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ABSTRACT 

We demonstrate with two field-theoretic models that the operator droplet 

model proposed by Chou and Yang can be understood as due to the contribution 

from a class of leading Feynman diagrams at s = 00 O In the first model, we 

consider a theory which consists of both a strong and an EM interaction. The 

purpose of introducing two types of interactions is to supply a natural division 

between the production of particles and the interaction between the jets. In 

this model, the sum of pure photon exchange diagrams leads automatically to 

an expression identical to that of the operator droplet model. Limitations and 

generalizations of the model are investigated. The second model is derived 

from pure quantum electrodynamics O We find that an operator droplet model 

formulation can reproduce leading amplitudes in quantum electrodynamics, 

including thos@which give rise to (!I.~s)~ behavior. This confirms and generalizes 

an earlier result of Lee. We demonstrate explicitly how the N-bubble diagrams 

should be treated in this calculation. By including diagrams related to one 

another by covariance, a reference-frame-independent result always emerges ,, 

These frame-independent results coincide with earlier calculations based on the 

usual Feynman rules, 
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1. INTRODUCTION 

Chou, Yang’ and their coworkers have proposed that the high energy scat- 

tering can be understood qualitatively by a droplet model. In particular, they 

conjectured that hadron production processes can be understood through an 

operator version of the droplet model. In a recent article, 
2 the operator droplet 

model was put into an elegant and useful form by Lee, Lee then applied the 

operator droplet model to quantum electrodynamics (QED), with the identifi- 

cation of the matter density ,p and the charge density. He demonstrated that 

this model can reproduce the field-theoretic results of Cheng and Wu3 as to 

impact factors, It is interesting to know whether or how more complicated 

(pns)N-dependent terms can be obtained in Lee’s formulation. It is also im- 

portant to find out if his conclusion can be generalized to high order processes. 

The purpose of this paper is to show that the operator droplet model results 

can indeed be obtained by summing proper set of diagrams. By establishing 

the connection between a physical model and a category of Feynman diagrams, 

one can hope to gain some insights and understanding of the model, such as its 

possible limitations and generalizations D This is one of the important reasons 

for carrying out a systematical analysis of Feynman diagrams, 

The first model that we shall study is a combination of a pseudoscalar meson 

theory and the electromagnetic (EM) interaction. We first analyze a diagram by 

decomposing it into units which are joined together by pure photon exchange. 4 

Each of these units defines a primitive piece, as introduced in paper III. For 

simplicity, we shall ignore further EM interactions within these primitive units 

(hereafter referred as hadronic blobs). In this way, we make a division be- 

tween the hadronic interactions within the blobs and the EM interactions between 

the blobs. The dynamical distinction of these two interactions is important in 
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the first model to achieve our conclusion, An especially simple set of diagrams 

according to this classification is shown in Fig. 1, in which there is no further 

hadronic bubbles lying between the blobs associated with the incident particles. 

By summing over diagrams of this category, we obtain a result which can be 

identified with that of an operator droplet model with an s-independent potential. 

This potential is the two-dimensional Fourier transform of the one-photon 

propagator. Contributions due to further photon-photon interactions can be 

partially handled if one modifies the potential to include all connected diagrams. 

The modified potential acquires an s-dependence. 

In pure QED calculations, the sum of diagrams in Fig. 1 no longer expo- 

nentiates to a droplet model form. However, the operator droplet model can 

be recovered formally if one includes all leading graphs and if proper care is - 

taken in defining the infinite momentum matrix element of the product of currents. 

Formal perturbative calculation reveals that for a certain important class of 

final and intermediate states, the matrix element of the currents diverges 

logarithmically at large s. This indicates that there is some implicit s-dependences 

in the QED expression described by the operator droplet model. This implicit 

s-dependence is associated with the increase of the available kn p+ phase space 

ats+m. 5 Once we realize the origin of this hidden tis-dependence, we can 

reproduce all the leading amplitudes in QED from an operator droplet model 

expression suggested by Chou and Yang, 1 and by Lee. 2 

The paper is organized as follows. In Section 2, we consider a model in 

which a strong interaction and the EM interaction are treated separately, We 

analyze a particular category of diagrams due to multiphoton exchange and show 

that it leads naturally to an expression identical to the operator droplet model. 

A simpler and more straightforward derivation is obtained in Section 3, based 
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on essentially the same assumptions, In Section 4, a generalization of this 

model to include a larger set of diagrams is outlined. In Section 5, we 

demonstrate how the operator droplet model can be used to compute leading 

QED diagrams, including those which give rise to (Qn s)~ behavior at large s D 

The conclusion and a comparison of our model to Feynman’s parton model 69’7 

comprise the contents of the last section. We also include a short appendix to 

demonstrate how one can obtain commutator relations on the light cone from 

the conventional equal-time commutator relations o 

2, MULTIPHOTON EXCHANGE DIAGRAMS 

We consider a simple field theory model with both a strong and an EM 

interaction, 9. mt = Lzs + LzEM’ We may take the strong interaction, for 

example, as pseudoscalar mesons r#~ coupled to nucleons I/J through the coupling Y 
LZs =ig Tirs $ w $, or as quark-quark interactions. The conclusions of this 

r** - 
paper do not depend on the detailed structure of the strong interaction as long 

as there is no fundamental strongly interacting vector field, The EM interaction, 

on the other hand, is mediated by a vector field (the Maxwell field) gEM=ejpAp 

with 

(2.1) 

