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ABSTRACT 

In electron-positron storage rings in which the orbits of the col- 

liding beams cross at a substantial angle, a phase-dependent longi- 

tudinal force is exerted on the particles of each beam by the bunches 

of the other. The effects of this force on both incoherent and coherent 

longitudinal particle motion are investigated. These effects impose a 

limit on the number of particles which can be stored in a bunch in such 

storage rings and the limit is independent of the crossing angle (provided 

the crossing angle is sufficiently large) and of the radiofrequency accel- 

erating sys tern parameters. The limit is imposed by the requirement 

for stability of coherent particle motions. 
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Introduction 

In electron-positron storage rings the electromagnetic forces exerted by 

the colliding beams on each other are very strong by comparison with the self- 

forces of each beam, and these colliding-beam forces give rise to a variety of 

effects which limit the performance of the storage rings. The forces,are highly 

nonlinear as functions of the particle coordinates, and characteristically they 

lead to avoidance of one beam by the other when either or both beams are too 

strong, with consequent reduction of the storage ring. luminosity. (The luminosity 

is defined as the interaction rate per unit reaction cross section.) Generally 

speaking the particles congregate in traveling bunches, each one of which is 

spread around a position of synchronous phase on the radiofrequency accelera- 

ting wave. Wren the beams are not colliding so that the strong colliding-beam 

forces are absent, the unperturbed beams assume gaussian density distributions 

in both transverse and longitudinal coordinates under the influence of radiation 

fluctuations and damping. When the beams collide these equilibrium distributions 

may be disturbed, and as a result, there may occur an optimum beam current 

at which maximum luminosity occurs. In this paper, we study these effects as 

they apply to the longitudinal or phase coordinate. As we shall see, such effects 

arise in the longitudinal coordinate only if the colliding beams cross at an angle, 

and in that case there is a limit on the number of electrons or positrons which 

can be stored in a bunch. 

In the past in storage rings using head-on collisions both incoherent and 

coherent transverse beam instabilities have been. observed and studied exten- 

sively because of their importance to achievable reaction rates. In the incoherent 

transverse instability, the weaker beam is disrupted by the stronger beam so that 

the central density of the weaker beam is diminished and the luminosity accordingly 
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reduced. This effect was first described by Amman and Ritson who characterized 

the onset of serious disruption by the shift in the vertical betatron frequency for 

small amplitude oscillations of the weak beam particles due to the strong beam 

forces. ’ Both experience and computation have shown that, when this shift AQ 
Y 

exceeds a value in the range 0.05 to 0.025, disruption ensues. 
2 These transverse 

disruptions of the weak beam. have been interpreted as being due to the strongly 

nonlinear form of the (largely transverse) electromagnetic field of the gaussian 

distribution. Coherent transverse instabilities caused by the collisions between 

the beams have also been observed and have been explained in terms of the mutual 

electromagnetic forces between two strong beams. 3 

In the case of head-on collisions, no net longitudinal impulse is imparted to 

a particle by the counter-rotating bunch regardless of its longitudinal coordinate. 

Recently however electron-positron storage rings have been designed employing 

rather large crossing angles. 4 In these, the trajectories of the colliding bunches 

cross each other at an angle, so that the collisions are not head-on. Such designs 

have been evolved in efforts to achieve very high luminosities by storing many 

bunches in each beam. With many bunches it is necessary to avoid interactions 

between counter-moving bunches at places other than the interaction regions 

where the detection equipment is located, and this is done by storing the beams 

in separate storage rings which intersect at an angle. 

With the introduction of a crossing angle, the impulses imparted to the 

particles of one beam by the bunches of the opposite beam are no longer purely 

transverse relative to the equilibrium orbits of the particles and no longer inde- 

pendent of their longitudinal (phnsc) coordinates. The electric field of an op- 

positely moving Bausch eserts on 3 particle :L longitudinal force which depends 

on the phase of the particle. Thus Augustin has called attention to consequent 
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potential longitudinal beam instabilities in crossing an& storage rings which 

are analogous to the transverse instabilities described above. 5 The present 

paper describes an investigation of these effects. 

Form of the Longitudinal Impulse 

We describe the longitudinal motion of a particle in the crossing angle 

storage ring system in terms of its energy deviation E from the synchronous 

energy E and its phase deviation Q from the synchronous phase es. We ignore 

transverse motion and consider each particle to move on its equilibrium orbit. 

