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ABSTRACT 

We obtain nonsingular integral equations for the two-body 

potential scattering problem. In momentum space our integral 

equations have square integrable kernels and require only a 

finite range of integration. We use our integral equation to 

obtain bounds on the convergence of the Born series. 
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I. INTRODUCTION 

The solution to the nonrelativistic potential theory scattering problem is 

obtained from the Lippmann-Schwinger equation for the t-matrix. Solving the 

Lippmann-Schwinger integral equation is difficult because the kernel is singular. 

We obtain here a nonsingular Fredholm equation whose solution is the t-matrix 

(or K-matrix). This equation has only a finite range of integration in momentum 

space and the kernel is square integrable. We then use our equation to give 

estimates on the rate of convergence of the Born series. 

We begin our analysis by reviewing the known singularity characteristics 

of the Lippmann-Schwinger equation. In momentum space, the Lippmann- 

Schwinger equation for the nonrelativistic two-body scattering problem has the 

form 

<j$(k2 st ie)lT \ = <$lp’> - (1) _ 

/ 

<31v13fJ ;<F11t(k2 rt ie)lc’> dj$I 

P” k2 -- 2m Tie 2m 

Here 3 and j!’ are the center-of-mass momentum before and after scattering. 

The center-of-mass energy is k2/2m, where m is the reduced mass of the two- 

particle sys tern. The potential (local or nonlocal) is denoted by v, and 

< $lt(k2 rt &)I$’ > is the t-matrix. The singularity of the kernel of Eq. (1) is 

manifest in the if prescription. Although the kernel of Eq. (1) is singular, 

Faddeevl has proved that for sufficiently well behaved potentials the solutions, 

< plt(k2 5 ie)lp’ > , are unique and that the ie -0 limit is well defined. The 

restrictions that Faddeev imposes on the potential, to obtain these results, s 

are that the potential have a boundedness property and a smoothness property. 

The boundedness property is expressed by 

Iv@-w 5 (1+ I3 &+ (J ) 8 > l/2 . (2) 
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for all ‘$ and $‘, where Cl is a constant. This property is constructed to ensure 

that all the integrals over momentum are convergent. The second limitation 

Faddeev imposes on v is that v satisfy the H$lder condition, 

(3) 

This smoothness in the momentum dependence of v is required so that the ie 

prescription in the Lippmann-Schwinger equation be well defined. The only 

assumptions about the potential that our method uses are the properties given 

in Eqs. (2) and (3). 

II. NONSINGULAR EQUATIONS FOR PARTIAL WAVE AMPLITUDES 

In order to illustrate our approach in detail let us consider the partial wave 

decomposed form of Eq. (1) valid for spherically sjrmmetric potentials, 
al 

t&p, pT;k2 * ic) = v,(P, P’) - c 
/ 

v,(p, p”) t&p”, p9;k2 rt ic) p1’2dpff 

0 P,? - k2 r ie 

Here tf and vn are the fth partial wave projections of t and v respectively, and 

c is a constant dependent on one’s choice of constants in the partial wave ex- 

pansion. Since our approach gives a particularly simple result when only a 

principal-value type singularity occurs in the integral equation let us consider 

the K-matrix companion to Eq. (4). 

K&p, p’ ;k2) = v&p, P’) - c 
“v&p, P”) K#?“, p’ ;k2) p1I2 dp” f 0 

pff2 _ k2 

(4) 

(5) 
0 
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One can recover the t-matrix from the K-matrix by the Heitler transformation 

t(p, p9 ;k2 f io) = K(p, p’ ;k2) + 
(p, p9;k2) K(k, k;k2) - K(p, k;k2) K(k, p’;k2) 

l+Z K(k, k;k2) 
* (6) 

We omit in Eq. (6) and in all the equations that follow the I-index. 

We now simplify Eq. (5) by changing the variables of integration. Consider 

a mapping (which exists only for k2 > 0) defined by 

p(x) = k(e)> X$-l, +l] (7) 

with the inverse 

x(p) = $$ , 

In the x-coordinate system the K-matrix equation becomes, with the notation 

K(x, x9) = K(p(x), p(x9) ; k2) and v(x, x9) s v(p(x), p(x’)), 

K(x, x’) = v(x, x’) - & v x, x9’ K x”, x’ 
) X” 

dx” 0 (9) 

Let us define even and odd projection operators in the x-space by 

E(x) f(x) = ; [f(x) + f(-x)] 

a(x) f(x) =; [f(x) - f(-x)] 

where f is an arbitrary function. We now exploit the fact that 

-l-l 

f +$ f-9(x”) f(x”) = 0 , 
-1 

(101 

(11) 
and 

-l-l 
I dx” -0 

-1 
x” @(x”) f(x”) = 2 

s 
$$J &7(x”) f(x”) . (12) 

-1 

The right-hand side of Eq. (12) is an ordinary Riemann integral, since the 

integrand is integrable at x ” = 0, if f(x”) satisfies the Holder continuity condition. 
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Using identities (11) and (12) we have 

’ W, ~‘1 = v(x,x’) - ; s -1 
$$ @(x7’) [k2( Gr v(x, x”) K(x”, x9)] e (13) 

Mapping this equation back to the p-space gives 

K(P, P’) = v(p, P’) - 2c J k -++ @(P”) v(p, P”) K(P”, P’) , 
0 p” -k 1 (14) 

where @(pf’) is the transformation of the odd projection operator given in Eq. (10). 