To avoid infrared divergences, we give our photon a fictitious mass p. Note 

that our results are readily applicable to pure hadronic processes if one re- 

places the photon by a vector meson, or a flat Pomeron. We call our vector 

meson a ‘photon” solely for simplicity, 

In paper II, we demonstrated that those diagrams whose contribution re- 

mains large at large s but fixed t are the diagrams which can be separated 

into two fast moving parts joining together by vector mesons (here photons) only. 
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Some typical diagrams of this category are shown in Fig. 1, Figure 1 describes 

the amplitude due to pure photon exchange without further interactions among the 

exchanged photons O The blobs appearing here are primitive pieces, i.e., they 

can not be separated into two or more parts by cutting photon lines only, as 

demonstrated in Fig. 1, We now consider a subclass of diagrams in Fig. 1 in 

which we also ignore the EM interactions (radiative correction, etc.,) within the 

hadronic blobs. As we shall see, summing over diagrams of this latter type 

leads to expressions identical to the operator droplet model conjectured by Chou 

and Yang. 1 

The purpose of introducing two types of interaction here is to provide a 

clear cut separation between the mechanism for production of final particles 

and the interaction between the jets, As we shall see in more detail in Section 4, 

this kind of distinction is not possible for pure QED calculations. 

112 IIf, we showed that the amplitude for diagram 1 can be written, in the 

limit of large s, as 

W 
M = ; j-l7 -$ A++ D D .+ (P;,q3 4n s(Cq;-k:) 

dq; 
GT- C --o..- (p’&q”) 47r S(cqJ-k2 (24 

where k is the momentum transfer. A pv...(+ (p’,q’) is the partial amplitude for 

the LHS of graph 1, evaluated in the standard frame (essentially the lab frame) 
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of particle 5, defined by 

P’ a+ 
G p;+pz = 1, 

P &+= Pai+/Pa+ 9 

(2.3) 
,ai P9 ‘,Pai a 

p’ ai- s p;; - p;; z (pa+) pai- 0 

The plus and minus appearing in (2.2) represent the four-vector indices 0+3 

and O-3. The variables pi, p , ’ the fractional longitudinal momentum and the & 

transverse momentum, form a very convenient parameterization for describing 

high energy scattering. Readers are invited to consult II and III for more de- 

tailed kinematics of this infinite momentum frame. 

Similarly, Cpvo o o(T(P”t s’? is the partial amplitude 
P 

f the RHS of graph 1, 

evaluated in the standard frame of particle c: . 

p;- G p;” - p;3 = 1 , 

p”. ~ p,i_/P,_ ~ 
Cl- 

0 < pii < 1 (20 4) 

The momentum variables for the exchange photon can be chosen as qJ , q’=q”, MC 

and q’-o The other combinations q: =qy/s, q”=q’/s vanish at s = Q) 0 - - 

The amplitude A pv.oc.(T (p,,q) is a generalized-vertex function. First, we 

wish to point out that the above amplitude is related to the matrix element of the 
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Heisenberg operators jp for the strong interaction alone through 

J i7 d4xj e 
-i Cqiexi 

j 
<Ab’(jp(xl) 0 0 0 jA(xN))I a) 

(20 5) 

= (’ ~4 s4(Pa+q- CPai) XC A (P 99) ~v..~A a 
all possible 
N-photon subgraph 

where q= Cqj, a, A are shorthand notations for initial particle a and its products 

A. We shall sometimes refer to A as jet A08 After including all N-photon ex- - 

change diagrams, we also find that Eq, (2,2) reduces to 

M(N) =; c / n %I: 
4n” A*.oo+ a’ (P’ q? 47r S(cq’-k:) 

all possible 
N-photon diagram 

dsl-’ 
l74n.C --OO.- (p;,q’? 47r e( q;-kJ 

dbqi 
Xl7- -ie2 (271+)2 sz(L&-5) 

P7Q2 (lf+cl” 

s 1 =- - 
2 N! 

r 
A+f- . o O+(P;,q’) 4n 6( c q’-k;) 

all sub- 
graph 

Xl7 (27r)282(cc9C) D (24 
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By including all possible subgraphs in both A and C, we actually count diagrams 

with exchange photons Welled differently as different diagrams. The factor 

l/N! is included to compensate the overcounting. 

Now, the contribution for the subgraph A can be reduced to 

(29r)4 S4 (pzk’- c I$) 

all sub- 
graph 

4x S( c q;-kl> 

q;=o 

= nd4x. J 
dq9 -iC qif”{ 

j 
--&e i 

’ loop 
<A’IT(j+@;) 0 0 0 j+@s) Ia’) (2.7) 

where A’ and a’ label jet A and particle a in the standard frame. By the use of 

q’q$,o = $qix; - q9.x’ , 
*I- 

it is easy to carry out the qi (loop) integrals, giving 

- ;kix; 
n 6(x;+ -x1, 0 (2.8) 
i 

The 6-functions in (2 O 8) insure that the j+(x> appearing in (2 D 7) are at equal x+ O 

