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ABSTRACT 

We study the use of dispersion relations;modified to violate causality, 

as a tool to limit a fundamental acausal length. We find that unless the usual 

dispersion relations are found to be violated, acausal dispersion relations give 

no new information. This means that the only presently believable limit on an 

acausal length is given by dimensional analysis; since dispersion relations have 

been tested to incident energies of - 20 BeV, any fundamental acausal length 

is probably less than lit/20 BeV M 10-15cm. 
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I. INTRODUCTION 

The principle of microcausality, that fields commute at spacelike 

separations, enters crucially into the proofs of dispersion relations 1 . The 

strongest evidence for the validity of microcausality lies in the agreement of 

the forward pion-nucleon dispersion relations with experiment2. However, to 

understand exactly to what degree microcausality is valid, it is necessary to 

explore the consequences of acausal models. Ideally one would like to show 

that these models make predictions, which may be in the form of modified dis- 

persion relations, that disagree with experiment. 

Acausal models usually postulate some functional dependence for the 

commutator in spacelike regions; e. g. an exponential fall off in I ;I or in 

&i-q. Generally these models contain a parameter measuring the distance 

within which violations of causality are appreciable. This parameter is usually 

referred to as a t’fundamental length”. It may enter as the decay constant in 

an exponential fall off of the commutator for spacelike distances or it may mea- 

sure the size of some spacelike hyperboloid outside of which the commutator 

vanishes. 

Given a particular acausal model, one can follow through the derivation 

of forward pion-nucleon dispersion relations to investigate the analytic properties 

of the amplitude. This has been discussed in some detail by Oehme3. Generally 

one finds that the acausal amplitude has singularities in the energy plane beyond 

those dictated by unitarity. Using Cauchy’s theorem one can relate the real and 

imaginary parts of the physical amplitude in a similar manner to the usual dis- 

persion relations but with modifications due to the additional singularities. The 

fundamental length parameter controls the size of these modifications. 
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Our objective in this paper is to study what can be said about the bounds 

on a fundamental length from comparison of the experimentally measured for- 

ward pion-nucleon amplitudes and the predictions of a particular simple model. 

This subject has been investigated extensively by Lindenbaum and his co-workers 

using an acausal model in which the amplitude develops an essential singularity 

at infinity4. They claim disagreement between the predictions of this model and 

experiment for the symmetric pion-nucleon forward amplitude when the funda- 

mental length is z 10 -16 cm . For reasons to be discussed below, we conclude 

that this disagreement relies heavily on unphysical assumptions about the precise 

form of the asymptotic amplitude and does not in fact imply an upper bound on 

such a fundamental length! The important result is that the usual causal dis- 

persion relations are presently satisfied within experimental errors by existing 

data2. We will indicate below the difficulties involved in trying to limit a funda- 

mental length in this model. 

We find that particular acausal models do not yield limits on a funda- 

mental acausal length as long as the usual causal dispersion relations are satis- 

fied within experimental error. This means that it is important to test the usual 

dispersion relations, and not acausal relations, until a violation is found’ . We 

finally conclude that the only presently valid estimate of a limit for a fundamental 

length is given by dimensional analysis; since dispersion relations seem to work 

to an energy of 20 BeV, it is likely that a fundamental length is smaller than 

Ec/20 BeV or 10 -15cm , 

The specific model we are discussing postulates that the field commu- 

tators vanish identically in the region outside of a spacelike hypersurface, 

x2-x2 5 -12 2 2 
0 , rather than outside the light cone, x0-x 5 0. Actually this 
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sort of breakdown in microcausality is not possible in the framework of axio- 

matic field theory, where it has been shown that the vanishing of commutators 

within any open spacelike region necessitates their vanishing for all spacelike 
6 

separations . Nevertheless, we feel this model is worth discussing as it is 

mathematically simple and furthermore is the model upon which previous 

assertions, with which we disagree, concerning a fundamental length have 

been based4. In addition, a breakdown in microcausality might be accompanied 

by further violation of the principles of axiomatic field theory, such as strict 

Lorentz invariance at short distances. 

II. A DISPERSION RELATION FOR THE ACAUSAL CASE 

The amplitude we consider throughout this paper is the symmetric 

pion-nucleon amplitude in the forward direction: 

f+(w) = 9 f 
[ T+pP) + qp w ] l (1) 

Here w is the laboratory energy of the pion,and the normalization of the ampli- 

tude the usual with 

2 I 

- 
I ftip(w)I = 8=O” ’ 

In the forward direction the nucleon cannot change helicity; thus, there is only 

one amplitude. The amplitude is divided into real-and imaginary parts by 

f+(w) = D+(w) + i A+(w) . 

