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1. INTRODUCTION 

As far as we know, quantum electrodynamics provides a 

mathematically exact description of the electromagnetic 

properties of the electron and muon. To the extent that the 

electromagnetic properties of the nucleus are known and 

hadronic contributions to vacuum polarization are under- 

stood, the theory also provides the fundamental dynamical 

theory of the relativistic atom, including its external 

electromagnetic interactions. 

I At present quantum electrodynamics has reached the 

extraordinary state where not even one of its crucial,tests 

indicates any serious discrepancy with its predictions. The 

key to the unraveling of previous conflicts of theory and 

experiment has been the independent determination of the 

fine structure constant CI, (via the ac,Josephson junction 

measurements for e/h) and recent advances in algebraic and 

numeric computational techniques for the calculation of 

higher order radiative corrections--especially fourth order 

contributions to the Lamb shift and sixth order contribu- 

tions to the anomalous magnetic moments of the electron and 

muon. In addition, recent measurements of the muon moment 

and the hyperfine splitting of muonium have now for the 

first time permitted a test of quantum electrodynamics free 

from complications of hadronic and weak interactions at a 

precision of 5 ppm. 
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In this talk I will review only the most recent and 

relevant developments in the precision tests of quantum 

electrodynamics-- those which have had a role in the resolu- 

tion of the most perplexing discrepancies between theory and 

experiment and those which seem to point the way to an 

understanding of the fundamental basis and possible limits 

of the theory. 

I Before beginning this review, however, we should note 

that the high energy- high momentum transfer experiments are 

now in essentially perfect agreement with the theoretical 

predictions. The most beautiful tests of this type are 

those from colliding beams: e+e-, e-e' elastic scattering 

and e+e' +2y, e+e- +p+p- annihilation, all of which are 

free from hadronic complications. The Born approximation 

structure of the theory--i.e. the validity of the Dirac 

current for the lepton and Maxwell's equations--has now been 

verified to small distances approaching 10 -15 cm. The 

experimentally obtained lower bounds [1] on possible high 

momentum transfer cut-offs for the various lepton and 

photon propagators are shown in figure 1. 
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Figure 1. Composite picture of high energy QED measurements. 

The lower bounds for A (in GeV) correspond to 95% 

confidence limits on possible modifications of 

the photon and lepton space-like and time-like 

propagators. A review and references to 

. 

individual experiments may be found in reference 



Although high momentum transfer tests are essential for 

detecting possible new interactions or deviations at short 

distances, they are in practice only sensitive to Born dia- 

grams, Tests of the high order corrections, including those 

involving renormalization effects require the very high pre- 

cision atomic hyperfine and fine structu:!-,e measurements and \, 

precise determinations of the electron and muon anomalous 

magnetic moments. As we shall see, the Lamb shift and 

hyperfine measurements are sensitive to the dynamical - 

effects of quantum electrodynamics through fourth order in 

perturbation theory, as well as relativistic recoil correc- 

tions which emerge from the covariant treatment of the 

hydrogen atom bound state. The measurements of the magnetic 

moment of the electron are on the threshold of checking 

quantum electrodynamics through sixth order in perturbation 

theory. Besides this, at the level of precision now possi- 

ble in studying the muon's g-2 value, one is able to probe 

the effect in an isolated electrodynamic system of very 

interesting hadronic and weak interaction contributions 

buried in the vacuum polarization; this leads to limits on 

the e'e- annihilation cross section into the entire spectrum 

of hadrons. In addition, statements about the polariza- 

bility of the proton structure itself can be inferred from 

the fantastically precise measurements of the ground state 

hyperfine splitting of hydrogen. 
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The validity of QED of course pertains to the validity 

of our understanding of all atomic physics, the analysis of 

the fundamental constants, and possibly the understanding of 

elementary particles. But perhaps the underlying goal of 

the precision tests is aesthetic: the hydrogen atom is the 

fundamental two-body system and perhaps the most important 

tool of physics; fifty-seven years after the Bohr theory-the 

challenge is still there to calculate its properties to the 

highest accuracy possible. 