The energy increment 8~ given a particle due to the impulse imparted by one 

passage through a counter-rotating gaussian bunch of N particles is 

23/Z 

6E = - 
re mc2Nk 

RU 
4 

s 
Yet2-Y2& , 

0 
(1) 

where re is the classical radius and mc 2 the rest energy of the electron, k is 

the harmonic order of the radiofrequency accelerating system, R is the gross 

radius of the orbit, o is the standard deviation of the gaussian longitudinal 
cp 

density distribution of the bunch, and y = $/ ( II2 cr-) 2 2 The minus sign holds 

for electron-positron collisions; it is reversed for electron-electron collisions. 

In Eq. (1) it is assumed that the product of the bunch length and the crossing 

angle is large compared to the bunch height in the case of a vertical crossing, 

or compared to the beam width in the case of a horizontal crossing. Under these 

assumptions the impulse is independent of the crossing angle. For small Q 

8EE- 
2 remc2Nk 

Ro2 
@* 

cp 

(2) - 
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The equations of long.itudin;tl. motion of a particle under the influence of the 

radiofrequency (15) system and the radiation damping, neglecting for the moment 

radiation fluctuations, arc 

i = cV sin($ + $,) - $j e M (eV cos +,) Cp - g e 

where eV is the peak energy gain per revolution available from the rf system 

and cym is the momentum compaction coefficient. The superscript dots denote 

differentiation with respect to the dimensionless variable ft where f is the orbital 

frequency and t the time. This variable counts the number of revolutions of the 

particle. D is the damping time in units of this variable. These equations treat 

the discrete impulses given to the particle by the rf system as being spread out 

uniformly around the orbit. This is a good approximation for the characteristically 

low frequencies of the phase oscillations. We consider a storage ring system 

with the orbits of the colliding beams separated so that the bunches collide at 

only one point, and each particle of one beam encounters only one bunch of the 

other beam on each revolution, a situation readily realized in practice. If we 

then consider the collision impulse (Eq. (1)) as similarly spread out around the 

orbit, we can write the linearized, small-amplitude equation of motion for energy 

oscillations as follows. 

(5) 

eV cos es/E) is the approximate angular frequency of the 

oscillations in units of ft in the absence of collisions (oO is dimensionless), and 

?i=g/mc2. The effect of the collisions is of course to shift the longitudinal oscillation 

frcqucncy and, in the case of clcctrons hitting positrons, the shift is do\vm;nrd. Wo ma!! 
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define a new frequency 

2 2 0 =o - 0 

A convenient beam-strength parameter is defined 

2 
A=l- + z. 

4sk2amreN 

OO .+$C$ 

and we may eliminate some of the parameters of Eq. 

9 

(6) L 

, (7) 

(I) in favor of A and oo. 

9 9. 
& = -A (g)k1j2 .e--) s,” etaey” dt. (8) 

Incoherent Instability 

The longitudinal incoherent instability can be most clearly understood by 

studying the behavior of a weak beam under the influence of a strong one, Under 

these conditions we can assume that the strong-beam distribution is undisturbed 

by the weak beam and the impulse is given correctly by Eq. (8). Because of the 

typically low frequencies of phase oscillations in electron storage rings, we can 

visualize the influence of the impulse in terms of its (averaged) effect on the 

potential well in which a particle of the weak beam moves. * The radiofrequency 

system creates a potential well which, in the region of phase which would be 

occupied by a damped, unperturbed weak beam, is adequately approximated by 

* 
Strictly speaking the notion of a potential well is not applicable to the system in 
a real storage ring; because both the radiofrequency accelerating system and 
the collision impulses act at certain discrete, highly localized places around 
the orbit. However, the impulses are weal; enough that the characteristic fre- 
quencics (e.g. , coo) are sufficiently low that the concept of an approximate 
potential is useful. 
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a parabola whose curvature is proportional to the unperturbed frequency oo. 

The introduction of t:he strong beam impulse alters the shape of the potential 

well, adding a potential proportional to an integral over C#I of Eq. (8) and reducing 

the curvature at $ = 0. At strong beam strength A = 1, the curvature at $J = 0 

has been reduced to zero, and so correspondingly has the small amplitude fre- 

quency . At beam strengths greater than one (A > l), a hump appears in the 

center of the potential well, producing two separated potential minima. The 

weak beam always distributes itself in the well so as to maintain a fixed rms 

energy spread determined by the radiation constants and independent of the shape 

of the well and therefore of the strong beam strength. Thus we anticipate that 

the weak beam should be broadened or dispersed in phase when the strong beam 

distorts the potential well and that, beyond unity strong beam strength as defined 

above, the weak beam should begin to separate into two parts. 

