respect to A2, then put AI2 = A2, and perform some further 

manipulation, and one has 

d( mA/A)/d(Qnh)2 = ( mA/h) $M (mf/A2, e:) 

where 

$M(mt/h2, ei) = -. 5 + bsM(-s, g/A’, e$/&],, 

(IV.36) 

(Iv.37) 

The first term -. 5 in @,,I comes from differentiating the factor h -‘in% /A. The 

second term is of order ei since s M has the form 

(Iv.38) sM -‘, y 2/A2, ef) = 1 + order ei 
( > 

The function sM -s, mf/A2, et; is finite for -70. 

in the definition of sM does not cause trouble in this limit, at least in perturbation 

theory, because every graph contributing to BA(p2) contains a factor mh. The 

reason for this is that if mA is zero, the theory is y5 invariant and in a y5-invariant 

theory c,(p) can only contain terms proportional to 6. Since sM is finite for 

m --0 the function #I~ is also. h 
The basic equations of the renormalization group now consist of two coupled 

equations. If one writes x for ez, y for y/h, and t for Qnh2, the coupled equations 

are 

dx/dt = $M( y2, X) (TV. 39) 

dy/dt = Y 9,(y2, x) (rv.40) 

The function $M has the subscript to distinguish it from the function I,!J of Sections 

II and III. It is a different function because of the new subtraction method used 

in its definition. However, for zero mass the two subtraction methods should 
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define the same theory so it will be assumed that +M(O, x) = I,!J(O, x). The dif- 

ferential equations for x and y have the same form as the renormalization group 

equations for two coupling constant theories in the absence of mass. However, 

because of the factor y multiplying @M, any root xn of $J~( 0, x) = 0 automatically 

defines a fixed point x = xn, y = 0 of the coupled equations. The coupled equations 

will be discussed here only in the neighborhood of these fixed points; a general 

discussion is beyond the scope of this paper. Near the fixed point x = xn, y = 0, 

Eqs. (TV. 39) and (IV. 40) can be linearized, giving 

dx/dt = a,(x - xn) (Iv.41) 

dy/dt = b,y 

where an is given by Eq. (III. 31) and 

(IV.42) 

b, = $,t”> Xn) (Iv.43) 

The general solution of the linearized equations is 

tx - xn) = cn e a-nt (Iv.44) 

y=dne bnt (JY.45) 

where cn and dn are arbitrary constants. Translated back in terms of ei, etc., 

these equations read 
2 2an 

eh =xn+cnh (IV.46) 

The scale breaking corrections to vacuum expectation values are easily 

determined by the method used previously. To order cn and d, the amplitude T 
PV 
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is found to satisfy the scaling law 

T 2 2un-5 
clv szl,. . .,sz4,m1,el I) T (z pvn 1’ ’ “’ z4) 

+ ens 
2un-2an-5 

U’ (z 
2on-2bn-5 

pvn 1’ ‘*” z4) + d, s Vpvn@l’ * * - > z4) 

(Iv.48) 

where 

Vpvn(zy - - * > z4) = aTpv/ay tz,, . . . . ‘4’ yy Xn) yz() (Iv.49) 

There are corresponding formulae for any vacuum expectation value. If there 

is a termm 9 1 ml(z) in the Lagrangian density corresponding to the mass parameter 

ml, then Zml( z) has scale dimension 4 + 2bn; this follows from the same argument 

that gave the dimension 4 + 2an for gel(z). 

The constant b, is known only for the fixed point x = y = 0 (call this n = 0) for 

which b. = -. 5; in this case the interaction Pml(z) is a generalized mass term. 

For the nonzero fixed points such as x1 and x2 the sign of b, is not known so Pml(z) 

could be either a generalized mass term or a nonrenormalizable interaction. 32 

A peculiar situation arises if gml( z is a nonrenormalizable interaction, i. e. , ) 

if bn > 0. First one notes that if h = m then mh is of order m. The reason is this. 

The normalization condition on sM (Eq. (IV.31)) puts sM (-1, mt/h2, et) = 1. 

Therefore, barring exceptional circumstances, sM 1,~ 2/A2, ef ) should be of 

order 1. If h = m the mass condition is 

m=m m sM 1, mL/m2, e”, ( > (Iv. 50) 

With sM of order 1, this equation requires mm to be of order m, i. e., 
“h/h is 

of order 1 for h = m. For large A, mh/h must be small if finite mass corrections 

are to be small for large A. This requires that y/h decrease as A increases. 

But in the vicinity of the fixed point et ‘c xn, m^/A==O , 
) 

ml/h decreases only 
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if b, is negative. More generally, whether or not et is near a fixed point, rnt/X2 

decreases as h increases only if qM(mf/h2, ei‘ is negative. There is no , 
guarantee that QM(n$lh2, e;) is negative except when ei is small. If G/A2 

does not decrease as h increases then the asymptotic solution of Eqs. (TV. 39) and 

(IV.40) for large t (i.e., large &I h2) will not be one of the fixed points with y= 0; 

instead it would be a fixed point with y # 0 or a limit cycle or some other type of 

behavior. However, if the physical mass is zero, then there is a special solution 

of the renormalization group equations with rnA = 0 for all h and the analysis of 

previous sections applies to this special solution. 

A fixed point xn with bn< 0 will be called “mass-stable’! while a fixed point 

with bn> 0 will be called “mass-unstable. ” What we have shown is that only the 

mass-stable fixed points among the xn will be relevant to finite mass theories. 