2. PRECISION TESTS OF QUANTUM ELECTRODYNAMICS 

All of the precision tests of QED hinge on the value of 

the fine structure constant c1 = e2/4&c. Because of the 

precision measurements of e/h via the ac Josephson effect in 

superconductors and the massive'reanalysis of the data rele- 

vant to the determination of the fundamental constants by 

Parker, Taylor, and Langenberg [2], c1 can now be determined 

to better than 2 ppm precision from experiments totally 

independent of QED input. The least square adjusted result-- 

which has now almost been canonized--is [y] 

a-l = 137.03608(26) (l-9 PPm) (1) 

Thus finally the input constants necessary for comparing 

theory and experiment are known sufficiently to permit 

critical and unambiguous tests of theory. 
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2.1 The Anomalous Magnetic Moments 

The classic and basic test of quantum electrodynamics' 

is the anomalous magnetic moment of the electron 

ae = (g-2)/2. Thus far it has been one of the most stunning 

triumphs of theoretical analysis. 

Very recently Wesley and Rich ['cl have reported a \ 

determination of a e to a precision of 6 ppm: 

I a e_"p= 0.001 159 644(7). 
e (2) 

Although the new experiment is based on the same spin pre- 

kession method used by Wilkinson and Crane [5], the reasons 

for the large difference with the final result [6] 

a exp= 0.001 159 549(30) f e' or the older measurement is not 

understood. Promising new methods utilizing RF resonance 

techniques [7] or the change in flight time of ground state 

electrons in a magnetic field [8] have also been developed, 

although their precision is not yet comparable with the 

Wesley-Rich result. 

'1 The experiments can be idealized as a measurement of the 

static electron in isolation from other dynamics. [The 

contribution from hadronic vacuum polarization is smaller 

than even the muon contribution: 

‘ (c~~/457r')(m,~/m,~) N 10-l*.] 
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Theoretically, the electron's interaction with the 

external electromagnetic field is completely specified by 

quantum electrodynamics. In general, contributions of order 

a n to the anomalous moment are obtained in perturbation 

theory from Feynman diagrams for the free electron vertex 

containing n virtual photons, each diagram requiring up to '1 

3n-2 non-trivial parametric integrations. The diagrams c 

which have been computed thus far are shown in figure 2. 

The present theoretical prediction for the electron 

anomalous moment. is 

ath=-E 
e 2T -0.32848 a3 $+ [0.26(5) +0.13(est)17 . (3) 

The first two terms are the famous second and fourth order 

results obtained by Schwinger [g] and by Sommerfield [lo] 

and Petermann [ll]. The sixth order coefficient consists of 

(a) the contribution (0.055...) for fourth order vacuum 

polarization contributions to the sixth order moment calcu- 

lated analytically by Mignaco and Remiddi [12], (b) a con- 

tribution -0.154+0 .OOg for second order vacuum polarization 

insertions in the fourth order vertex recently evaluated 

numerically by Kinoshita and myself [IS], and (c) the con- 

tribution 0.36+0.04 from photon-photon scattering diagrams 

evaluated numerically by Aldins, Brodsky, Dufner and 

Kinoshita [lb]. 
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Electron Anomalous Magnetic Moment 

‘e = (g-2)/2= F2 (0) 

2 (Schwinger) 

/&+A+A+A+A Cl b C cl e 

a* 
-0.32848 ,2 (Peterman, Sommerfield) 

O.l3(est.) 

F 

a3 
0.39test.) -p- 

igure 2. Types of Feynman diagrams which contribute to 'tht 

anomalous magnetic moment of the electron, Only 

representative diagrams are shown for the s~.xfh 

order contributions, Mass, charge, and wave 

function renormalization counter terms are 

understood, 



The graphs which have not been explicitly evaluated are 

the sixth order vertices with no electron loop insertions 

[there are 28 distinct types of diagrams of this type]. The 

sixth order coefficient includes a dispersion theory esti- 
a3 

mate [l5,l6] 0.13 - 
7J3 

for these three photon radiative 

corrections. 

Although it does not eliminate the necessity for a Y 

full calculation of the sixth order moment the estimate of 
-. , 

Drell and Pagels [15] and Parsons [I61 strongly suggests 

that the final result for the non-electron loop graphs will 

be positive and numerically small. 