In momentum space these projection operators are 

&PI f(P) = f [ f(P) + f(P,) 1 9 

Q(P) f(P) =; [f(P) - f(P,;d 9 (15) 

where p, = k2/p. 

We can obtain from Eq. (14) an integral equation by expanding K(p, p9) in 

terms of its even and odd parts. Defining KO(p, p’) and K,(p, p’) by 

KO(~,~‘) = B(P) K(P, P’), K,(P, P’) = F(P) K(P, P’) , (16) 

Equation (14) takes the form 

K(P, P’) = v(p, P’) - 2c Ik +{[@(P”) V(P, P”)] Ke(p”r P’) 
0 p” - k2 

+ [&(p”) V(p, p”)] KO(p”, p’)} (17) 

992 withV(p,p”) = p v(p,p”). Multiplying by &(p) and 6’(p) will now give us two 

coupled equation for K. and Ke. However we note that the second term in the 

integrand on the right-hand side of Eq. (17) is nonsingular by virtue of the fact 

that K. has a zero at the point p” = k which multiplies the (p 1'2 - k2)-l pole in 

the remaining portion of the integrand. This suggests that we represent K(p, p’) by 

K(P, P’) = K,(P, P’) + $(P) ~,(P,P’) 

KO(p, P’) = @(PI E,(P, P’ I (181 
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where $~(p) is an odd function in p. We will choose $(p) = (p - k/p+k). If we 

now obtain a coupled integral equation for the components Ke and z,, all the 

cancellations of the zero’s and poles will occur only in the kernels of the 

equation. Explicitly multiplying Eq. (17) by &(p), and employing Eq. (18) yields 

K,(P, P’) = V,(P, P’) - 2kk (A1(p, P”) K,(P”, P’) + A2(p, P”) KO(p”, P’)} dp” (19) 

Where the kernels A1 and A2 are given below. Likewise multiplying Eq. (17) by 

G-‘(p) B(p), and using Eq. (18) again gives, 

Eo(P, P’) = V,(P, P’) - A3(p, p”) K,(P”, P’) + A4(p, P”) ~,(P”, ~‘1) dP”o 
(20) 

Taken together Eqs. (19) and (20) are a two-component integral equation for the 

functions Ke, ii,. Once Ke amd go are determined then K(p, p’) is given by Eq. (18). 

The kernels appearing in Eqs. (19) and (20) are easily determined to be, 

Al(P,P”) = c 
4(p” +k)2 

(V(P, P”) +v(P,, P”) -tV(P, P;) +v(P,‘P;)} , 

A2(P. P”) = 
4(p’;-kz) 

{V(P,P”) + V(P,,P”) - V(P,PiI - v(P,,P;)} , 

A3(p, P”) = 
c(p + k) 

4(p - k) (p” + k)2 
{V(P, P”) - V(P,, P”) + v(P, Pi, - v(P,‘P;,> , 

A4(p, ~“1 = 
c(p I- k) 

{V(P> P”) - V(P,‘P”) - V(P, P;, + V(P,‘P;)} 0 (21) 
4(p - k) (P” 2-k2) 

We can see how the Halder condition Eq. (3) and the boundedness condition Eq. (2) 

will ensure that the Ai are integrable. The constraint that B > l/2 in the bounded- 

ness condition will guarantee that terms like V(p,, p;) = k4/p”2 k(k2/p, k”/p”)l 

are finite in the neighborhood of p’* = 0. If we require p. > l/2 in the Hijlder 

condition it follows that the L2 norms of Ai will be finite, i. e. , 

ilAill = 
> 

l/2 
dP dP” (Ai(p,p”)12 ’ o3 (221 
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When the Ai are square integrable then the integral equations given by Eqs. (19) 

and (20) are the simplest kind of Fredholm integral equations. 2 

II. SOME GENERALIZATIONS 

The derivation given above for the partial wave form of the K-matrix equation 

can be applied without change to fully angularly dependent K-matrix equation, 

<dK(k2)1$‘> =<i%k-f’> - c 
<~ivt$“><Ef”~K(~2)~> P”~ dp” dab’, 

p’12 a k2 
(23) 

