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ABSTRACT 

We study high energy elastic and inelastic processes in a G3 theory based 

on the s-channel iterations of t-channel ladder diagrams. The main results are: 

(a) The total cross section goes to zero, a constant, or N @?n s)’ for the coupling 

constant being smaller than, equal to, or larger than a critical value. P) In- 

elastic differential cross sections are computed 

explicitly verified. (c) One particle spectrum, 

etc., are presented. The implications of these 

discussed. 

and the s-channel unitarity is 

mu1 tiplicity, number distribution, 

results to hadron physics are 
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Because of lack of a better alternative to the conventional perturbation ex- 

pansion, quantum field theory has not been proved to be useful in the analysis of 

high energy behavior of elastic and inelastic scatterings in strong interactions. 

As the recently developed infinite momentum technique permits one to handle the 

leading high energy behavior of a very wide class of Feynman diagrams 1,2,3,4 , it 

may be hoped that study of certain field theory models will at least reveal some 

general qualitative features concerning the questions mentioned above. Much 

work along this line has been done by many authors. 3,4,5 On the basis of their 

results of high order calculations of the elastic scattering amplitude in massive 

quantum electrodynamics (QED)3, Cheng and Wu recently made a number of pre- 

dictions on elastic scattering amplitude, differential and integrated elastic cross 

section, and total cross section for hadron-hadron scattering at infinite energy. 

One may hope that a simple model with G3 coupling will also give the same quali- 

tative predictions as QED and, furthermore, the simplicity of the model allows 

one to draw more physical consequences. 

In this Letter we report some predictions of the simple model with a 6” 

coupling for elastic and inelastic hadron scattering at very high energies. 

Our model is defined as follows. For the elastic scattering amplitude we 

first summed the leading terms in each order of perturbation of the t-channel 

straight ladders plus those obtained by interchange of the Mandelstam variables 

s and u. We then perform the s-channel iteration with the t-channel ladders as 

single units, again we pick up only the leading terms. This procedure leads to 

the eikonalization of the t-channel ladders. 394 For the inelastic production 

amplitude we find that the dominant contribution comes from diagrams with any 

number of totally open ladders modified by unopen ones. The diagrams contri- 

buting to the elastic and inelastic scattering amplitudes are shown in Fig. 1 and 

2, respectively. The main-results of our calculations are the following: 
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(a) The total cross section has completely different high energy behavior 

for the weak coupling, the critical coupling, and the strong coupling case according 
2 

to whether g 
16 7r2p2 

-2 is less than, equal to, or greater than zero. (The coupling 

constant g is defined by LZ’I = f g$3.) In the first case, the Born term dominates 

at large energy, and the cross section goes to zero as s - 00. In the second case, 

the total cross section approaches a constant. In the third case, however, the 

total cross section increases like (!n s)~ at large s, i. e. it saturates the Froissart 

bound. Since the first case is rather trivial, we shall not discuss it in detail. 

(b) The total, elastic and inelastic cross sections aT, cE and aI are the 

same as those obtained from an s-dependent absorption model: 

*T = 
2 jd2b 1 - evAtsFG 1 , 

aE = 
d2b 1 _ e-W3312 , uI = j d2b[& e- 2A(s,% , 

0) 

(2) 

withF being the impact parameter and A(s,c) an opaqueness given later. At 

large energy, and for strong coupling case, these cross sections reduce to 

2 
aE I 

=* = +J 
T = nb m’ 

where b 
Wax) 

is found to be proportional to !.n s. These results agree with those 

in QED. 3 For the critical case, only single ladder contributes at s = ~0. It leads 

to a constant crT and cE 0~ l/Qn s. 

(c) The inelastic processes are those shown in Fig. 2. From the dif- 

ferential inelastic cross sections for multiparticle states, we can compute the 

one-particle spectrum, number and energy distributions, etc. The one particle 

spectrum for a detected particle with 4-momentum (k’,i?) is given by 
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’ (ii&?-d &?+lj/d2q 1 da =$s d3k (4) 

(2~)~ (~2+~2)2[~+<)2+p2]2 (2n)32k0 ’ 

The s-dependent factor drops out for the critical case. The one particle spectrum 

leads to a dx/x distribution in the longitudinal momentum, and an s-independent 

transverse momentu-m distribution. 