It is shown in the Appendix that the plus components of the EM current commute 

among themselves on the light cone x+ = constant, Hence the T-product in (2.7) 

is the same as an ordinary product, This is important because we can now 

carry out the remaining integrals without worrying about the T-ordering: 

LHS of (2.7) = 47r S(p;-+kl - ’ Pki-) 

(2.9) 
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where 

?I+($ = + Jdx- j+(x+=O, 3 x-1 , (2010) 

u+($ = J- 
2 iqex 

d x e - c U+(XJ o (2.11) 

The operator V+(E) is essentially the u(z) introduced by Lee. 2 It obeys the 

simple relations 

1 u+(s$ 9 P+(&) 1 = 0 Y 

/d2x a,(xJ = Q (the charge operator) , 

and the T, C. P. transformation properties as demonstrated by Lee, 

An analogous result holds for the partial amplitude CmBO o o -(pl, q”) , 

(2q4 S4@;-kft- c P;~ 
/ 

dq” 
n =$ C-B0 o ~ -(p;, 4’) 

I q”=O 
4n S ( c qz-k+) 

= 4n S (p;+-ki’ - C pain ’ (cllla_ (-Al) ’ ’ ’ 9(-~) J ‘I’) , 

with 

(2.12) 

(2.13) 

(2.14) 

c and C represent particle c and its products (jet C). The double prime on a 

symbol indicates that the quantity is measured in the standard frame of particle 
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c O Putting Eqs. (2.9) - (2,14) together and performing k integrals, we find 

x <c “luJ-~l) 00 0 “-y&l I c”> 

=- ; $j U+($ j$ ’ (2.15) 

- 

In the last expression, it is understood that the operator o+ (U ) has only matrix 

element between the states associated with particle a (or particle c) D The state 

at,,?! = a’ x IC”> is a shorthand notation for a state with particle a, c in 

their respective standard frames. 

The total amplitude of Fig, 1, can be obtained from M (3 by summing over 

all N, giving 

with 

(2016) 

= EG’,C” exp[-ie”j 

1 

q2+tG2 ~ 

(2*17) 



The exponentiation of a convolution of two operator densities is precisely the 

structure of the operator droplet model. 

To obtain the original form of the model, 1 we follow the procedure developed 

by Lee. Introducing 

2n stpf+-pi-J <“+t;?il+~l ’ l O u+(&q+z))fi 

s J 
d2k 2 

Pn) 
e-*z<pf, k/2 lU+(X& l Be U+(~$IPiy-$J2> 2 

and analogous equations for (P ‘s, we have 

= ; ml2 S(PH,- CP&+I stp;-- cF$!.J 

x 
J 

& &' e%yg$'g 

(2c.18) 

(2.19) 

x (ev 2 c J -ie d2x d2y U+(z+z) vtz-.$ u-t;+z’l 
3 

-l>A’, c’I;a’ c I Y 0 

After making the translations z+s ---) x, y+z ’ -+ y, and carrying out one i-integral OIlbe c 
for fixed 2~ l-z, we have m 

M AI 
Y 
C1l;a' cttk) = f/"'3 e-'"' <EWJ - '>A? Ctt.at c~ 

Y Y 9, 
(2.20) 
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with 

Vtp+9 QY) d2x d2y 1 (2021) 

Equation (2,20) is exactly the operator droplet model as conjectured by Chou and 

Yang, 

3, AN ALTERNATIVE DERIVATION 

We have found that the asymptotic amplitude due to set of diagrams 1 can 

be cast into a form suggested by the operator droplet model. Since the final 

answer is very simple, one expects that this result might be obtained more 

directly. Let us summarize the ingredients which enter into the derivation: 

1. The scattering amplitude factors into two parts, one associated with 

the target and one associated with the projectile. The large component of the 

momentum in each part (p+ for particle a and its products and p for particle c 

and its products) is preserved during the scattering. These two parts are 

joined together by vector mesons only, 

2. The leading contribution of these diagrams comes from the plus compo- 

nents of the left-hand graph coupled with the minus components of the right-hand 

graph. 

3. The proper variables to use in describing the amplitudes are those 

measured in the frames moving with the particles. These are standard frame 

variables for particle a and for particle c. 

To give a simple derivation, we decompose the Hamiltonian into HA + Hi 

where Hb consists of all kinematical terms as well as the strong interactions, 

and Hi = - 22 ’ = efA 
P 

contains only the EM interaction. The s-matrix, in an 

interaction representation, is given by Dyson’s equation, 

S=Texp (-ie Jd4x j’ AP) (3.1) 
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The effective s-matrix corresponding to Fig. 1 can be obtained from Eq. (3.1) 

by contracting out the Maxwell fields in the exponent, giving 

S(Figo ‘) = T exp j(a)(x) DF(x-y) j(‘)(y) 
P P 1 (3.2) 

Here jp represents the EM current interacting with particle a and jet A, 44 J 
I-L 

represents the EM current interacting with particle c and jet C, Remember that 

we have included strong interactions exactly within the hadronic blobs for jet A 

and jet C, For the particular set of diagrams studied here, the strong inter- 

actions among jet A and jet C do not mix, Hence, we can treat them separately. 