The new result obtained by Wesley and Rich (with 

a -1 = 137.03608(26) is 

a ,e_"p(W.R.) = & - 0.32848 5 + (0.5420.58) $ (4) 

which is very consistent with the present indicated sign 

and magnitude of the sixth order coefficient. 
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Further experiments and further development of the 

theoretical result2 will be required before we can be con- 

fident that QED is confirmed through sixth order in pertur- 

bution theory. The complete evaluation of the remaining 

graphs p though difficult, seems technically feasible with 

presently available algebraic and numerical computation \ 

techniques. I 

2 The exact calculation of sixth order radiative corrections 

to the lepton vertex is obviously a horrendous task. 

There are two central problems: (1) the reduction of 

matrix elements with three loop integrations to Feynman 

parametric form and (2) the multi-dimensional integration 

of the resulting integrand. In the photon-photon scatter- 

ing contribution calculation of reference [14] all the 

trace algebra and substitutions required to accomplish 

step (1) were performed automatically using an algebraic 

computation program written by Hearn [17]. The resulting 

T-dimensional integration was performed numerically using 

a program originally developed by G. Sheppey which on 

successive iterations improves the Riemann integration 

grid through a random variable sampling technique. 



The muon anomalous moment is also an extremely valuable 

test of precision quantum electrodynamics. As a result of 

recent calculations, the difference of muon and electron 

anomalous moments has now been completely calculated through 

sixth order in quantum electrodynamics. The difference 

arises from the perturbation theory diagrams for the muon 

vertex with internal electron loops as shown in figure 3. / 

The complete QED result [18] is 
I 

th- ath a2 a3 
aP e = 1.09426 ,2 + [20.3+'1.3] z 

= 616(l) x10-8 . 
(5) 

(QED) 

including the sixth order contributions from new analytic- 

numerical evaluations of second order vacuum polarization 

insertions [13,19]; fourth order vacuum polarization [20,21]; 

and photon-photon scattering contributions [lb] due to the 
a3 

electron current. This result differs by [-O.g+O.3] 7T3 from 

previous compilations [1,2] which did not include the 

complete non-logarithmic remainder of the second order 

vacuum polarization contributions. In addition, hadronic 

vacuum polarization calculated from the Orsay data for 

electron-positron annihilation in the p, 0, and C$ regions 

gives the contribution [22] 

Aath(hadronic) = 6.5(s) x10m8 . 
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Proper a2 V.P lmprpper a2 V.P Order a V.F? Pkoton - Photon 

1.45 2.82 -2.42kO.20 E8.4rt I.1 
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[ 20.3 zk 1.3 I 
a3 --<- Tr 

Hadronic (p, w,+ 1 

(6.5k0.5) x 16' 

Weak 

3 

Figure 3e The distinct types of Feynman diagrams which 

contribute to the difference of muon and electron 

anomalous moments. The contri.hutions of muon 

and hadronic vacuum insertions to the electron 

vertex are negligible. 



The result of the CERN measurement [23] for the anoma- 

lous moment of the muon is 

aexP = 
w 

0.001 166 16(3l) . (7) 

If we combine this with the Wesley-Rich result for aeexp,we 

can check the theoretical result for the difference of muon 

and electron moments directly: 

aexP- aexP = -8 
I-1 e 652(32) x10 (8) 

(9) 

I The theoretical uncertainty does not take into account, 

further (positive) contributions from hadronic vacuum 

polarization beyond the @ resonance region or possible weak 

interaction contributions which may be of order 1x10 
-8 . 

Nevertheless the one standard deviation agreement between 

theory and experiment is a remarkable success for the appli- 

cation of QED to the muon. Even at the present precision 

this agreement gives an interesting bound on the electron- 

positron annihilation cross section integrated over the 

entire hadronic spectrum [14]. Photon propagator cutoffs or 

negative metric photon [24] mass less than 5 GeV are ruled 

out to 90% confidence. 
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2.2 The Lamb Shift and Fine Structure of Hydrogenic Atoms 

The historic tests of quantum electrodynamics have been 

the energy levels of the hydrogen atom [see figure-41. More 

recently the testing ground has been extended to other 

hydrogenic atoms and especially positronium and muonium for 

which the complications of hadron dynamics are remote, The 

dynamics of these atoms are completely specified by the 

interaction density of QED, HI = eTy,qA' plus the Maxwell 

and Dirac equations as expressed in perturbation theory in 

the form of the Feynman rules. The theoretical setting for 

the exact covariant treatment for the bound states of the 

hydrogenic atom is the Bethe-Salpeter equation [25]. If the 

atomic level experiments are idealized as photoabsorption 

measurements then as shown by Low [26] the line centers of 

the absorption spectra are determined by the eigenvalues 

of the full Bethe-Salpeter equation to at least order a 3 . 