This conclusion can be restated; the conclusion is that for finite mass theories the 
. 

interaction gml( ) z must be a generalized mass term; if g ml(z) is a nonrenor- 

malizable interaction then only the zero mass theory exists. This confirms the 

assumptions of Ref. 24. More generally if there is a variable parameter in the 

low energy behavior of the field theory (either a mass or a renormalized coupling 

constant) the corresponding interaction Lagrangian density must be a generalized 

mass term, not a nonrenormalizable interaction. The case of an ordinary renor- 

malizable interaction (one with dimension four exactly) hopefully does not occur 

for nontrivial fixed points such as x1, x2, or x3, since it would seem unlikely 

that the constants an or bn would be exactly zero. 

The analysis of this section shows that the question of mass-independence for 

large momenta is more complicated than the perturbation theory calculations indi- 

cate. As long as ei is small, so that perturbation theory is valid, QM(m2/h2, ef > 
is approximately -. 5, which means y/A decreases with A and is small when 
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A >> m. But when ef is of order 1, $M may be positive in which case 
YJA 

increases with A and if so no mass independence is possible for large A. 
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V. RENORMALIZATION GROUP AND STRONG INTERACTIONS 

The purpose of this section is to discuss what form the renormalization group 

should take for strong interactions. It is assumed here that a renormalization 

group exists for strong interactions. The discussion is based on the work of 

Sections III and IV. However, no particular model (such as thegluon model5 or 

the cr-mode16) is assumed here. 

Analysis of the renormalization group for electrodynamics (see Section III. G) ’ 

shows that the A-dependent charge eh increases with A, eventually becoming of 

order lJs4 By this is meant that no matter how small the renormalized charge e 

is, eh becomes of order some fixed number independent of e if h is large enough. 

This suggests that there is a cutoff A beyond which radiative corrections to strong 

interactions are too large to be treated as a perturbation. So it will be assumed 

here that the theory of strong interactions in isolation is valid only below the cut- 

off. A. For purposes of discussion it will be assumed that electrodynamics rather 

than weak interactions or some other interaction is the cause of the cutoff. 

It is evident from Section IV that including the mass parameter 5 in the 

renormalization group equations makes the renormalization group method more 

powerful; so it will be assumed here that the renormalization group of strong inter- 

actions includes mass parameters as well as coupling constants. Furthermore, 

the equations of the renormalization group have the same form for mass parameters 

as for coupling constants provided one replaces mass parameters such as mh by 

dimensionless parameters such as rnA/A. The parameters which are distinguished 

in the renormalization group equations are those which break an internal symmetry. 

For example, mA/h is a symmetry breaking parameter in electrodynamics (it 

breaks y5 symmetry), and as a result if y/h is zero for one value of h, it is 

zero for all values of A. More generally, the renormalization group respects the 
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possible internal symmetries of a field theory in the sense that if the parameters 

which break the symmetry are zero for one value of A, then these parameters will 

remain zero for all values of A. 

A solution of the renormalization group equations for strong interactions 

should consist of a set of symmetry preserving coupling constants glh, gZh,. . . , gnh 

and a set of symmetry violating constants hlh, hzh, . . . . %A . For the purposes 

of this discussion mass parameters are divided by h and included among these 

“coupling constants”. All coupling constants are to be dimensionless. (Coupling 

constants of any superrenormalizable interactions, such as a Q3 interaction of 

a scalar field, are also divided by A to make them dimensionless, and then included 

in the list. ) For purposes of discussion the symmetries of strong interactions 

will be assumed to be P, C, T, and U(3) X U(3).33 Experiment indicates that the 

symmetry violating part of strong interactions break U(3) X U(3) leaving P, C, T, 

isospin, and strangeness intact; the theoretical discussion given here will allow 

for more arbitrary types of symmetry breaking. The number n of symmetry con- 

serving constants and the number k of symmetry violating constants will not be 

specified. To write the renormalization group equations it is convenient to intro- 

duce an abstract notation. Let Ph be the point in an n-dimensional space (Sl) with 

coordinates (g,,, gZA, . . . , g,), and let Q, be the point in a k-dimensional space 

(S2) with coordinates (hlh, . . . , hkll). Then the general form of the renormalization 

group equations is 

(V. 1) 

dQA/d(Qn h2) = T2(PA, Q,) (V-2) 

where Tl(Ph, Qh) is itself a point in Sl and T2(Phl Q,) is a point in S2, i.e., Tl 

has n components and T2 has k components. The point T2(Ph, Q,) is zero when 

Qh = 0; Tl is completely unknown. 