(d) The number distribution function P(n) for the strong coupling inelastic 

processes is a superposition of Poisson distribution in the impact space: 

2 -1 
P(n) = F-b,) 

d2b .-B(s,x) B(s,K)~ 
n! ’ W 

where B(s,T) is related simply to the opaqueness A(s,r), and has the same size 

b m’ Eq. (5a) has a longer tail at large n than a single Poisson distribution. 

For critical coupling, the number distribution is simply a Poisson 

P(n) = (2Qns)n/ (s2n!) . (5b) 

We shall only outline briefly our calculation. The details of the calculations 

will be published elsewhere. First, the sum of leading Ins terms in a t-channel 

ladder is well known. It leads to a structure of a Regge pole:6 

2 TL = -ing [“I?)+11 saF2) , 

crF2)+lE g 
1 

2 
dq 1 

(27r)2[(~++?;)2+1*2] [(q-+s)2+p2] ’ 

(6) 

(7) 

where -if is the momentum transfer with components- only in the (1,2) plane. The 

s-channel iteration of these ladders gives the standard eikonal form 

T(s,k2) = -i2s d2b .-iT.c 
C 
l- ,-A(s,%j 1 (8) 

where A(s,r) in our model is given by 
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2 
A(s,F) = && (9) 

The lVpotential!t given by (9) is purely imaginary. Thus our model is purely ab- 

sorptive and the elastic amplitude is dominated by its imaginary part. Equations 

(1) and (2) then follow from (8). As s - 00, A(s ,r) behaves asymptotically like 
sww 

Qn s 
e-c onst. F2/!In s 2 

. For a(O)-1 = % -2 < 0, A(s,F) vanishes at large s, 
16n /J 2 

so does the forward scattering amplitude. However, when +-2 > 0, A(s,r) 
167r ,U 

acquires an increasing s-dependence. Hence, the strength of the absorptive 

potential increases as power of s. According to the original argument of Frois- 
7 

sart, the effective range for such a potential should increase as Qn s. In our 

model, the range bm is 

b2 = g2 m 24~~~~ 

g2 near - = 2, and to a somewhat different coefficient for (Q~s)~ for large g2. 
167r2p2 _ 

Since A(s,E) varies rapidly at large s from - 03 to zero as we increase b = 1s I 

passing through bm, we have e -A(s,$’ = 0 (b - bm) from which Eq, (3) follows. 

If a(O) = 1, A is small and l-e -A M A. Hence aT is constant and aE CC l/Ins. 

We now turn to the more interesting case of production processes. First 

of all, we find that the dominant production mechanism is given by the diagrams 

shown in Fig. 2. Namely, given the elastic amplitude corresponding to Fig. 1, 

the final states produced by the unitarity cut are those obtained by cutting through 

every rung of any number of the ladders, as in Fig. 2a. This can be easily under- 

stood since the momenta of the lines connecting the rungs are space-like and 

therefore these lines cannot be realized as final particles. The lines at the far 

right and far left carry the large longitudinal momentum * P supplied by the two 

initial particles, while the other lines associated with each ladder have only very 

small fraction of the longitudinal momentum P. 
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The amplitude for an inelastic process can be written down straightforwardly 

in the impact parameter representation. The inclusion of unsplit ladders leads 

to a factor e -A(s,i$ , just as in the elastic scattering. The amplitude can be 

written as 

-i<.ce-A(s,E) p[ 

(all open 
ladders) 

To obtain the contribution to the inelastic cross section, we square the 

matrix element (11) multiplied by the overall energy momentum conserving delta 

function and integrate over the phase space. The two halves of each open ladder 

rejoin together to give simple results. In this way we obtain the partial cross 

section for N ladders open by the unitarity cut to be 

I 
d2b e-W,33 2A(s EgN , (12) 

which sums up to the total inelastic cross section in (2). The attenuation factor 

e -A(s,s) in (11) ensures that inelastic contributions are always finite and consistent 

with Froissart bound. If we calculate the cross section for a particular channel 

of n soft particle emission, then we get the particle number distributions P(n) 

as given by (5) as s - 03. 

If we leave the momentum of one soft particle unintegrated in calculating 

9’ we obtain the one particle spectrum 

gf p(O)-1 do = 4 d2 q 1 d3k 
(27r)2 z2+,u2)2 [F+; )2+.p2]2 (27r)32k0 ’ 

From (13) or (5b) we obtain an average multiplicity m !&I s for critical coupling. 