. 
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The typical potential terms (irreducible kernels) which 

must be considered for the hydrogen atom are shown in figure 

5* Of course the spectrum of the Bethe-Salpeter equation 

has not been solved exactly [28] and one must make recourse 

to the available. small parameters. In particular, in the 

limit me/mp+O, Rp/ao+O, a+0 (i.e. the neglect of 

recoil, the proton finite charge distribution, and radiative ' 

corrections) one recovers the Dirac equation for an electron 

in a Coulomb field, with the famous Dirac-Sommerfeld 

degeneracy of the Sl,2 and Pli2 levels. This degeneracy, 

however, is rather delicate and is removed by any modifica- 

tion of the Coulomb interaction. In particular, the s-state 

binding is strengthened by vacuum polarization and weakened 

by the proton finite size, by non-reduced mass recoil correc- 

tions and, most important, by the QED modification of the 

electron's charge and magnetic interactions with the proton. 

Over the years there has been considerable technical 

progress extending Bethe's historic calculation [29] of the 

contribution to Lamb interval ( 2S1,2-2Pl,2) [from the one 

photon self-energy correction to the elect!ron] to include 

terms from order a(Za)llmlog(Za) up to order a(Za)6m. [30] 

Also in the past two years Grotch and Yennie [31] have 

developed a very convenient effective potential method to 

handle the me/mp corrections and have verified the previous 

5 2 calculations [32] of order (Za) me/mp and (Za) 5 log(Za)mE/mp. 
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Bethe-Salpeter Equation 

(PI, - me) tip -mp) X= GX 

G= Gly + 

e 

GCROSSED + GVAC. POL. + GSELF ENERGY * GNUC-POL + ‘.’ 

e 

P x 

GC OULOMB + GTRANSVERSE 

i=l, 2 

GC OULOMB - Schrijdinger equation, proton finite size correction 

+ GTRANS - reduced mass corrections, HFS splittings 

(all) 
+ GCROSSED - Dirac equation, relativistic reduced mass correction 

+ GVAC-POL + GSELF ENERGY - Lamb shift, radiative corrections to HFS 

+ GNUC -POL - correction to HFS 

Expansion Parameters: a, Za, meiMp , R /a P 0 

Figure 5. Exact calculation of the hydrogen spectrum. The typical kernels required for 

calculation of the energy levels of the H-atom to the present precision are shown. 

The one photon exchange contribution can be separated into Coulomb and trans- 

verse parts in the CM frame. The effects of strong interactions are summarized 

by form factors in G 
1-Y 

plus nuclear polarization contributions as indicated in 

GNUC POL. The main effects of adding the higher order kernels are listed 

below the diagrams. The available small expansion parameters are also given. 

(From reference [27]). 



. 

At the CO.1 MHz precision level of the experiments, one 

is also sensitive to the two-photon (fourth order) QED 

correction. Recently Appelquist and myself [33], using 

algebraic and numeric computation techniques similar to 

those used for the higher order corrections to the anomalous 

magnetic moments [ 141, have obtained a new result for the 

fourth order contribution to the slope of the Dirac form / 

factor of the electron--i.e. the order a2 contribution to 

the effective mean square radius of the electron Dirac 

current distribution. The new result differs from the 

previous calculation [34] due to a change in overall sign 

and net numerical differences in the contribution of the 

non-logarithmic remainder of two of the five distinct 

Feynman diagram contributions. The largest numerical 

discrepancy was due to the results for the fourth order 

"corner" diagram [the fourth diagram in the second line of 

figure 21 to the free electron vertex. Our numerical 

result for this contribution has very recently been con- 

firmed by de Rafael, Lautrup, and Peterman [35] at CERN 

and also by Barbieri, Mignaco, and Remiddi [36] who have 

obtained a completely analytic result for the crucial 

corner diagram. 