- 62 - 



The renormalization group will be discussed assuming the points PA, Q, go 

to a fixed point of the group when A becomes large compared to a typical strong 

interaction mass (i. e., for A >> 1 GeV). As explained in Section III. H, experi- 

ments on e + - e- annihilation at large momentum transfers can probably distinguish 

between fixed point asymptotic behavior and other types of asymptotic behavior 

(such as a limit cycle). Until further experimental or theoretical information is 

available it seems more sensible to discuss the fixed point than to try to discuss 

more general asymptotic behavior; for example, one doesn’t even have a classifi- 

cation of the possible asymptotic forms for solutions of more than two simultaneous 

nonlinear equations. (See however Section VI. ) It is commonly assumed that 

U(3) X U(3) becomes an exact symmetry at small distances, i.e., large A. Hence 

it will be assumed that the fixed point is of the form 

P = Pf tv. 3) 

Q=O tv. 4) 

For Pf to be a fixed point one must have 

TIPf, 0) = 0 w. 5) 

According to the discussion of Section III. E, the fixed point should be infrared 

stable due to the presence of the cutoff A. The argument was that Ph - Pf and Qh 

are likely to be of order 1 when h -A due to large radiative corrections. There- 

fore Ph - Pf and Qh must decrease as A decreases in order that PA= Pf and Qh= 0 

for (1 GeV)<<A<< A. But this is unlikely if the linearized equations for Ph - Pf 

and Q A have solutions which increase as h decreases. Unfortunately this analysis 

leads to a nonsensical result. If Qh decreases as A decreases, and is small for 

(1 GeV) =X h, then Qh will be extremely small for h -- 1 GeV or less. But this 

would mean that U(3) x U(3) breaking would be small at laboratory energies, 
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whereas in fact U(3) X U(3) breaking is large at these energies. It is therefore 

necessary to presume that there are some U(3) X U(3) breaking parameters which 

increase as h decreases. In particular one expects there to be two parameters, 

say hlh and h2a, which break SU(3) X SU(3) according to the Glashow-Weinberg 

(Gell-Mann, Oakes, and Renner) theory.34 We shall also assume there is a 

third parameter h3h, which preserves SU(3) X SU(3) but breaks U(3) X U(3). 35 

These three parameters should increase as h decreases, becoming of order 1 

between 100 MeV and 1 GeV where SU(3) X SU(3) and U(3) X U(3) are strongly 

broken. 

Since hlh, h2h, and hgh are small for h >> 1 GeV and decreasing as h increases 

they will be very small indeed when h is of order A. This is possible only if 

there are no large radiative corrections to hlh, h2h, or hgh when h - A. It is 

hard to see how this can come about unless these coupling constants also break an 

electrodynamic symmetry. If they do break a symmetry of electrodynamics then 

electrodynamic corrections to hlh, etc., will be of order hlh ei, etc. instead of 

e: and will not be a problem. This means there must be a symmetry common to 

electrodynamics and strong interactions which is broken by the couplings hlh, hZh, 

and h3h; a logical choice is axial baryon number since the usual electrodynamic 

Lagrangian for strong interactions preserves axial baryon number. This probably 

must be a symmetry of weak interactions also in order that weak corrections to 

hlh, etc., at large momenta not be large. 

While the fixed point has to be infrared unstable with respect to the couplings 

hlh, h2h andhga, it must be infrared stable to symmetry breaking parameters which do 

get large radiative corrections for h -A. For example h4h might break SU(3)XSU(3) 

without breaking axial baryon number or other (electrodynamic + strong) symmetries; 

then h4h will be large for h - A and must decrease as h decreases. Also, it seems 
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likely that all coupling constants that preserve the symmetries of strong inter- 

actions, namely the constants PA, will have large radiative corrections and there- 

fore Pf must be infrared stable to perturbations of Ph about Pf. Since the theory 

defined by the coupling constants (Pf, 0) is scale invariant (by the analysis of 

Section III. C), this means that the breaking of scale invariance at low momenta 

is due entirely to couplings which also break internal symmetries; in particular 

all generalized mass terms must break an internal symmetry. A generalized 

mass term is any coupling which causes particles to have finite mass rather than 

zero mass. It is interesting to note that there are no weakly coupled scalar par- 

ticles in nature; scalar particles are the only kind of free particles whose mass 

term does not break either an internal or a gauge symmetry. 

This discussion can be summarized by saying that mass or symmetry breaking 

terms must be ,,protected” f:om large corrections at large momenta due to various 

interactions (electromagnetic, weak, or strong). A symmetry breaking term, 

such as hlh, h2h or hgh, is protected if, in the renormalization group equation for 

hlh' h2h, or hgh, the right hand side is proportional to hIh, hgh, hgh or other 

small coupling constants even when high order strong, electromagnetic or weak 

corrections are taken into account. The mass terms for the electron and muon 

and the weak boson,if any, must also be protected. This requirement 

means that weak interactions cannot be mediated by scalar particles. 36 

One basic mystery remains from this analysis, namely why is the breaking 

of axial baryon number small when A -A ; even if the mixing of electrodynamics 

with strong interactions does not force the breaking to be large it is strange that 

it is small without being zero. 

According to the analysis of Section III. E, all the renormalized coupling con- 

stants of strong interactions could be computed by solving the renormalization 
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group equations. This is no longer true. There is no argument that can determine 

hlh9 h2hy Or h32 for A - 1 GeV and the values of these constants for one value of 

h must be determined from experiment. The renormalization group can then be 

used to fix the values of hlh, hzh, and h3h for other values of h. If there are 

other coupling constants which increase as h decreases, these coupling constants 

must also be determined from experiment. Such coupling constants will be small 

for h - A and therefore must also be protected. This presumably means these 

constants are also symmetry breaking terms. Hopefully, the dominant symmetry 

breaking terms are hlh, h2h, and hgh, * then other symmetry breaking term4 while 

surely present, are small for h - 1 GeV, and cannot increase further for h qk 1 GeV 

because amplification ceases for A less than the hadron masses (see Section III. B). 