In the Heisenberg representation for the strong interaction alone, the 

matrix element for the diagrams of Fig, 1 is 

< A,C.T exp -ie2 J d4x d4y j(a)(x) D 
P F (x-y) j(‘)(y)’ 1 a, c> ., 

P (3.3) 

Final states A, C describe the jets produced from the incident particles a and c 

respectively. Even though Eq. (3,3) is very similar in appearance to (2.16)) 

these equations are in fact quite different. First, Eq. (3,3) contains a T-product. 

Second, the s-dependence of the amplitude is still implicit in (3,3) ., 

To manifest the explicit behavior of the amplitude at s -+ 00, we make a 

Lore&z transformation for particle a and jet A from the c,m. frame to the 

standard frame of particle a: 

la> =U,’ la’> , 
(3.4) 

<Al = (A’IU, 9 

U j(;t)cL(x) U-l = 6 j(;t)(x3 , a a + p=+ 

49 ; c-3 1 
I (3.5) 

I j(a)(x3 

&- '- 

J 
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with 

pv = 2-p = 1, 
a+ & a+ ,p;=,p,s Pi-’ &Pa- ) 

(3.6) 

The momentum p and coordinate x are c.m. variables, as before, For simplic- 

ity, we assume that the states are normalized covariantly so that no additional 

kinematical terms arise during the Lore&z transformation. Similarly, we 

make a Lorentz transformation on particle c and jet C from the c,m, frame to 

standard frame c: 

IC> = u~lIc”> , <c I= <cquc , 

U j(‘)cL U-l 
C c 

= 1 j(‘)(y’) 

l/i+ 
1 

with 

P ;+= 4 PCS, I$=:,, p;-= spc =1 ) s - 

y: = & y+ ) z” =z ) y” = $ y 0 
s - 

(30 8) 

After these transformations, the exponent appearing in Eq, (3,3) reduces asyrnp- 

totically to 

E = - $ e2s J- d4x d4y j(a)(x) D + (x-y) j(‘) (y”) F - D (30 91 

Quantities xi and y!, which are of order O(l/&), are Lorentz contracted. So 

are quantities x-, y+ in the c.m. frame. 
9 At the infinite s limit, these quantities 
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are contracted to zero, and may be ignored. Hence 

E = - $ e2s 1 
s 

dx dx’ d2x j(a)@* = 0 
2&+- ++’ ,x, XI) 

1 - dyJ dy- d 2 Xc) 
26s 

Y J- (~1, ,y, Y” = 0) (3.10) 

x DF (x+8 Z-Y, -Y-) 0 

Carrying out the x+ and y- integrals, we have 

E = - ie2 
/ + d2x dx’- J, (x; = 0, 5, x’> .(a) 

i dyJ d2y jy)(yI, ,y, y” = 0) V(z$ 0 (3.11) 

Since jy (xi = -(c) 0, 2, x’)‘s (and J (yJ, y, yLt=O)) commute among themselves, the WV 

T-product is the same as an ordinary product. Therefore, we can do the dx’ and 

dy;’ integrals without worrying about the T-product, leading to 

E = - ie2 J- d2x d2y “+@ V&--l Qz (3012) 

with c+, CT- defined in (2.10) and (2.13) 0 Hence, the matrix element (3.3) re- 

duces to 

<A’, C” 1 exp - ie2 
[ 1 

d2x d2y o;Q V<z-x) a-($ 1 t a’, cl’> (3.13) 

In terms of the invariant matrix, this is precisely Eq. (2,16) D 

4. POSSIBLE GENERALIZATION OF THE MODEL 

We have shown in previous sections that the operator droplet model may be 

viewed as the contribution due to a set of Feynman diagrams in Fig. 1. It is 

natural to ask about possible generalizations of the model if additional sets of 

diagrams are included. 
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It is known that diagrams 1 are not the only set of leading diagrams at 

s= co, Diagrams with exchange photons interacting among themselves lead to 

a larger set of diagrams which are also large at s = 00 O Some typical diagrams 

of this larger category are shown in Fig, 2. These diagrams together with 

possible evaporation diagrams 3 are, we believe, the only diagrams which are 

large at s = a O 10 
They behave like s(fn~)~ at large s where N is the number of 

primitive bubbles introduced in III, Readers are referred to this reference for 

details O 

Diagrams in Figs. 2 and 3 will no longer give the simple fixed s1 behavior O 

Actually, this is important as the fixed s’behavior violates unitarity. l1 Ifwe 

take this larger set of diagrams seriously, we find that the droplet model must 

be modified. Among other possible modifications (see Section 5)) the s- 

independent potential appearing in the original operator droplet model might be 

replaced by an s-dependent potential V(s,> O To see how this fits in naturally, 

we consider diagram (2a) D It is shown in III that the over-all amplitude for this 

type of diagram is 

e 
S a’a %‘c --- 
2m m J- 

d2b e-$& &@,j$ - 1 1 
with 

iX(s,k) = 

(4.1) 

(4.2) 

F(s,&) = c (all connected diagrams with 

momentum-transfer k) O (4.3) 

A direct calculation from the operator droplet model, in analogy with Lee, gives 

wy) = - X(%2) 

= Fourier transform of iF(s,kJ o (4.4) 
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An s-dependent potential obtained by including all connected diagrams should be 

an important generalization of the original droplet model. 