where do 
I!+’ 

indicates the angular integration. The only property of Eq. (5) 

exploited to obtain the reduction was that the principal value singularity was a 

fixed singularity in the variable p”. Lf we replace v(p, p”) by v(p, p!‘;$, bl’) in 

the expression (21) for the kernels and increase the variables of integration in 

Eqs. (19) and (20) to Jdp” m$,, then we have a nonsingular equation for the 

’ angle dependent K-matrix amplitude <$lK(k2)1$‘> 0 

Another, desirable generalization of our method would be to treat the 

Lippmann-Schwinger equation for the t-matrix directly. If we start from the 

partial wave form, Eq. (4) 

function in Eq. (4) with the 

1 

then this can be 

representation 

I 

done as follows. Expand the Green 

9 3 p,12_k2~io = P.V. p,12;k2 * in6(p9’” - k”) 

Now Eq. (4) has the form 
06 

Yp,p9;k2* io) = v(p,p’) - c v(p,p 
91) t( II p9;k2 & io) p?f2d II 

2- 2 p” _ k 

icnk 
r 2 v(p, k) t(k, p’ ;k2 * io) (25) 
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If we set p = k we obtain 

t(k, p9 ;k2 * io) = 

where 

D*(k) = 1 & F vtk k) (271 

and division by D*(k) is always permitted since for v(k, k) real D*(k) will have 

no zeros. Substituting Eq. (26) into Eq. (25) gives us an integral equation for 

t involving only a principal-value integration, viz. 

t(p, p9 ;k2 * io) = U(p, p9 ;k2 & io) - c U(P, P “;k2 f io) t(p” , p9 ;k2 6 io) P’~ dp” 
p’s _ k2 

(281 

where the driving term v is, 

W-w9;k2 * 3 = v(P,P’) r 
icr k/2 v(p, k) v(k, p9) 

&k) 

v(p, P’) * ‘+ ,[vtk, k) v(p, P’) - v(p, k) v(k, P’)] 
= 

D*(k) 
. (29) 

This driving term is just a unitarized first Born term. This is easily seen by 

setting K(p, p9 ;k2) equal to v(p,p’) in Eq. (6). We note the discontinuity structure 

associated with unitarity in Eq. (28) is quite different from the conventional 

Lippmann-Schwinger equation. Here all the discontinuity in going from t(p, p9;k2 + io) 

to t(p, p’ ;k2 - . lo) arises from the discontinuity in the unitarized Born term 

v(p,p9;k2 * io). The principle value Green function is of course continuous across 

the scattering cut. Expanding the right-hand side of Eq. (25) in a Born series 

gives a simple picture of how the scattering amplitude t is built up. The nth 

Born term consists of a product of the n unitarized interactions U connected by 

free principal-value Green function propagators. 
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With Eq. (28) we can now derive a nonsingular equation for t(p, p9;k2 & io). 

Clearly the appropriate integral equation for t o,yo is given by Eqs. (19) and (20) 

if we replace v(p,p’) by U(p, p;k2 zt io) everywhere. Before leaving this subject 

we observe that the method of getting rid of the delta function in going from 

Eq. (4) to Eq. (28) is simple only for the partial form of the Lippmann-Schwinger 

equation. To use the same method on angular dependent Lippmann-Schwinger 

Eq. (1) would require inverse operators involving the potentials. So, although 

the method here allows us to extract the principal-value singularities in Eq. (1) 

the delta function singularities will still be present. 

IV. NORMS AND BORN SERIES CONVERGENCE 

In this section we want to show how to exploit the L2 characteristics of our 

nonsingular equations. We will imbed our equation in a Hilbert space and then 

use the norms the space induces to give an estimate of the rate of convergence 

of the Born series. Let us define an inner product for functions of the momentum 

variable as 

tf, g) = j-- f(p) g(p) dp, 
0 

and let us denote by 3’ the Hilbert space that is associated with this inner product. 

The space 3‘6 consists of all functions with finite norm, II f II = (f, f) l/2 . In defining 

our Hilbert spaces it is convenient to have the same space for all values k of the 

incoming momenta. So when we study the reduced representation Eq. (19) and 

(20) we shall treat it as an equation over the entire domain of p E. [0,-l , This 

is done by rewriting the right-hand integral term as 

2 s 

k 
A(P, P”) K(P”, P’) dp” = Jo A(P, P”) K(P”, P’) dp” (31) 

0 0 
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where Eq. (31) is valid for any of the four integral terms in Eqs. (19) and (20). 