(2) 

(3) 
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The usual causal, once-subtracted dispersion relation is written1 

D+(w) = D+(P) + 

where k is the magnitude of the pion laboratory momentum, p is the pion mass, 

and M is the nucleon mass. The residue of the nucleon pole and the subtraction 

constant are given experimentally by (in natural units: h = c = p = 1) 7 

f2= 0.081 

D+(p) = -0.002 . 
(5) 

Finally we note that A+(o) is related to the total pion-nucleon cross sections by 

the optical theorem: 

In the acausal case we assume 

< P I [j(x),j+(O)]l p > = 0 for x2 = xi-Y2S H . 

(6) 

(7) 

Here j(x) is the pion current, and I p > represents a single nucleon state. It 

can easily be 398 shown that, with this structure for the commutator, the ampli- 

tude has an exponential singularity at infinity in the upper half w plane which 

is no worse than e -iwQ . This singularity arises from the sharp spatial cut off 

imposed on the commutator. It is interesting to note that in this model no singu- 

larities can appear at finite ci in the upper half plane. 
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Let us now define a new function f;(w) from the acausal amplitude by 

f:(W) = elwe f+(w) . (8) 

Clearly f,+(w) is still analytic in the upper half w plane. Since f+(m) is no more 

singular than e -iwQ at infinity, f;(w) is polynomially bounded at infinity. Still 

following Oehme 396 , we can write a dispersion relation for f;(w). Writing 

this equation in terms of A+(o) and D+(w) with the assumption of a single sub- 

traction gives 
6-Y 

D+(w) CoS al! - A+(w) sinwl = D+(P) cos /@- + 

(9) 

i,~tdwl(A+(wf)cosore+ D+(w’)sinw’8) 1 2k2 
7r 

CJJ f2- w2)(w12-p2) 

One would like to use the optical theorem to determine A+(w) where the 

pion-nucleon total cross sections are known. However, it might be that a break- 

down of causality is associated with a breakdown of the optical theorem as well. 

Nevertheless, as Oehme has pointed out3, such a deviation from the usual 

unitarity conditions is not required in an acausal theory such as that considered 

here. Thus we will consider the optical theorem derived from the usual uni- 

tarity condition as still valid and use it to determine A+(w). 

Let us temporarily assume that the total cross sections, and therefore 

A+(w), are well known at all energies. Then Eq. (9) becomes an integral equa- 

tion for D+(w). We can immediately establish two important properties of this 

equation. First we note that D+(w) obtained from the usual dispersion relation, 
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Eq. (4), is also a solution to Eq. (9). This can be checked either by direct 

substitution or simply by noting that f(w) as obtained from Eq. (4) is a poly- 

nomially bounded function analytic in the upper half w plane, and such an ana- 

lytic function multiplied by e iwQ retains these properties, allowing us to write 

Eq. (9). Second, it is clear that for a given A+(w), the solution to Eq. (9) is 

not unique. For example, any solution for D’(w) can have terms like 

(cos wm - cos pm) when 0 5 m 5 Q arbitrarily added to it to give other solutions. 

This arbitrariness in the solution is physically reasonable. In order 

to obtain Eq. (9), one multiplies the amplitude by e iwQ to cancel the effects of 

acausal behavior at Lorentz distances up to Q. In so doing, one also cancels 

possible acausal behavior at smaller distances rn5 Q. Hence any amplitude 

with this form of acausal behavior over a distance m 5 Q, and in particular the 

causal amplitude with m = 0, satisfy Eq. (9). We note that the arbitrary terms 

which one can add to the solution to Eq. (9) are of the same order as the acausal 

effects one is looking for. According to Eq. (8), one expects to see evidence of 

acausal behavior in f+(w) to first order in wl, but the arbitrariness of the solu- 

tions to Eq. (9) appears in terms of order wm for any m5 8. Clearly the two 

effects can be comparable. 

We are confronted with a serious difficulty in making use of Eq. (9). 

One would like to use this equation to predict the real part of the amplitude for 

comparison with experiment. However, one must first impose additional con- 

straints on the function D+(w) in order to specify it uniquely. The exact solu- 

tion which is singled out depends sensitively on the constraints imposed and its 

physical significance depends on the physical basis of the constraints. In the 

next section we shall discuss the manner in which Lindenbaum and his colla- 

borators4 choose a solution to this equation. 
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III. A PARTICULAR ACAUSAL SOLUTION 

In order to solve Eq. (9) for D+(w), Lindenbaum and his co-workers4 

do not specify A+(w) for all energies but rather specify A’(w) for w less than 

some experimental cutoff, Q, and then specify Imft(w) = cos wQ A+(w) +sinwQD+(w) 

for energies above s2. Specifically they assume Im f;(w) is a smooth function of 

form 
+ k Imfo(w) = z (10) 

where a, p, and p are parameters chosen to fit the experimental cross section 

when WQ << 1 and Irnfl(w) M Imf(w). They pick l/Q >> fi >> p so the assumed 

behavior is smooth at G2. With these assumptions Eq. (9) was solved iteratively 

for D+(w). 