The renormalization group for strong interactions contains mass terms and 

coupling constants for any superrenormalizable interactions. Should it include 

nonrenormalizable interactions? The answer is Yes, for several reasons. It was 

shown in Section IV that the interaction Lagrangian density gel(x) is a nonrenor- 

malizable interaction in the neighborhood of an infrared-stable fixed point. This 

will also be true of the interactions associated with the nonsymmetry breaking 

couplings glh. . . gti of strong interactions, since the fixed point Pf must be infra- 

red-stable except for symmetry breaking. So in effect some nonrenormalizable 

interactions are already present in the renormalization group. Conversely, there 

is no reason to suppose that a symmetry breaking interaction which is nonrenor- 

malizable in perturbation theory will stay nonrenormalizable near a fixed point 

with large coupling constants: for example the U(3)X U(3) breaking constant hgh 

might correspond to a nonrenormalizable interaction in perturbation theory 

(especially in the gluon model where in perturbation theory there are no renor- 

malizable interactions or mass terms which break U(3) X U(3) without breaking 
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SU(3) X SU(3) also). So it may be essential to include interactions which are non- 

renormalizable in perturbation theory to find all the generalized mass terms near 

a strongly interacting fixed point. Furthermore, there has never been any funda- 

mental physical distinction between nonrenormalizable interactions and renor- 

malizable ones so one would like to treat them on an equal footing. Finally there 

is a model with a renormalization group which can be solved rigorously in strong 

coupling which necessarily includes nonrenormalizable interactions. 37 

If the renormalization group for strong interactions includes nonrenormalizable 

couplings it will be difficult to construct it as a simple extension of the Gell-Mann- 

Low group, requiring instead that one start from scratch. It will also be consid- 

erably more complicated than the Gell-Mann-Low group since there are an infinite 

number of nonrenormalizable interactions. Whether the conclusions of this paper 

actually apply to such a group remains to be seen; but surely these conclusions are 

an indication of the kind of physics that can come out of such a group. The inclu- 

sion of nonrenormalizable interactions in the renormalization group equations does 

not change the conclusion that scale breaking in strong interactions is due only to 

generalized mass terms, provided that the asymptotic solution of the renormali- 

zation group is a fixed point. 
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VI. The AI = l/2 RULE 

It has been shown elsewhere 24 that one can understand the AI = l/2 rule in 

nonleptonic weak interactions given that strong interactions are scale invariant 

at short distances and that dimensions of local fields in strong interactions are 

not as predicted from canonical field theory. The purpose of this section is to 

show that if the strong interactions have a renormalization group then the AI = l/2 

rule can be understood without assuming broken scale invariance. In other words, 

the AI = l/2 rule can be understood regardless of what kind of asymptotic solution 

the renormalization group equations have (fixed point, limit cycle, or otherwise). 

The first part of the analysis of Ref. 24 will be assumed here. According 

to this analysis, the current-current Lagrangian for nonleptonic weak interactions 

can be approximated by the form 

9wtx) ” G 0 tx) n n n (VI. 1) 

where the fields On(x) are a set of local fields and the G, are constants. This 

form assumes that the weak boson mass or weak interaction cutoff is of order M 

where M >> (1 GeV). The fields O,(x) are assumed to belong to irreducible 

representations of SU(3) X SU(3). 

Before discussing the consequences of the renormalization group for 9,(x), 

we shall try to explain what is meant by %nderstanding’l the AI = l/2 rule. What 

will be argued in the following is that gw(x) is dominated by a single field out of 

the set {On(x)\ , say Om(x). The argument below gives no clue as to which field 

dominates. This means that Zw(x), to a good approximation, belongs to a single 

irreducible representation of SU(3) X SU(3), despite the fact that the current- 

current product contains several representations of SU(3) X SU(3). However, 

one cannot determine theoretically which representation of SU(3) X SU(3) will 

dominate. The current-current product contains the following representations 

- 68 - 



of SU(3) X SU(3): (1,l); (8,l) @ (1,8); (27,l) @ (1,27); (10,l) @ (1,lO); (=,I) C3 (1,E); 

and (8,8). In addition, since SU(3) X SU(3) is not an exact symmetry there is some 

leakage into other representations as well. 

The theoretical analysis given below predicts that one SU(3) X SU(3) representa- 

tion will dominate in JFw(x), and the dominance is by a power of M over all other 

representations. One has to look to experiment to find out which SU(3) X SU(3) 

representation dominates. It is obvious from the K-decay amplitudes that the 

dominant SU(3) X SU(3) representation contains no AI = 3/2 term. The factor 20 

that separates the AI = l/2 amplitude in K-decay from the AI = 3/2 amplitude is 

too large to be accounted for credibly without having AI = l/2 dominance in the 

effective Lagrangian Zw(x). This limits the possible dominant SU(3) x SU(3) 

representations to 2: (8,l) CB (1,8) and (3,z) @ (3,3) (The representation 

(8,1) @ (1,8) seems more likely since it does not require leakage in order to occur.) 

One uses K-decay to choose the dominant SU(3) X SU(3) representation. The 

theoretical argument then predicts the following otherwise mysterious facts: 1) 

The large dominance of AI = l/2 over AI = 3/2 in K-decay; this is possible because 

the dominance is by a power of M, and this factor should be large providing that 

M is large cornpared to strong interaction masses (i-e. ) M >> (1 GeV)); 2) Large 

AI = l/2 dominance in baryon nonleptonic decays, i. e., universal AI = l/2 dominance. 