The geometrical meaning of this modification is that the “opaqueness I’ of 

the droplet is energy-dependent o Hence, it leads to a slow s-dependence in the 

forward differential cross section. 12 This is also the physical picture suggested 

by the Regge model. 

Another ‘important class of diagrams that we would like to discuss is that 

associated with the evaporation of particles from the bubbles. These evapora- 

tion particles have a dp+/p+ distribution in momentum space, and are qualita- 

tively different from particles emitted from blobs A and C. It is physically 

sound to identify jet A and jet C emitting from blobs A and C as fragments of the 

target and the projectile. For evaporation particles, however, there is a 

uniform distribution in tip+ space, The momentum spectrum of these particles 

spans the entire available range, starting all the way from pa to pcO As s 

increases, the available range of the momentum spectrum increases, Never- 

theless, its distribution remains the same (uniform distribution) in knp+ space, 

For this reason, they should not be classified as fragments. 13 The partial 

amplitude for the evaporation of particles B in Fig. 3b can be computed in an 

analogous way as 

(4q2 6 tc P+) GE q-) 

X <BIT j+txl+=O, zl, x1-) o. o c j-(y 1+’ 21, y&. =O) 000 
3 > lo (4.5) 

This result does not reduce simply to products of o+ and u because 

j+(x+=O, x, x ) and j-(y,, y, y =0) do not commute. 14 
Awr - .- - 
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5. QUANTUM ELECTRODYNAMICS 

The separation of interactions into an interaction without fundamental vector 

particles and an EM interaction mediated by photon (a vector particle) exchange 

no longer makes sense in pure quantum electrodynamics (QED) 0 Even though it 

is still possible to classify a diagram according to its primitive components, as 

we did in III, summation over diagrams analogous to Fig. 1 does not lead to an 

expression suggested by the original operator droplet model. This can be under- 

stood from the observation that the generalized vertex function 
- 

f I7dxe 
-iLqi.x. 

’ <AIWp(xlJ l 0 ‘jAtxN)) Ia) 

will give rise to an amplitude which contains all possible N-photon diagrams, 

including both the primitive and the nonprimitive graphs. This amplitude is 

denoted by a black box in Fig, 4. Therefore, a partial sum of the graphs, such 

as Fig. 1, is not sufficient in the present case to generate an expression con- 

sistent with an operator droplet model. 

The above considerations indicate that a sum over all possible photon ex- 

change diagrams between two black boxes in Fig, 5 should lead to an operator 

droplet model analogous to the result developed in Sections 2 and 3. Since the 

black box contains all kinds of nonprimitive graphs, the union of two such black 

boxes should generate all possible leading graphs, and hence the leading ampli- 

tudeats=a. The amplitude for process a+c --) A+C (i.e., jet A and jet C) obeys 

relations (2.6) and (2,16) provided that we replace the expressions CA* 

and CC (BOB.) O0 ‘+ 
--ec..- in (2,6) by the corresponding expressions A* -00 + and 
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pw for the black boxes. Hence, for N-photon exchange, we have 
--ooo- 

For the over-all amplitude, we have 

d2y 0i-Q V(c-y) U-Q 1 -11 a’, cl’) 

To make these expressions more precise and hence more useful, we would 

like to study the black box contribution carefully, Strictly speaking, the pertur- 

bation expansion of (5.1) , or equivalently the black box expression A (BOB.) 
, 

does not approach a finite limit at s = 00, (Of course, this does not exclude the 

possibility that the over-all sum of the perturbation series may converge to a 

finite limit. However, we shall not investigate this possibility here.) The 

lowest order (e6) diagrams which lead to this divergence difficulty are due to 

the photon-photon interaction, as shown in Fig. 4b. These diagrams are, in 

fact, the lowest order nonprimitive diagrams. Following the argument given in 

III, it can be shown that the contribution to Fig. 4b goes like !2nsl at large sl, 

where s1 is the energy-squared for the incident electron (of momentum pa) 

measured in the reference frame. In our language (see paper III, Section 2)) 

&I sl is a measure of the available !&I p+ phase space in which the electron loop 
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can slide freely. If we cut diagram 4b horizontally, we find that the intermediate 

state consists of an e+e- pair. This e+e- pair is the simplest evaporation process 

which we discussed in Section 3. The divergence in (5,l) may be viewed as due 

to the presence of these virtual evaporation particles in the intermediate state, 

and reflects the increase of the available phase space as s 1 increases. 

Since the subenergy s1 depends on the particular reference frame, the same 

arbitrariness will appear in the evaluation of the black box in graph 4, This 

sounds unpleasant because the physical amplitude should not depend on the par- 

ticular reference frame being used. However, as we shall see, the dependence 

on the reference frame is only superficial. This dependence will disappear if 

graphs related to one another by different partitions are all added together. This 

is very similar in spirit to the verification of gauge invariance in the usual QED 

calculations. In general, individual diagrams are not gauge invariant. However, 

when diagrams with photon vertices permuted in all possible ways on a charged 

line are included, a gauge invariant result is always obtained. 