The new results increase the nS 
112 -npl/2 separation in 

hydrogenic atoms by 0.35(7) MHzx[Z~(~/~)~] (30 conf.) over 

previous compilations [30,2]. A tabulation of the theoreti- 

cal contributions for the Lamb interval in hydrogen is given 

in table 1. 

A comparison with the most precise Lamb shift measure- 

ments is presented in figure 6 and table 2. I have rather / 

arbitrarily taken *l/2 of the limit of error (L.E.) to indi- 

cate the uncertainty in the theory. The recent measurements 

of the large interval nP 3/2-nsi/2 are also included in the 

comparison with theory, utilizing the theoretical formula 

for the nP3j2-nPl,2 fine structure separation and 
-1 a = 137.03608(26). 

The comparison of theory with experiment now shows 

quite satisfactory agreement because of the recent modifi- 

cation of the theoretical result for dFl/dq2 in fourth 

order. The remaining inconsistencies appear more as contra- 

dictions between the various experiments than with theory. 

2.2 The Hyperfine Structure of Hydrogenic Atoms 

Very exciting recent experimental developments have now 

made the hyperfine splitting in muonium (p'e-) the most 

precise test of quantum electrodynamics. 
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THE LAMB SHIFT IN HYDROGENIC ATOMS (in MHz) 

Sex& rh 14 
Theory 

1 5L.E.) 

I (n=2) 1057.91'0.16 

Triebwasser, Dayhoff, Lamb (a) 1057.77"0.06 

Robiscoe (b) lo57.goko.06 

Kaufman, Lea, Leventhal, Lamb (c) (1057.65'0.05) 

I tAE-S) exp =ggll.38 +0.03] 

Shyn, Williams, Robiscoe, Rebane (d) (1057.78+0.07) 

[P-S) ,,, =gg11.25 +o.o6] . 

Cosens and Vorburger (e) 

[CAE-S) exp =gg11.17 t-o.041 

D (n=2) ,1059.17+0.22 

Triebwasser, Dayhoff, Lamb (f) lo5g.oo+o.o6 

Cosens (g) 1059.28'0.06 

He+(n = 2) 14044.5i5.2 

Lipworth, Novick (h) 14040.2+1.8 

Narasimham, Strombotne (i) 14045.1'1.7 

He+(n =3) 4184.421.5 

Mader, Leventhal (j) 4182.4k1.0 

Mader, Leventhal (j) (4184.oj:o.6) 
[AE-S=47843.8 +0.5] d 

He+(n= 4) 1769.0-t-0.6 

Hatfield, Hughes (k) 1776.057.5 

Jacobs, Lea, Lamb (1) 1768.Ok5.0 . 

Jacobs, Lea, Lamb (1) 
[h~-S=201~9.7 51.21 

(176g.4k1.2) 

Exp-Th 
{ &la) 

-0.14+0.08 

-0.01+0.08 

-0.26+0.07 

-0.13+o.og 

-0.05+0.08 

-0.17+0.03 

+0.11+o.og 

-4.3 +2..5 

0.6 52.4 

-2.0 +1.1 

-0.4 +0.8 

-3.0 57.5 

-1.0 55.0 

0.4 +1.3 

Li++(n==2) 

Fan, Garcia-Flunoz, Sellin (m) 

62771.0+50.0 

6303l.ot327.0 260.0 q33.0 

Table 2. Comparison of Lamb shift experiments and theory. 

(From reference (331). 
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Telegdi's group at the University of Chicago [37] has 

now reported the first direct measurement of the muon moment 

using the double-resonance method. Two ground state Zeeman 

transitions of muonium vl(F=l, m =l e F=l, m=O) and 

v2(F=l, m=-1 f;3 F=O, m=O) are measured at a field B. 

where the frequencies are to first order field independent: 

8vl/aB = aV2/aB = 0. The ratio of sum to difference of the 

frequencies determines the muon moment pll in units of the 

electron's magnetic moment in the atom. The results corre- 

spond to a determination of the muon moment to proton moment 

ratio: 

@P = 3.183337(14) 9 (10) 

A comparison of the muonium hfs measurement with theory is 

thus finally free of questions of possible chemical shifts 

in previous determinations of the ratio for muons stopped 

in water. Using their own best result for v hfs we [38I, the 

Chica,go group obtains the value 
-1 a = 137.03568(33) [2.5 ppm] ( 11) 

which is in good agreement with the non-QED determination 

of Taylor et al. [2]: a -1 = 137.03602(26) [l.g ppm]. 