The theoretical analysis is the following. In a renormalization group analysis 

of gw, it is characterized by a set of h-dependent coupling constants Gnh. When 

h is of order M these coupling constants are the same size for different n. In 

particular the coupling constants corresponding to different SU(3)X SU(3) repre- 

sentations have the same order of magnitude. This is because there is nothing 

-1 peculiar about two currents separated by a distance M if it is in a matrix element 

-1 where all fields are separated by of order M . But the constants Gnh for h - M 
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measure the size of 2w(x) when sandwiched between fields separated by -M-l. 

Thus the various SU(3) X SU(3) representations should have roughly the same 

strength in 2,(x) when A - M. The coupling constants which determine decay 

rates are the Gnh with h & 1 GeV. These must be determined by solving the re- 

normalization group equations between h = 1 GeV and h = M. But as shown in 

Section III. B there can be large amplification or deamplification effects in this 

interval (assuming M >> 1 GeV), and these effects can be different for different 

SU(3) X SU(3) representations. 

To be more precise, consider the form of the renormalization group equations 

for Gnh. Assume for convenience that each n refers to a different SU(3) x SU(3) 

representation. The equations can be linearized with respect to the Gnh; the 

symmetry violating constants hnh. will be neglected (in the region above 1 GeV 

which is important for producing amplification or deamplification the hti are 

small and will not change the analysis appreciably). Then the renormalization 

group equations have the form 

dGnh/d(Qn 2~~) = Gnh Un [P,] (VI. 2) 

where Ph is the set of symmetry conserving coupling constants for momentum h. 

The Un are unknown functions of Ph. There are no cross terms relating 

dGnh/d(h h2) to Gfi with !-#n because of symmetry requirements. The solution of 

these equations is 

G& = GnM eq 2 un -‘A,.’ @‘) -l dA 

Equivalently, one can write 

Gd = (X2/M?) %l @jG nM 

(VI. 3) 

VI. 4) 

, 
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where an(h) is 

an(A) = -!h A2 - Qn My’J 
?L 

M 
2Un(PA,) (7+ CR’ (VI* 5) 

If Un were a constant independent of A’, then a,(h) would be equal to Un. The 

constant an(h) is presumably of order 1, in the absence of more precise informa- 

tion, but should be different for different n. If the asymptotic solution of the re- 

normalization group equations is a fixed point then Un would be constant for 

A1 >> 1 GeV where PA, is near the fixed point. In this case an would be related 

to the dimension of the field On; as long as the fields On have different dimensions, 

an would also be different for different n. Even if the renormalization group does 

not have fixed point asymptotic behavior there is an exponent cr,(l GeV) which 

defines an “effective dimension” for the fields On over the interval 1 GeV < h1 < M. 

The exponents an (1 GeV) determine the amount of amplification or deamplification 

that results from going from GnM to Gnh with h - 1 GeV. As long as the an are - 

different for different n, the low energy coupling constants Gnh with h - 1 GeV will 

differ by powers of M for different n. This ensures the dominance of one SU(3) X 

SU(3) representation in the phenomenological Lagrangian for nonleptonic decays. 

The existence of the AI = l/2 rule experimentally is encouragement to believe 

that a renormalization group does exist for strong interactions, since all other 

explanations of the AI = l/2 rule are unsatisfactory for one reason or another. 24,25 

VII. FINAL REMARKS 

The application of the renormalization group to -strong interactions leads to 

profound results, for example, the possibility that the short distance behavior of 

strong interactions is described by a limit cycle. It is disturbing, therefore, that 

the renormalization group results derive from a not very profound property of 

perturbation theory, namely that renormalized amplitudes renormalized by the 
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Gell-Mann-Low method have a zero mass limit. Furthermore, the renormalization 

group is not involved in the standard procedures for solving field theory, yet the 

renormalization group analysis makes important predictions about the nature of 

the solutions of field theory. One would be happier about these predictions if the 

renormalization group itself were a more essential part of the structure of field 

theory than it appears to be from perturbation theory. 

There is a model field theory described elsewhere 37 which suggests that the 

renormalization group is an essential part of understanding a strongly coupled field 

theory. The model is a truncated version of the charged scalar theory of pions 

coupled to a fixed source. In the truncated version of this theory the pi mesons 

are restricted to discrete wave packet states centered on the source; the nth state 

has mean momentum m An, where m is the pion mass and A is a large number. 

The renormalization group for the model is defined as part of solving the model 

as an expansion in A 

properties: 

The renormalization group of the model has the following 

1) the renormalization group is defined before the solution of the theory is 

known, 

2) the renormalization group equations of the model involve coupling constants 

of all possible nonrenormalizable interactions in the model, 

3) there is no way (known to the author, at least) of obtaining a complete 

solution of the model, except by solving the renormalization group equations. 