In the following, we wish to work out a few examples by means of expression 

(5.2) (or equivalently (5.3)) to reproduce QED perturbation results obtained so 

far, In particular, we would like to demonstrate how a reference frame inde- 

pendent result emerges and how the correct (Qn s)~ behavior is recovered,, 

A. Repetition of Bubbles in t-Channel 

The first example that we wish to work out is the repetition of bubbles in 

t-channel, shown in Fig. 6a. The relevant part of the left-hand black box with 

two external photons are given in Fig. 6b. The partial amplitude for these 

processes in the black box can be computed by means of the method developed 
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in III, giving 

dq’ 
_ AtBo B”)(p;, q3 
4n i-l- 

. 2 - ie 2 - ie 2 - ie 
2 

+ Iat J(i&) J(P, s) - - - - 
rr * g+p2J-;+p2 g+p2 $+/A2 

f 000 , (5.4) 

where Ia and Ic are impact factors for a + A, and c --* C, J(p, q) is the loop con- -ti 

tribution introduced in III. Similarly, we can compute the right-hand black box 

bs2 d2r .2 .2 
= Ic(? * - -2 J(4,,3 I&) + + 

4n J (27r) g+II 5+1-l 

d2r d2t 
.2 - ie 2 - ie 2 - ie 2 

-- 
ml2 P7Q2 

J&y--) J(>i) I&) - --- g+p2 $+p2 $+p2 $+/A2 
+ 0.0 0 (5.5) 

where s2 is the subenergy for particle c in the same reference frame. Simple 

kinematics tells us that, as s1 2 --+ m, 
15 

, 

Qns,+llls,+llls 0 - (50 6) 

In our language, this is simply the additivity of the Qnp+ phase space introduced 

in III, 
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The full amplitude is obtained by gluing together the right- and left-hand 

black boxes through (5 O 2) O The simplest two-photon exchange part without any 

bubbles gives 

s 1 -m 
2 2! (5.7) 

which is trivially correct. Each of the factors in (5.7) is reference frame in- 

dependent, as is their product. 

The first interesting case comes from the single bubble amplitude, It 

corresponds to the coupling of a one-bubble contribution from one black box to 

the no-bubble contribution of the other. Diagramatically, it is shown in Fig. 7. 

The contribution from Fig. 7a,b can be obtained by multiplying the corresponding 

terms in (5.4) and (5.5), giving 

s Psl --- 
J 

d2q d2p 
2 2! 4n 

FY2 Gw 
2 Ia@) J(,p,c$ It(q) +2 g2 +$ +$ , 

Ic ,p1+cL ,p2+cL 4;1+c” z2+/J 

and 

(5.8a) 

lbS2 J d2q d2r 
.2 .2 .2 .2 

s 
3 2! 4n 

m-l2 @?I 
2 Ia($ J(s,$ $p) --j+ * +$j & , 

lm g;l+c” ,92+/J :1+l-l 52+/J 

(508b) 

respectively. By adding together these two pieces and making use of (5.6), we 

obtain 

s Ins d2p -- 
f 

d2q 
4 4n 

(W2 w2 
Ia J(?s Ic($ & -& -& -& 0 

:1+1* 3+c1 ‘&f/J c&+lJ 

(5.9) 
/ 
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Even though each of the individual terms is frame dependent, their sum is not, 

The final result agrees also with earlier calculations. 

To demonstrate that the result holds for multibubble amplitudes, let us 

work out diagram 8 which involves the repetition of two bubbles. The contri- 

bution due to diagrams a, b, and c are 

2 2 -- ie ie 2 2 2 - - - ie 2 - - -- ie ie - X ie 

.i;+p2 L;+P2 _p;+p2 &P2 %;+P2 g+P2 
, 

) 
!lnSl Pm2 

\&T 4n4n d2p d2q d2r2 I,(P) J$, 2 Jb r) I (r) 
m2 w-l2 cm - 

rru cc 

2 2 
X 

- ie - ie 
222 2 
,p1+cI 3+/J 

- ie 2 

&P2 

- ie 2 - ie 2 
-- 
g+lJ2 $+P2 

- ie 2 

2 2 
crz+I-l 

, 

and 

Q 0 

S 

-1 

1 bs22 d2q d”l d&t 
\202! 2!\4n )/ ml2 PI2 (279 

- 2 Iat,” J(>g J(L,i) Ict2 

- ie 2 - ie 2 
X 

&+P2 g+P2 

- ie 2 - ie 2 - ie 2 - ie 2 
---- 
$+/A” &+p” $+/A2 g+/A2 

(5,lOa) 

(5. lob) 

(5. NC) 

respectively. Each of the above expressions contains a frame-dependent factor 

multiplied by a common frame-independent basic term. Adding all three expres- 

sions together, we are led to a frame-independent factor: 
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and hence to a final expression 

2 2 2 2 2 2 - ie ie ie ie ie ie - - - - - 
x ------. 

L-+/J 2 j2+l-4 2 2 _p;+lJ2 _p;+cc2 &P” &f/J2 
(5.12) 

Equation (5.12) coincides with our previous calculation. The generalization of 

the present result to iteration of N-bubbles is straightforward. 

B, Iteration of Bubbles in the s-Channel 

As a final example, we work out the iteration of two bubbles in s-channel. 