The paradoxical fact, however, is that the chemical 

shift discussed by Ruderman [39] (whereby muons in the 

intermolecular space experience ~15 ppm less diamagnetic 

shielding than the H20-bound protons) and which was of 

great concern in interpreting the I*;/p;) measurements in 

water is actually-not applicable. 
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In a recent work, a group from the University of Wash- 

ington and LRL [40] has measured the $,/CL;) ratio in various 

chemical environments to the extraordinary precision of 2.5 

PPm* As in earlier measurements [41] the proton resonance 

LuP 
frequency and the muon (decay asymmetry) precession 

frequency u)~ of stopped polarized positive muons are 

measured in the same magnetic field. The direct results 

are [42] 

i-$/P;) =Lu/uz = 
3.183350(8) H20 

v P 3.183355(8) NaOH solution. 
( 12) 

If the Ruderman model for magnetic shielding were applica- 

ble, then the muon frequency in the NaOH solution would be 

expected to be -15 ppm lower than in H20--since the posi- 

tive muon would rapidly combine with the NaOH and suffer 

about the same shielding as a proton. In fact it is 1.6 

ppm higher. The correct picture, as discussed by the Univ. 

of Washington/LRL group [4O], seems to be that the slowed 

muons are first neutralized by capturing an electron. The 

"hot" muonium atom is then combined into neutral molecules 

with the substitution of the muon for a groton. The shield- 

ing of the muon in this situation is then very similar 

(within -2 ppm) as the proton. In this new picture, the 

muon is rarely found in the intermolecular weak shielding 

region. 
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The final corrected value for the muon/proton moment 

ratio from the Univ. of Washington measurements is 

++P = 3.189+7(g) (2.8 PP~) (13) 

in excellent agreement with the Chicago group's result. 

If we use this value and a 
-1 = 137.03608(26), then the 

predicted value for the muonium hyperfine splitting is [1,31, 
\ 

431 
th 

'v-e = 4463.28g( 19) MHZ E4.3 ppml . (14) 

This is very close to the weighted average of the two most 

recent results 
vexP 
Pe = 4463.317(21) MHZ (Chicago) ( 15) 

,exp 
IJJ-e = 4463.249(31) MHZ (Yale) . ( 16) 

Thus p/e universality and quantum electrodynamics, free 

from hadronic effects, is now being tested at close to the 

5 ppm level. The nuclear recoil corrections [44] 

6 3a me log m = % m-e 
IJ-= ""L- 

-179.7 PPm 
e 

which emerge from the Bethe-Salpeter covariant formalism are 

being checked to -3% accuracy. The radiative corrections 

have been evaluated up to the 1 ppm level\r[43]. Finally we 

note that the new measurements [4O] determine the muon to 

electron mass ratio to 3 ppm: 

mp'me = 206.7683(6) l 
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The theory of the hyperfine splitting of the ground 

state of atomic hydrogen is also in a state of quite satis- 

factory agreement [1,31,43]: 
exp 

VH - vkh 
vexp = 

PO1 2.5k4.0 ppm - $ . 
H 

The results are consistent with a small proton polarization \ 

correction [45]. 

! The theory of the positronium ground state splitting 

has now been extended to terms of order cx mloga -' by a 6 

remarkable calculation of Fulton, Owen, and Repko [46]: 

vth 7 
e+e- = a2 RY& - $9 c1 16+ log 2)+ 3/4 c&g a-i o( a2) J 

6 ( 19) 
= 2.034i5x105 MHz + O(cc m) 

using a -1 = 137.03608( 26). The most recent experimental 

value [47] is 

vexP 
e+e’ = 2.03403(12) x105 MHz [50 PPd * (20) 

A calculation of the terms of order ao will be necessary 

for comparison with new experiments in progress at Yale 

which should attain a precision of 10 ppm [48]. 
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3. IMPLICATIONS FOR FUNDAMENTAL PHYSICS 

Quantum electrodynamics has never been more successful 

in its confrontation with experiment than it is now. This 

becomes especially apparent when one compares the values of 

a which can be derived to 5 ppm or better from the QED tests 

with its canonical non-QED value [see figure 7 and table 31. 