On the Hilbert space ,-/e each kernel A(p, pff) generates a bounded linear operator 

A defined by g = Af where 

Af = [a A(. , p”) f(p”) dp” e (32) 
0 

The operator A is bounded since A has a finite Hilbert-Schmidt norm 00 00 
llAils = v- J A(p,p”) 2 dp dp” m . 0 0 

The natural Hilbert space to analyze our coupled equations in is a product 

Hilbert space, $Ke B Cre, containing two-component vector-valued functions, i. e., 

XP) = 

with the inner product (?,<) = (fl, g,) + (f2, g,). In this language our equation 

is symbolically 

where in component form the operator L on Z’@%‘is 

L= (36) 

and the matrix elements of Ai of L are operators on Xin the sense of Eq. (32). 

Given bounds or the values of llAill s it is straightforward to bound the 

operator norm of L. Using the matrix structure of L given in Eq. (36) and the 

definition of operator norm3 it follows that 

IILII 5. max llAll12 + IIA311 II A2 ,I 2 + II A411 (37) 

- 10 - 



The operator norms, II Ai II , are bounded by the Hilbert-Schmidt norms so that 

2 2 
II L II 5 max II AllI s + II A311 II A211s + , (38) 

The Hilbert-Schmidt norms needed in Eq. (38) can be obtained from doing the 

integrals in Eq. (33) numerically or estimating them analytically. 

We shall now show how to obtain estimates on convergence of the Born series. 

Suppose we have obtained bounds for llAills and that Eq. (38) ensures us that 

II L 11 < 1. Then from Eq. (35) the difference between d and $ is 

ll2--i;'ll = II(1-t L)-l L%IIl(l - IILII) 
-1 

II LII II-h . (39) 

In order to recover the physical amplitude K from2 we must use relation (18). 

However a norm for d leads to a bound for the norm of K. From K = Kl + $K2 

it follows that, 

llKll~~lK~ll + II$K~II< llK1” + B(e) “K2” <(l + B($))ll% , (40) 

where 

,Bt$) = sup I NP)l< co 9 (41) 
PC [kq 

For the form of G(p) given after Eq. (18), B($) = 1. Combining Eq. (40) with 

Eq. (39) gives us 
a 

IIK - VII < (1 - IILII) -1 IILII (1 4- B(O)) da (42) 

where 

bl=ve(.,p9), b2=vo( .,P’)a 

IV. COMPARISON WITH OTHER APPROACHES TO NONSINGULAR 

SCATTERING EQUATIONS m 

In this concluding section we contrast the characteristics of our reduced 

equations with those of some of the alternate approaches available in the literature. 

Probably the formulation closest in spirit to the one given here for the two-body 
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problem is the Kowalski-Noyes’ representation. One attractive feature the 

Kowalski-Noyes integral equation shares with results derived here is that its 

kernel is known5 to be a Hilbert-Schmidt kernel for same weak conditions on 

the potential given here. However, the Kowalski-Noyes approach has some 

drawbacks. The representation for the partial wave t-matrix has nonphysical 

poles5 (albeit cancelling) not appearing in t. 

Another frequently used technique is to distort (or rotate) the contour of 

integration6 in Eq. (1). By allowing prr to become complex we may distort the 

path of integration so that p’ 3 - k2 never vanishes. This is a powerful tech- 

nique and works for higher dimensional integral equations as well as equations 

with moving point singularities. The difficulties which sometimes attend this 

method are that the analytic structure of the equation for p” complex may not 

be easy to determine so that proving one hasn’t crossed poles or branch points 

in distorting the integration contour becomes troublesome. Clearly if the kernel 

is only known in numerical form then the method isn’t applicable. Also contour 

deformation requires knowing stronger analyticity properties than we have 

needed for our reduction. 

We mention in connection with the contour deformation method7 a similar 

approach which treats the ie as nonzero. For E > 0, Eq. (1) is analytic in E 0 

Solutions obtained for nonzero E are then continued to E = 0. However the 

difficulty of this method is that given a finite number of solutions for nonzero 

E’S there is no unique continuation onto the axis. Finally, Broido and Taylor8 

have recently studied the construction of nonsingular equations for the Bethe- 

Salpeter equation. Basically they expand the solution in a Taylor expansion about 

the point of the fixed singularity. This procedure used for the Lippman-Schwinger 

equation studied here will certainly give nonsingular equations, but of a more 

complicated construction than the ones we have given here. 
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We note obvious applications of our results. If we expand the operator L 

in terms of its eigenfunctions then we will be lead to a separable expansion for 

t (or K). Fixed-point singular equations in two or more variables of integration 

(such as Faddeev’s equations) can be simplified to the extent of removing all of 

the principal-value type integrations, but with delta functions remaining the 

kernels. These delta functions would prevent us from carrying out a simple 

Hilbert space norm analysis as in Section IV but may not prove too difficult to 

handle numerically. ’ 
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