We shall omit most of the algebra because it is similar to what was used in 

example A. The diagram that we are dealing with is the e-e- scattering ampli- 

tude in Fig. 9, The relevant parts in the black box are shown in Fig. 10. This 

contribution can be worked out as 

dq’ - A(BJWtpt q3 = 6,1, + ___ IT-- EEa , Qpsl‘ r d2P-Id2P2 
47r a’ m . 477 

W4 
J(,p1s~2i~l~2) 

G3 2 s2@~+$-g2) 
.2 .2 

* * +perm. of (1.2, 3-4) in pairs 
21+c1 k&+/J I 

d2PId2P2 - ie 2 
J(,pl, ,p2 ;~_,9~) 

- ie 
2 

cm 
2 2 

W4 &+d (EJ$+P21 
6 (,p1+,p2-9,& 

2 2 
X 
I 

d 934 - ie 
4 

t2q 
J(,p3 ‘,p4X3 24) - ie2 ml2 s2(;3+134-~341 

(_p;+P2, (;;+A 

+ perm. of (1,2,3,4) intwo pairs 1 + OoO (5.13) 
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with 

where a’, a are helicities of the electron before and after the scattering, When 

one puts the two black boxes together, the various parts which correspond to the 

processes shown in Fig, 9 give 

s 1 Ga’a 6c’c ---- 
24! m m [3()2+ G(z)(%) + 3,2)2] 

(a) 04 (4 

X / 
d2ql d2q2 d2pl d2p2 - ie 2 - 2 - ie 2 - ie 2 

---- 
PQ2 WI2 tv2 ml2 

J(~l~s?2;,pl~cp2~ 2 2 ie 2 2 
,91+/J 54+/J ,pl”P &+I-4 

d2q3 d2q4 d2p3 d2p4 . 2 - ie 2 - ie 2 - ie 2 “J-- - -2 J($A~;E~,~~) -+ - - - 
(W2 PO2 (W2 w? s3+lJ2 $+p2 ??P+p2 g+P2 

d2q 
X 

12 d2q34 2 2 
w12 fi2(53+$4-$341 m-l2 “293+z4-$34) - - 

WI2 PI2 
f2q 6 (212234-L) l 

(5.14) 

The factors 3 and 6 come from simple counting, It is easy to see that the fn SI 

and Qns2 factors combine into 3 (Qns/4?Q2, which is frame independent. The two 

remaining complicated factors are functions of s12 and g,, only, and they are 

in a convolution form. Hence, the result becomes rather simple in the Fourier 

space, giving 

‘aVa 6c’c 
Expression (5.14) = 4 m 7 d2b e$‘k & iX(sob) 2 , c 1 W-I 
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where X(sob) is the Fourier transform of 

1 Qns 
/ 

d2pl d2p2 d2ql d2q2 .2 .2 

~-zi 
---- 
t2q2 (2f12 PI2 tv2 

J(;+? + * 
,pl’/J 3+/J 

This result agrees with the general eikonization obtained in III. 

6. COMPARISON AND DISCUSSION 

In this paper, we have demonstrated that the asymptotic behavior of QED 

can be reproduced from an operator droplet model. In particular, we showed 

that the final expression does not depend on the reference frame. If the asyrnp- 

totic perturbation of QED indeed leads to a correct description for a general 

scattering amplitude, one might expect that the operator droplet model could 

supply a useful framework for the description of hadron physics. 

We would like to point out the analogy between our model and the parton 

picture proposed by Feynman. 6 In a parton model, a fast moving hadron, such 

as a proton, is described by a group of partons all moving along the direction 

of the hadron. In general, each of the parton carries a positive fraction x of 

the total longitudinal momentum 0 Hadron-hadron scattering can be viewed as the 

scattering between two groups of partons. Feynman called those partons moving 

with the first hadron the right movers, and those moving with the second hadron 

the left movers. For final particles, the left and right movers constitute the 

“fragments” of target and projectile respectively, as suggested by Benecke, 

Chou, Yang and Yen*’ 
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The physical interesting part of the scattering amplitude is associated with 

the interactions between partons of “wee” momenturn. A “wee” momentum pw 

should satisfy the inequalities pa+>> p, >> pc+, pa-<< p,-C< p,-- i.e., a “wee” 

parton carries a momentum whose plus and minus components are much smaller 

than the large momentum of the incident hadrons e In our language, a “wee” 

parton lies somewhere in the middle of the available Qnp+ phase space. (In a 

sense, these “wee” partons are analogous to the particles which are associated 

with bubbles in the middle, such as evaporation particles.) A “wee” parton can 

not be classified unambiguously into one of the incident hadrons. It is confused 

as to which particle it belongs to 0 Its sense of motion, i, e D, whether it is a 

left or right mover, depends critically on the reference frame that we are 

choosing. A reference frame independent result can only be obtained after “wee*’ 

partons moving in both directions are included. This is precisely what we 

demonstrated in Section 5. 

The conclusion obtained in Section 5 is also applicable to a theory with both 

the strong and EM interactions, as the one studied in Section 3, or to a pure 

strong interaction theory with the presence of a neutral vector meson. The 

blackbox defined in Section 3 should now include all kinds of strong and EM 

processes, One can convince oneself from our lower order calculations that 

the order by order perturbation result from the operator droplet model reproduces 

the leading contribution of the amplitude obtained from conventional Feynman 

diagrams 0 

One warning should always be kept in mind in summing over these leading 

diagrams. Although one may show to each finite order of perturbation series 

that the set of diagrams studied here is leading at s = Q, , it is not clear that 

the sum of all these diagrams should lead to the correct asymptotic amplitude. 
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It is known that the sum of leading terms sometimes may lead to a completely 

different result from the exact solution, especially when there is a total can- 

cellation in the leading terms. The golden rule that dominant contributions in 

any field theory calculations at s = CO are given by diagrams with pure vector 

exchange is deduced precisely from a study of the leading diagrams,, The rule 

may fail in an exact theory, especially if the coupling of nonvector interactions 

are strong. 