The author suspects these three properties will also be true of strongly inter- 

acting relativistic fields. This is because the reason for the importance of the 

renormalization group in the model is that it has an infinite number of disparate 

scales of energy, namely the energy scales m, mA, mA2, etc. The function of 

the renormalization group transformation is to solve the part of the Hamiltonian 
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involving energies of one scale, say m.A n, assuming parts of the Hamiltonian with 

energies >> mAn have already been solved. In order to solve the inifinite number 

of energy scales which exceed energies of practical interest one must iterate the 

renormalization group transformation an infinite number of times thus making 

asymptotic behavior of this transformation of crucial importance in solving the 

model. (For details, see Ref. 37). All relativistic field theories also have this 

infinite sequence of energy scales; they arise due to the possibility of creating 

and particles of any energy from m to 00. The problem in relativistic theory is 

that one does not have only the discrete energy scales m, mA, etc. ; one has all 

energies in between these values, so a perturbation expansion in A -1 is impossible 

for relativistic theories. This does not mean one does not have disparate energy 

scales present. In the model one can only solve one order of magnitude of energy 

at a time; it is hard to see how one can do more than this in a relativistic theory. 

So in a relativistic theory one should also look for a renormalization group trans- 

formation which solves one order of magnitude of energies in the Hamiltonian. 
38 

This discussion will not be pursued here; its purpose is only to emphasize 

that the next step after reading this paper is to study the model of Ref. 37. 
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APPENDIX: 

REVIEW OF THE GELL-MANN-LOW THEORY 

There are many reasons why the Gell-Mann-Low theory’ is hard to under- 

stand. But perhaps the most puzzling feature of it is that the reasoning and 

assumptions which led GelI-Mann and Low to formulate the differential equations 

of the renormalization group seem totally irrelevant to the conclusions one derives 

from the differential equations. In Gell-Mann and Low’s paper the motivation for 

setting up the renormalization group was the observation that while the renormalized 

photon propagator dc(k2/m2, e2) is logarithmically divergent when m2 - 0, the 

cutoff but unrenormalized Feynman graphs for the propagator are not divergent 

in this limit (at least in low orders). Gell-Mann and Low therefore propose a 

generalization of the usual renormalization procedure which is not divergent in 

low orders when m2 - 0; they then discuss properties of their renormalized theory 

which leads them to derive the differential equation (I. 2). One’s reaction to going 

through this analysis is that one is looking at rather trivial and technical aspects 

of renormalized perturbation theory which cannot be the basis for any very basic 

results. In the author’s opinion the analysis of Gell-Mann and Low is in fact dealing 

with technical aspects of field theory, but by doing so they have stumbled on an 

equation which embodies very fundamental properties of quantum field theory. 

New ideas are often discovered for irrelevant reasons, so this opinion is not 

unreasonable. Also, perturbation theory is the one approximation method which 

can be computed without any understanding whatsoever of the equations one is 

solving by perturbation theory. What this means is that while qualitative features 

of the original equations will be reflected in qualitative features of its perturbation 

expansion, to understand these qualitative features one has to study the original 
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equations and not just their perturbation expansion. So perhaps one should expect 

that a derivation of the renormalization group equations from perturbation theory 

will not be very illuminating. 

The Gell-Mann-Low theory will now be reviewed, much in the manner that 

Gell-Mann and Low presented it. The only major change is not to use Ward’s 

method of renormalization3’ as a basis for modifying the usual renormalization 

program. The author has also benefited from the review of the theory in Bogoliubov 

and Shirkov ;4 however, they provide very little motivation for the calculations they 

describe. 

Consider lowest order vacuum polarization. If one computes this graph and 

renormalizes it in the conventional fashion it gives a contribution to vacuum polari- 

zation, denoted II cp,(kL (k is the photon momentum) which is: 

IIcpv(k) = (e2/4a2) ( gpv k2 - kFkV\, I(k2) (A. 1) 

The exact form of I(k2) is given in Bogoliubov and Shirkov. 
40 

If m2 <. k2, I(k2) 

is approximately 

I(k2) = (l/3) Qn k2/m21 (A. 2) 

In the limit m - - 0, I(k2) is logarithmically divergent. Gell- Mann and Low 

point out that if one looks instead at the unrenormalized but cutoff vacuum polari- 

zation diagram, it does not diverge as rn. - 0. It is worth showing this in a way 

that is generalized easily to higher order diagrams. A cutoff version of the graph 

gives a function II A/Jk) : 

(k) =-ie2 J t 
A4 

%p 
Trace y 

P I-C (p2-m2+i6) [(p-k)2-m2+iE] ) (p2-A2+iE) ‘(p-k)2 - A2+ie 

(A. 3) 

where $ is shorthand for (2r)-4fi4p and A is the cutoff. 41 

P 
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It is convenient to consider spacelike k and choose a Lorentz frame in which 

the time component k. is zero. In this frame one can rotate the contour of inte- 

gration in p. from the real axis to the imaginary axis (no singularities of the 

integrand are crossed if the rotation is counterclockwise). This means one 

replaces p. by ip4 where p4 is real. The denominator of the integrand now has 

the form (p2 + m2) [(p - k)2 + m2] (p2 + A2) [(p - k)2 -t- A2] where p2 now means 

p2 f pt and likewise for (p - k)2, (i.e., one has a Euclidean metric instead of 
I 
a Lorentz metric). 

With cutoffs present the integral has no ultraviolet divergences, so the only 

way it can diverge is through vanishing denominators. If m2 is zero the denomina- 

tors p2 and (p - k)2 can vanish, Since the metric is Euclidean, p2 can vanish only 

if all four components of p vanish. Hence the integral is divergent only if the 

integrand is as singular as p -4 for p-- 0 or as (p - k)-4 when (p - k) - 0, which 

is not the case. 

Even if k is zero, so the denominator behaves as (P~)~ for p-+0, the integral 

does not diverge because there are two powers of p from the numerator when k and 

m are both zero. 