For strong coupling the multiplicity is 

(13) 

< n> =&s a(O)-1 
(14) 
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2 
with c a constant and a(O) = %- 1. This result has a serious defect. As the 

167r /J 
coupling becomes very strong, the multiplicity may increase faster than the 

ultimate limit 6 allowed by energy conservation. The inconsistency can be 

traced back to the inadequacy of our approximation which neglects the energies 

of the soft particles in energy conservation condition. The @s)~ factors which 

eventually exponentiate to a power of s come from the longitudinal phase space 

integrals 

2 / 
Js dk ,, 

- 25 Qns. 
k” 

(15) 
0 

The upper limit is only an order of magnitude estimate. A more reasonable 

cutoff is to assume that the upper limit is most probably given by the average 

energy shared by each particle s/c n> . If < n > grows as a power of s, the 

correction becomes significant. To correct this error, we propose a self- 

consistent physical procedure. Let us assume that, within insignificant 

logarithmic correction 

<n> cc s a 
06) 

where a is a parameter to be determined. This procedure will affect our previous 

results by the substitution 

Qns - (l-2a)Qns (17) 

in the elastic and inelastic amplitudes. The same cutoff is to be applied to every 

particle, virtual or real, so that general principles as unitarity can be maintained. 

Equation (14) is modified to 

< n> C a(O) (I-2a)- (1+2a) _ c a 
C =&Es -liGP 

as we demand that this expression be consistent with the original assumption (16). 

This gives 
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a = (g2/16r2p2) -2 @(O) - 1 
(g2,f3T2p2) + 1 = 2a(o)+3 ’ 

(19) 

As g2+ 03, a approaches the limit 4, no longer in conflict with energy conservation. 

In the following we further discuss the results obtained above. Our proposed 

cutoff procedure has the interesting consequence that the total cross section can- 

not grow indefinitely with increasing coupling constant. It approaches a limit 

UT (g2 - “) 73 g 3 (Qns)2. An increasing multiplicity such as (l8) is not incon- 
l-J 

sistent with experimental data available. Equation (4) shows a dx/x distribution for 

the longitudinal momentum of an emitted soft particle. Feynman’s scaling hypo- 

thesis8 for one particle spectrum is satisfied for critical coupling, but is violated 

for strong coupling by the presence of the factor sa. The violation will be weak if 

a is small as suggested by a slowly increasing multiplicity observed empirically. 

The possibility of a weak s-dependence in the one particle spectrum should be 

looked for experimentally. 

However, the transverse momentum spectrum predicted by (4) is in contra- 

diction with available data which all indicate a Gaussian or exponential fall off 

for the transverse momenta. This slow fall off for the transverse momentum is 

due to the lack of long chain correlation and the point-like vertices in this .model. 

In conclusion, we make the following remarks: 

(1) The direct verification of unitarity as expressed by nE + c 
(inelastic) 

u?) 

=O- T is an important consistency check for the treatments of elastic and inelastic 

scatterings. Since a large fraction of the total events in high energy hadron 

scatterings is inelastic, a theoretical handling of these inelastic states consistent 

with that for elastic ones is desirable. Our treatment here perhaps is a mean- 

ingful beginning for such a theoretical development. 
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(2) Our results in terms of a single impact parameter representation very 

likely is due to our neglect of fragmentation processes.’ In a more general, 

though not necessarily perfect, approach we may picture that both the colliding 

particles first dissociate into fragments and the fragments from the target scatter 

with those from the projectile. Our present calculation presumably applies only 

to the individual scatterings between the fragments. 

(3) The multiplicity difficulty encountered in this study is a warning to the 

danger hidden in this approach of summing leading terms. This is particularly 

so as the inconsistency cannot be easily detected in the gross results such as the 

elastic amplitude, elastic and total cross sections. 
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FIGURE CAPTIONS 

Fig. 1 (a) t-channel ladders. (b) Example of s-channel iteration of t-channel 

ladders in (a), permutation among the legs of all ladders is understood. 

Fig. 2 (a) Example of unitarity diagrams for a general production process 

in which two ladders are opened. The solid lines cut by the dashed 

line correspond to the real final particles. On each side of the dashed 

line, permutation among the legs of open and unopen ladders is under- 

stood. (b) Kinematics of an open ladder in detail. 
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