In addition to the values derived from the muonium and 

hydrogen hfs (assuming dp = 0*5 ppm), cr can be determined to 

high precision from the various level crossing measurements 

of the hydrogen fine structure‘separation [49]. Further 

work, both experimental and theoretical for the muonium hfs 

[5O], positronium hfs, the fine structure of atomic helium 

[5112 and the anomalous moment of the electron can con- 

ceivably produce values for the fine structure to a pre- 

cision of 1 ppm. It is also possible that further high 

energy spin-analyzed electron-proton elastic and inelastic 

scattering data will eventually lead to an unambiguous 

determination of the nuclear polarization contribution to 

the hydrogen hyperfine splitting [52]. Measurements of the 

hyperfine splitting or Lamb interval in muonic-hydrogen 

(p--p) would be of incredible interest for solving these 

hadronic problems [53]. 
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I - I pe - hfs + pp (Chicago) 

I I H-hfs (8,, = Of 5 ppm) 

I m I AE,= vc 

AE,= SRW 
t 

a 
I A E, (BMBG) 

I I U-f-) 
I I (FDL) 

Non-QED Adjusted Value 
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Figure 7. Recent determinations of the fine structure constant. The value for Q! obtained 

using the high precision “atomic bottle” measurement [54] of the 2P 
3/2 -2p1/2 

interval depends critically on the value taken for the Lamb interval and is not 

included here. (See reference [2]). 



r ---- 

Determination of w -1 

TPL Final Recommended Value (1969) 

TPL WQED Least Square Value (1969) 

FDL WQED Least Square Value (1970) 

H-hfs (dp = 0 +5 ppm, 1969) 

pp + p-e hfs (Chicago, 1970) 

AILS. (BMBG, 1970) 

H-fs 12 R + (AE-3 )swR, 19701 

H-fs [$R -t (Ah&, WW 

137.03602(21) 

137.03608(26) 

137.03610(22) 

137 l 0359q 35) 
137.03568(33) 

137*0354(7) 

137.0356(7) 

137.0358(5) 

1.5 ppm 

1.9 PPm 

1.6 ppm 

2.6 ppm 

2.5 PP~ 

5 PPm 

5 PPm 

4 PPm 

Table 3. Recent determinations of the fine structure con- 

stant. The value for 0: obtained using the high 

precision "atomic bottle"' measurement [A] of the _/ -- 

2p3/2-2p1/2 interval depends critically on the 

value taken for the Lamb interval and is not 

included here. (See reference [2]). 
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A further essential element of our understanding of the 

hydrogen atom concerns its interaction with external fields. 

The general theory of the electromagnetic interaction of 

relativistic weakly-bound composite systems is given within 

the Bethe-Salpeter formalism [55,56]. Of greatest current 

interest is the general reliability of the Zeeman theory 

[56] (which is now required to 1 ppm accuracy) and the 

specific question of finite nuclear mass, radiative, and 

binding corrections to the electron's gJ value. 

The basic formulae for these problems were given by 

Lamb in his famous papers [57]. More recently Grotch [58] 

and Hegstrom [59] have computed higher order corrections to 

the electron's gJ value. The dependence on nuclear mass is 

reflected in the ratio of gJ values for atomic hydrogen and 

deuterium. The prediction is 

g(H)/g(D) = [l+;(Zo)2me +1+; (Zd$l 

= 1 + 7.3 x10-g [581 ( 21) 

compared to the measured values: 

3-3 t 

l+(g.4?r1.4)xlo-g 
H = CL arsen, Valberg, Ramsey [60]) 

i3D 1+(7.2+3.0)x10-g 
(Robinson and Hughes [6l]) 

(221 

The radiative-binding corrections of order a(Za)2 to the gJ 

value can be tested by measuring the ratio in H to He +.[581 
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Quantum electrodynamics is the main link between the 

physics of the atom and elementary particle physics. In 

atomic physics it is the fundamental theory and the basis 

of all calculations. In particle physics and field thesy 

it serves as the model and guide to the weak and strong 

interactions [62]. Despite its successes and despite the 

essential simplicity of its equations, it is clear that we 

are still uncomfortable with the theory as it is. For one 

thing, it is difficult to accept the infinite renormaliza- 

tion procedure as an essential part of a physical theory. 3 

Ingenious extensions of the theory, especially the intro- 

duction by Lee and Wick of negative metric photons and 

leptons [24], and the possible non-polynomial modifications 

due to gravitational effects, as proposed by Salam and 

Strathdee [64], can lead to finite physical theories. 