_ To test this picture we coded a simulation program to run on the SLAC 

IBM 360/91 computer. We chose computer simulation to study the problem 

primarily because we have been engaged recently in similar work, so the tools 

and techniques were readily at hand. In the program the weak beam distribution 

is developed by following the motion of a single test particle for many damping 

times and sampling its state of motion once each damping time. The samples 

are sorted into histograms which, by appeal to the ergodic hypothesis, are 

considered to be the weak beam bunch distribution functions in $ and E. Also 

certain statistical properties of the distributions are computed. 

The radiofrequency accelerating system is treated according to Eq. (3) and 

Eq. (4) as a linear restoring force and average radiated power is considered to 

vary linearly with energy, so the particle dynamics between impulses are those 

of a damped harmonic oscillator. Radiation fluctuations are simulated by 
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introducing instantaneous increments in the variable E distributed randomly 

and uniformly in the interval between -W/2 and +W/2. Such a spectrum has rms 

value f ErmS = w/121’2. It was found unnecessary to randomize the phase at 

which these fluctuations were applied in the range of oscillator frequencies of 

interest. The impulse, simulating the collision with the strong beam,, Eq. (8), 

is applied once each turn. 

For purposes of computation, we measure energy in units of (EwO/2nlrtrm) 

so that for A = 0, a; = cr where ~e is the rms energy deviation of the test 
@J 

particle. Also we expect 

ue = f erms “fd 1’2/2 = W(nfd/48)lj2, (9) 

where nfd is the number of fluctuations occuring in a damping time. The width 

W of the rectangular random-increment spectrum is adjusted to give, for A = 0, 

a; = 2-1/2 energy unit, u = 2 -l/2 
@ 

, 

which, together with the choice of energy unit, results in a simplified form 

for Ey. (8) to speed computation. The program was tested to verify that Eq. (10) 

held for the weak beam distributions generated in the absence of a strong beam 

(A = 0) over a range of oscillator frequencies and damping times covering the 

region of interest. 

For simulation of the influence of the strong beam, the results of a numerical 

integration of Eq. (8) were tabulated in memory as a function of C#J at intervals of 

0.1 unit. During the simulation, the impulse as a function of the coordinate Q, 

was obtained by interpolation in the table, ;L very fast procedure. The speed of 

the code w:~ faster than 20 microseconds per interaction. 

The results of several typical runs arc shown in Fig. 1. In each run the 

particle is started at $ = 0, E = 0 and run for 1000 damping times. The 
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coordinntcs $ and E are sampled at intervals of a damping time and sorted into 

the histograms shown in Fig. 1. The sampled coordinates are also used to 

compute their rms values and the overlap integral of the strong beam and weak 

beam distributions. The overlap integral 0, which is the integral over Q, of the 

product of the weak beam distribution and the (unperturbed) stro2ng b;am distri- 

bution, is computed by summing contributions of the form e - (’ ‘2u#)) where up 

is the sampled coordinate and u2 = 0.5 as in Eq. (10). 
e 

At the end of the simu- 

lation computation the sum is normalized so that it is equal to one for complete 

overlap, which occurs for A = 0. As a measure of the statistical fluctuation in 

the results of the simulation, we find an rms spread of the order of 1000 -l/2 

in the values of the rms value of E for different runs with the same parameters, 

indicating that samples taken at intervals of a damping time are statistically 

independent. 

The distributions of Fig. 1 show t.hat there is little disruption or dilution of 

the weak beam up to A = 1. At A = 2 serious broadening in tp has begun, and at 

A = 3, the weak beam has separated into two lobes. The overlap integral is 

plotted in Fig. 2 as a function of A. The luminosity is proportional to the beam 

strength and to the overlap integral and we define their product as the relative 

luminosity which is plotted against A in Fig. 3. It is clear that, from the point 

of view of incoherent disruption of the weak beam by the strong beam, beam 

strengths well above A = 1 (the value for which the small amplitude frequcnc3 

w goes to zero) are permissible. 