Why then does the renormalized graph diverge for m- O? The reason lies 

in the way one defines the renormalized function Il c&k). The function JIAP,(k) 

contains terms proportional to g pv’ gpvk2s and k k 
PJ lf’ 

which are cutoff dependent 

and must be subtracted in order to give a finite result. The customary procedure 

is to subtract the expansion in k of II APV(k) to order k2, namely to define 

where 

(A. 4) 

(A. 5) 
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With this form of subtraction, II ,,(k) is of order k4 when k- 0; this means that 

the radiative correction to the photon propagator, which is proportional to 

(k2)V2ncP,(k), is finite as k- 0. Hence the pole of the exact photon propagator 

is the same as the pole term in the free propagator. 

The divergence for m - 0 in the renormalized vacuum polarization comes 

from the subtraction lIAPV, kJ k). One can see that differentiatingIIAPV(k) twice 

with respect to k and then setting k = 0 makes the integral in Eq. (A. 3) diverge: 

each differentiation makes the integrand more singular by one power of p at p = 0, 

and hence the integrand for Il APV, k&O) behaves as pm4 when m = 0 causing a 

divergence. 

Low order diagrams for the electron propagator and the vertex function show 

a similar feature, namely that the unrenormalized but cutoff Feynman integrals 

are finite for zero mass. One shows these results using the same method described 

above for the vacuum polarization graph. To get a divergence requires that several 

denominators vanish simultaneously and for low order graphs it is trivial to check 

that this cannot happen. In the case of the vertex function, one needs some non- 

zero external momenta to prevent too many denominators from vanishing simulta- 

neously (and likewise for four point functions, five point functions, etc.). In other 

words the external momenta provide an infrared cutoff for vertex function diagrams. 

This was noted by Gell-Mann and Low. Also one must treat specially graphs with 

self-energy corrections on internal lines. Otherwise one can get a string of propa- 

gators depending on a single momentum p say andall diverging when p -+O. One can sum 

up the self-energy corrections to internal lines to give exact propagators; an exact propa- 

gator has at worst a simple pole whenp2. - 0. However, the condition for an exact propa- 

gator to be singular at momentum zero is that the physical mass of the electron be zero, 
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not that the bare mass of the electron be zero. This is why the problem of infrared 

divergences arises when the physical electron mass is zero and not necessarily 

when the bare mass of the electron is zero. 

It is not trivial to test all higher orders graphs for divergences at zero mass 

because there are so many diagrams to be checked. 

A similar analysis can be made for the electron propagator with finite mass. 

There are infrared divergences due to the photon mass being zero in the renor- 

malized electron propagator. However unrenormalized but cutoff diagrams of 

low order do not show this divergence either. One shows this by considering the 

electron propagator with time-like momentum p in the rest frame of p. If lpol 5 

one can again rotate contours of integration so that internal momenta are in a 

Euclidean metric. Consider an internal electron line in an electron self-energy 

graph carrying momentum p-k where k is an internal momentum. After the ro- 

tation the propagator for the line has the form 

m 

rr,tPo - ik4) S,Y . & + m] [-Zipok - ki 7 z2 - (m-Po)(m+Po) -l 1 
The propagator diverges if and only if p. = m and all four components of k vanish. 

To produce a divergent integral requires several denominators to vanish simulta- 

neously; to produce such a divergence in an electron self-energy graph one must 

differentiate at least once with respect to p. and then put p. = m. This is in fact 

done as part of the conventional renormalization procedure for the electron propa- 

gator (see below), but if one does not renormalize the low order graphs for the 

electron self energy, they are finite for zero photon-mass. 

Since the zero mass singularities of amplitudes seem to come in from the 

subtractions of the conventional renormalization program, Gell-Mann and Low 

propose that one set up an alternative method of renormalization which will not 

introduce such singularities. The basic idea can be illustrated with lowest order 
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vacuum polarization. Suppose the unrenormalized but cutoff vacuum polarization 

r’h/-lV (k) is defined using Pauli-Villars regularization; 
42 then II Ativ(k) has the form 

nApv(k) = (e2/4n2) (gpvk2 - kpkv) Itk2, A21 (A. 6) 

where I(k2, A2) will not be written down explicitly here. The cutoff dependence in 

I(k’, A2) is in a constant independent of k2, and by custom it is removed by defining 

the renormalized function I(k2) as 

I(k2) = I(k2, 

The singularity can also by removed 

A2) - I( 0, A2) (A. 7) 

by subtracting I(-h2, A2) from I(k2, A2), where 

h is arbitrary. (The subtraction is made at a space-like momentum because one 

wants the subtraction to be real: see below.) So one can define a whole set of 

possible renormalized functions Ih(k2) by 

I.Jk2) = I(k2, A2) - I(-h2, A2) (A- 8) 

The function I(k2,A2) is finite for m-0 provided k2 is nonzero. If k2 = 0 then 

I is proportional to a second derivative of II A&k) with respect to k, which diverges 

logarithmically for m-- - 0. This means that \(k2) finite for m.- 0 if h and k2 are 

held fixed and neither is zero. So in summary I(k2) diverges for m - 0 for any 

value of k2 (except k2 = 0), whereas %fk2) 1 m=O is finite for k2 # 0 but diverges 

for the special value k2 = 0. 