3 The infinities may, of course, only be symptomatic of an 

incorrect or asymptotic expansion. A convergent expansion . 
in cr. may take a Pade'form, for example [63]. On the other 

hand,in some mathematical field theory models studied by 

Jaffe and Glimm [64] the renormalization constants are 

infinite with or without a perturbation expansion. The 

best experimental clue we have to the possibilities of an 

asymptotic expansion is the test at sixth order of the 

electron anomalous moment. 
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As we discussed above, the comparison of the muon 

anomalous moment with conventional theory already rules out 

(to 90% conf.) negative metric photons with mass less than 

5 GeV. The gravitational modifications of the theory seem 

to have no direct tests, but are interesting because the 

electromagnetic self-mass of the electron can, in principle, 

be calculated from the gravitational constant in such an 

approach. 

From a second point of view, it is frustrating to have 

a theory which-- as far as we know--provides an exact mathe- 

matical description of the physical world and yet tells us 

nothing about so many fundamental questions, especially the 

origin of charge quantization [66], the numerical value of 

a, and the problems understanding the existence of the muon 

and the symmetry of its interactions with those of the 

electron. 
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Despite these fundamental problems, the successes of 

quantum electrodynamics are phenomenal. Perhaps the most 

dramatic evidence of its validity is the electron's g-factor. 

Considering that there $s no a priori reason for the bare 

lepton to have a Dirac moment (g = 2), theory and experi- 

ment for g = 2(1+ae) can be said to agree to nine 

significant figures. 

The calculation of the entire sixth order contribution 

to the anomalous moment will almost certainly be completed 

within a few years-- probably to within a numerical precision 

of +o 1 c&L . The necessity for measurement of ae to a com- 

parable precision will then be critical. The electron 

anomalous moment is perhaps the most precious and unique 

precision test of quantum electrodynamics; it is the only 

way we have to check the theory--and the correctness of the 

Taylor expansion in powers in a--through sixth order in 

perturbation theory. 

In order to carry out this program, the value of a 

will be required to a precision near ItO. ppm. Thus the 

first order of business is to push the fuidamental constants 

and precision tests as hard as possible, especially measure- 

ments of the muonium hfs, the hydrogen fs, and even the 

helium fs and positronium hfs. 
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An additional dividend of a muonium hfs measurement at 

this precision will be the determination of the proton 

polarization in the H hfs to -1 ppm; this could well be of 

fundamental importance &I hadron physics [45]. Additionally, 

it should be emphasized that a high precision determination 

of the difference of muon and electronanomalous moments will yield 

invaluable information on the total contribution of the 

hadronic current to the vacuum polarization as well as a 

limit on the magnitude of the weak interaction correction 

to the electromagnetic current of the muon. 

Although the comparison of theory with the Lamb shift 

measurements now shows satisfactory agreement, it is clear 

that further work is needed to improve the precision of the 

experiments and theory. Measurements in medium and high Z 

hydrogenic atoms could be of great value in checking out the 

various components and Z-dependence of the total theoretical 

result. 
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b. 

C. 

d. 

1 e. 

f. 

g* 

h. 
. 1. 

References for table 2 
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Phys. Rev. &, 98 (1953). 
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559 (1970); R. Robiscoe, Phys. Rev. , 4 (1968). 

S. L. Kaufman, W. E. Lamb, Jr., K, R. Lea, and M. 

Leventhal, Phys. Rev. Letters 22, 507 (1969). 

T. W. Shyn, W. L. Williams, R. T. Robiscoe, and T. 

Rebane, Phys. Rev. Letters 22, 1273 (1969). 
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M. A. Narasimham and R. L. Strombotne (submitted to 

International Conference on Precision Measurement and 

Fundamental Constants, National Bureau of Standards, 

Gaithersburg, Maryland, 1970). 

D. Mader and M. Leventhal, International Conf. on 

Atomic Physics, New York University (1968). 
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