Coherent Instability 

Since the integrity of the colliding lxu~ches is preserved to rather large 

values of the beam strengt.1~ pnrxmctcr, it is rcnsonnblc tostudythe coherent 

longitudinal motion in the npprbsimation of rigid buncl~os in the rnnge A < 1. 
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This is a strong-beam-strong-beam case. For this purpose, WC assume that 

each bunch of each beam is stable under the influence of its own radiofrequency 

system in the absence of the other beam and that each bunch of one beam collides 

with only one bunch of the opposing beam. Again spreading out the interactions 

and, in addition, linearizing the impulse as in Eq. (2), we write for the motion 

of bunch 1 and bunch 2, 

. q2 -I- 2cx2$2 + co;“b2 = qe2 - @1)1 (11) 

where cxyl and a2 are both positive damping rates and include both the effects of 

radiation damping and those of the beam-rf-system interaction. 6 

K1= 
4rk2amreNl 2 

R$, 1 
= 

YAl ’ (12) 

and similarly for K2. These are coupled, damped-oscillator equations. The 

free phase-oscillation frequencies for the uncoupled oscillators (Kl = K2 = 0) 

are , respectively. The characteristic 
pft equation for the normal modes e of Eq. (11) is 

p4 + /33[2(or, -I- CY~)] +- P2[4alw2 + (co; - K2) + (a; - KII] 

+ p (co; - K1 + 2o! 2 (-:-K~)] + (+-K~)(c+KJ -K~K~=~ 

(13) 

The conditions of the Routh-Hurwitz criterion that there be no unstable normal 

modes reduce to the single inequality 

22 ‘4 4 KlK2 = o1o2 - o1A1 - w2A2 > 0. (14) 
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At this point, it is important to note that the beam strength parameter A 

is independent of radiofrequency system parameters (although that fact is not 

explicitly evident from its definition, Eq. (7)). For the gnussian equilibrium 

distributions we are considering, 

2?rkarmq 

ooo= E ’ 

from which we can write 

A= 
re( mc2)2+yN 

0 

(15) 

(16) 

which is obviously independent of rf parameters. 

The luminosity is proportional to Al A2/ u1 +a2 ( ( 2 2)1’2)where ai and u2 are 

the rms phase spreads, and Eq. (14) can be rewritten as 

+ I1 (17) 

It follows that ul and u2 should be made as small as possible by increasing the 

accelerating voltage ai much as possible. This, of course, results in the 

highest possible synchrotron oscillation frequencies. Then assuming the accel- 

erating voltages to be equal we obtain the restriction 

(18) 

for each bunch. This restriction required to retain coherent stability is obviously 

more stringent than Lhat imposed by the incoherent instability treated in the pre- 

vious section as can be seen with reference to Fig. 3. 

Physically this limit represents the beam strength at which one of the normal 

mode frcyuencics has been pushc~d to zero. Beyond that point, that mode would 

be char:Lct.crized by csponc~ntj:1lly :?:rowin g separation of the bunches. For large 
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separations the linearized analysis breaks down and nonlinearities play an im- 

portant role. It is probable therefore, that Eq. (18) gives a conservative estimate 

of the effective limit. 

Conclusions 

The coherent longitudinal interaction between bunches in an electron-positron 

storage ring system employing a crossing angle places a limit on tl.ie charge which 

may be stored in each bunch. At this limit, there will be no substantial incoherent 

disruption of either bunch by the other. The limit is such that the frequency of 

small-amplitude incoherent phase oscillations of individual particles is reduced 

by the factor 2 -l/2 from its unperturbed value. The limit is conservatively esti- 

mated from the small-amplitude analysis to be 

rRa cr2 
N5 me 

2remc2E 
. (19) 

The actual limit in practice may be considerably higher owing to the stabilizing 

influence of the intrinsic nonlinearities. As an example, for the intersecting 

storage rings presently under design at SLAC, R = 35m, am = 0.03 and at 

E = 2 GeV, a; = 0.96 MeV. For these parameters N I 0.5 X 10 12 . 
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FIGURE CAPTIONS 

1. Equilibrium distributions in phase and energy at different values of the beam 

strength parameter A. For all distributions we/2x = 5 X 10 -3 , the damping 

time is 2000 revolutions and there are 1000 samples in the histogram. On 

each histogram is shown the corresponding values of A, the strong beam 

strength parameter, c 
4’ 

the rms spread in phase, a; , the rms spread in 

energy, R, the ratio of o- 
4 

to its unperturbed value of 0.707 and, 0, the 

overlap integral. 

2. The overlap integral 0 of the weak beam and strong beam distributions as a 

function of the strong beam strength parameter A. The integral is normalized 

to one for complete overlap which occurs for A = 0. Error flags indicate 

estimated rms statistical spread. 

3, Relative luminosity as a function of the strong beam strength parameter A. 

The straight, dashed line shows the luminosity which would be achieved if 

there were no disruption due to the strong beam. Error flags indicate 

estimated rms statistical spread. 
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