In general the proposal of Gell-Mann and Low is that when making subtractions 

to remove divergences from the unrenormalized theory, these subtractions should 

be made at a subtraction momentum h, rather than at momentum 0 or at the electron 

mass m. As a result one gets, in low orders at least, amplitudes which are finite 

at zero electron mass except for special values of the external momenta. The 

photon propagator of the zero mass theory will not have just a simple pole singularity 

for k = 0: it will have logarithmic singularities multiplying the pole. The same 
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is true of the electron propagator on the mass shell. These results are no surprise 

because the same is true of the electron propagator of the finite mass theory, due 

to photon infrared divergences. 

The renormalization procedure with subtractions made at a momentum A must 

obey the same restrictions as conventional renormalization. That is, the renor- 

malized theory is allowed to differ only in the following respects from the unre- 

normalized cutoff theory: 

a) The renormalized electron and photon fields can differ from the unrenor- 

malized fields by renormalization constants. 

b) The renormalized theory can be reparameterized in terms of a phenomeno- 

logically defined coupling constant and mass in place of the bare coupling 

constant and bare mass. 

c) One can make gauge transformations at will; a gauge transformation is 

accomplished by adding a term proportional to kPkV to the free photon 

propagator. 

The substitution of I,(k’) for I(k2) is equivalent to a renormalization and a 

change of gauge. To see this one must compare the photon propagators for the two 

cases. 2 43 The standard renormalized propagator to order e is 

Dcpvtk) = tk2? { -gpv -t (e2/4a)(k2)-’ ($kV -gPVk2) I(k2)} (A. 9) 

The function %(k2) may be written 

I,(k2) = I(k2) - 1(-X2) (A. 10) 

Hence the renormalized propagator D -&k) of Gell--Mann and Low is 

I&&k) = l&,(k) - (e2/4s)(k2)-2 (k&, - gpv k2) W2) (A. 11) 

One can replace e2gP,(k2)-l by -e2 Dc,Jk) since the difference of these two 

expressions is of order e4 which is being neglected anyways. So one has, 
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neglecting order e4, 

DApv(k) = Z3h Dcpv (k) - (e2/4n) (k2)-2 k,k,I(-h2) (A. 12) 

where 

z3h = 1 - (e2/47r) I(-h2) (A. 13) 

The remaining kPkV term can be absorbed into a change of gauge of the conven- 

tionally renormalized propagator. If one adds -(e2/47r) (k2)-2kPky I(-h2) to the 

free propagator of the conventional theory, then the complete propagator of the 

conventional theory is D’ cpvw with 

D&p) = (k2F1 { - gpv - (e2/4n) gPV I(k2) + (e2/4r) k,k,(k2)-l [I(k’) - 1(-A2$} 
-(A. 14) 

and 

(A. 15) 

neglecting terms of order e4. 

Having to make a change of gauge when comparing the Gell-Mann-Low propa- 

gator with the conventional propagator is a nuisance. To simplify this problem, 

Gell-Mann and Low choose the gauge of the free propagator such that the exact 

propagator is in the Feynman gauge no matter which renormalization procedure 

is used. The Gell-Mann-Low prescription means that the exact propagator D cpv tk) 
to order e2 is 

DcpvW = tk2? { - gpv - (e2/4T2) gpv I(kz)} 

and the corresponding free propagator is 

(A. 16) 

(k2F1 { -gpv - (e2/4n2) (k2)-l kPkv I(k2)} 
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The propagator D A,/dk) is Z3ADcl.tv (k) and the corresponding free propagator is 

(k2P { -gpv - (e2/4r2) (k2)-l 

Gell-Mann and Low calculate all Feynman graphs using the exact propagator for 

internal lines instead of the free propagator. As a result it is of no importance 

in practice that the free propagator undergoes a gauge change when the renor- 

malization method is changed. Furthermore, to compute the exact propagator 

one computes only the g 
lJV 

term in vacuum polarization. In contrast, Bogoliubov 

and Shirkov do not allow the free propagator to depend on e2; instead they work 

mainly in the Landau gauge, or else make a change of gauge as the renormalization 

method is changed. Bogoliubov and Shirkov claim that the Gell-Mann-Low treat- 

ment is wrong; I see nothing wrong with it and will use the Gell-Mann-Low 

approach in the following. 

The subtraction momentum h can be chosen arbitrarily. However the renor- 

malized theory will have an apparently nontrivial dependence on A. Nevertheless, 

the physical consequences of the theory must be independent of h. The transfor- 

mations which connect the renormalized theories with different values of A are 

the renormalization group transformations. They are discussed in Section II. 

The above discussion should make clear the ideas involved in generalizing 

the usual renormalization procedure such that subtractions are made at a momen- 

tun h rather than on the photon or electron mass shell. 
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FIGURE CAPTIONS 

1. An example of a function $(O, x) which has a double root at x = 0 and single 

roots at x = x1, x2, and x3. 

2. Plot of the function F(x) assuming $(O, x) is the function shown in Fig. 1. The 

constant of integration c is also shown; c = f 1 if 0 c x < x1; c = f2 if x1 < x < x2; 

c=f3ifx2<x<x 3. The constants fl, f2, and f3 are chosen arbitrarily. 

3. Solutions of the zero mass renormalization group equations for ef plotted 

vs Qnh2. 

4. Solutions ef and efl of the finite mass renormalization group equation, with 

boundary conditions ei for ef and etl- x2 for h- -00. 
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