The strong assumption made in Eq. (10) is that Im e iwQ + f (w) is a smooth 

function of w for a particular value of Q. Behavior parametrized by distances 

other than Q is specifically excluded. This assumption has the serious difficulty 

that by the optical theorem it does not have a positive definite cross section. 

For example the cross section or ’ TbT(w) + ogzT(w) is given at high energies by 

&T(w) +“;&(w) -- acoswQ - gRefl(w) sinwQ . (11) 

This expression clearly changes sign between WQ = mr and WQ = (n+l)r . This 

problem of a negative cross section is unavoidable if one requires Im e iwQ f+(w) 

to be asymptotically smooth. This assumption rules out the physically interesting 

possibility of the total cross section oscillating about a positive constant. Let 

us note here that the original model does not require an oscillating asymptotic 
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cross section at all; all oscillations in the amplitude might appear only in the 

real part. 

The solution obtained by Lindenbaum4 with Q = 10 -16 cm. disagrees with 

the experimentally measured D+(w) over a wide range of energies. The question 

is whether the disagreement with the data reflects on the assumption of a funda- 

mental length or rather on the inappropriateness of the constraint imposed to 

obtain the solution. For several reasons we believe the latter interpretation. 

First of all, we know that D+(w) as predicted by the usual dispersion relation 

agrees with the data and is also a solution to the modified relation in Eq. (9). 

Secondly, by making Im f;(u) asymptotically smooth, a very particular oscil- 

latory behavior was assumed for the total cross section, which actually became 

negative for certain values of the energy. Finally, we note that the same A+(w) 

was always assumed for w less than !2; so, the difference between the Linden- 
/ 

baum solution to Eq. (9) and the prediction of the usual dispersion relation must 

entirely lie in assumptions on the amplitude for w greater than !2, where there 

are no measurements as yet. We have done detailed calculations with different 

asymptotic assumptions to verify this last point. Thus the disagreement of this 

special solution with the data does not originate in any experimentally measured 

quantity. It is instead only the result of a specific assumption about the very 

high energy behavior of the amplitude, an assumption which requires an oscil- 

latory behavior of the total cross section which need not appear in the model and 

which violates unitarity rather violently. Since it-is this calculation on which 

estimates of a fundamental length are based, we conclude that the validity of 

these estimates is in serious doubt. 
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IV. CONCLUSION 

It remains to discuss in what ways acausal theories, such as that in- 

corporated into Eq. (9), might be of use in putting limits on a fundamental 

length. The outlook unfortunately is not good. Having established the arbitr- 

ariness of the solution to Eq. (9) for a given A+(w), we are at a loss as to how 

to specify which solution is physically meaningful. Extrapolations such as that 

employed by Lindenbaum’s group4, being unsupported by the data, cannot yield 

physically meaningful results. 

Other models, such as those discussed by Oehme”, in which the ampli- 

tude develops additional singularities in the finite energy plane have the handi- 

cap that one cannot measure the amplitude along these new singularities. This 

introduces ambiguities in the amplitude analogous to those in the above model. 

Thus, since the usual causal dispersion relations are satisfied within experi- 

mental limits, these relations derived from acausal models also add no further 

information. 

We do not wish to imply here that further effort should not be expended 

on testing the usual dispersion relations. It would indeed be interesting if the 

usual analyticity conditions were violated. If further experiments do yield dis- 

crepancies in the usual dispersion relations, then a search should be made for 

an acausal relation to fit the data. In other words, Eq. (9) might be useful if 

the measured amplitude did not satisfy the usual dispersion relation within ex- 

perimental error. Then if Eq. (9) were satisfied only for Q larger than some Lo 

it would appear that causality was violated to distances of Qo. However, as long 

as the usual dispersion relation fits the experiments, Eq. (9) is of no use in 

bounding a fundamental length. 
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In conclusion, the only believable limit on a fundamental length at 

this time is given by the dimensional argument that since dispersion relations 

work at energies up to 20 BeV, a fundamental acausal length is unlikely to be 

much larger than he/20 BeV = 10 -15crn . It should be understood that this is a 

purely dimensional argument and should be viewed with the appropriate caution. 
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