Finally, we wish to emphasize that the main objective of the present in- 

vestigation is not to provide a quantitative calculation of the leading s = QJ 

behavior; but rather, is to extract certain physical pictures from various class 

of diagrams. The class of diagrams which are responsible for an operator 

droplet model is pointed out in Sections 3 and 5. The relation between these 

leading diagrams and the operator droplet model may be more fundamental than 

the present model calculations imply. 
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APPENDIX: COMMUTATOR RELATIONS ON THE LIGHT CONE 

It was conjectured by Gell-Mann that the equal-time commutator relations 

between the time components of a vector and another vector (or axial vector) 

current satisfy an SU3 X SU3 current algebra of the form 

(A. 1) 

where f abc is the structure constant of the SU3 algebra. We would like to show 

that, under proper limiting process, Eq. (A. 1) implies a similar commutator 

relations for currents on the light cone x+=y+ : 

(A. 2) 

On integration over x- and y-, we obtain the operator version of Gell-Mann- 

Dashen-Fubini sum rule, 16,17 

lea+(z) 9 ab+($] = ‘abc ac+(3 s2(z-,y) 0 (A. 3) 

To obtain (A,2) from (A. 1) , we make a Lorentz transformation along the 

third axis, 

U j’(x) U-l = cash h j”(x3 + sinh h j3(x3 

= + eh j+(x’) + $ e-’ j-(x? 

with 

x’ =e + 
-A x3 

? 

x’ =x cl w-1 ’ 

(X0 = 0) 

x’ = - ehx3 - 0 

- 29 - 



I 

For fixed x1 and eA --+ 00 , we have 

[ 
+ eh j+(xf=O,z, XL), !j eh j+W+= O,_y, YLl 

1 

= f eh j+(O,~,x~) S2(~~-.$ ? e-+x: - y:) 
C 1 

Cancelling out factors eh, we get (A. 2) O 

As a justification of the limiting procedure, the validity of Eq. (A.2) can be 

checked independently from various free particle models, With the help of the 

equations of motion, Eq, (A. 2) is found to be satisfied for both scalar and Dirac 

fields D 

In the simple case of QED, we know that charge density operators, j’(x) 5, 

commute among themselves at equal time. Hence, j+(x) ‘s commute among 

themselves on the light cone x+ = constant,, The last relation is precisely what 

we need to prove Eq. (2.9) O 
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FIGURE CAPTIONS 

A pure multiphoton-exchange diagram without further photon-photon inter- 

actions 0 In Sections 2 and 3, the blobs contain only the strong interactions. 

Multiphoton-exchange diagrams with further photon-photon interactions 0 

(a) A typical diagram without any vertex corrections on the incident fermion 

lines 0 (b) A general diagram with two bubbles. 

(a) A diagram analogous to 2a but with evaporation particles from one 

bubble, (b) The evaporation bubble in more detail. 

(a) The diagramatic expansion of a typical black box. (b) The lowest 

order processes which contribute to the logarithmic divergence of the 

black box, 

The union of two black box diagrams. This symbolic diagram contains all 

leading Feynman diagrams in QED. 

(a) A diagram with repetition of bubbles in t-channel. (b) The relevant 

partial amplitudes in a black-box expansion. 

Diagrams (a) and (b) are special cases of Fig. 5. The subgraphs on one 

side of the dotted line belong to a black box, Similarly, the subgraphs on 

the other side of the line belong to a different black box, The sum of (a), 

(b) gives rise to a reference-frame-independent result, 

Same as Fig. 7 with two linked bubbles. 

Same as Fig. 7 with two bubbles iterated in s-channel. 

Relevant partial amplitudes in a black-box expansion for the processes 

given in Fig. 9. 

- 33 - 



a C 

DOES NOT 
INCLUDE 

T 
NOR . . . 

Fig. 1 



- 



u) 
.- LL 

- 



(a) 
- . . - l + 

(b) 1665A4 

Fig. 4 



t S 

Fig. 5 



l l l 

MAYBE 
TAKEN 

AS =+x+x 

(a) 

92 92 
= + 

ql ql 

Pa 

q2 

91 

+e e l 

( b) 

Fig. 6 



---a------ 

-------- 

a 3 
- 

II 
+ 



-----e-w 

---------- 

+ 

---------- 



c - c I - I 
ALL ALL INvvv\ 

PERMUTATIONS PERMUTATIONS IW 
I 

(a) 

I 
I 
I 

+ I + 
I WWWVI I 
I I 

’ : . ; /,I 

- xz 
’ , ’ ,‘, , 

I 

i, 
I i 

I 
- 

I I 

(b) 

Fig. 9 

(cl 



+ II 

+ + 

+ 

- 
N

rod- 

+ 

0 - ,j, 
.- LL 


