
Paper written: June 1970 SLAC-PUB-776 
Paper issued: July 1970 (TH) and (EXP) 

RESONANCE MIXING, “DIPOLES”, AND ‘ZOMBIES” 

Leo Stodolsky 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

If the lively discussion of the p-w system and the A2 splitting at 

this conference is any guide, the problems of resonance mixtures will con- 

tinue to be an active one for some time, Therefore I would like to review 

here a simple formalism for treating the problem and in particular to 

emphasize certain points: 

1. The parameter which gives the nonorthogonality of the under- 

lying states caused by their mixing is in principle directly 

measurable in a “missing-mass” type experiment, being given 

by the interference term between the Breit-Wigner shapes. 

Thus the need for a large interference term in the A2 rules 

out any kind of “weak mixing” explanation. 

2. Perhaps even more striking than the “dipole” is the apparent 

need in the A2 problem for a “dead” state, which couples neither 

to production nor decay. This seems forced by the similiarity 

of the A2 effect in all decay modes. Perhaps such states should 

be looked for in isolation. Simple formulae are given for the 

cross section shapes for such phenomena. - 

THE MASS MATRIX FORMALISM 

The problem of resonances and their mixing is simply and explicitly 

attacked by thinking of two kinds of states. First there are the discrete 

*Work supported by the U. S. Atomic Energy Commission, 

(Submitted to the Experimental Meson Spectroscopy Conference, May l-2, 1970, 



eigenstates lo > , I p> , 0 e a of a Hamiltonian Ho, where Ho contains all inter- 

actions except that causing the decay of the states. The second kind of 

states, which we call tm> , In>, 0 e 0 are the eigenstates of a “mass matrix” 

M. M arises in the course of considering the effect of an interaction, V, 

which makes the levels I (Y> , I/?>, 0 D o unstable, M is a matrix in the finite 

dimensional space ICY> , I ,f3>, . e 0 and the in>, I m> , . . 0 are simple linear 

combinations of them. The importance of these eigenstates of M is that 

they decay as an exponential in time or correspond to a simple Breit-Wigner 

term in the energy variable. The eigenvalues of M are complex, 

Mln> = Enin> = (Ei- i/2&)1n>, representing the energy and width of In> D 

Since Ho is Hermitian, its eigenstates are orthogonal 

but 
<alp> = 0 

<nlm> # 0 
(1) 

in general, since M is not Hermitian, as we’ll see. 

We note in advance that if the resonances in question are well 

separated then the non-Hermitian (“width”) part of M is small compared to 

the Hermitian (real energy) part and the problem reduces to the familiar 

one of diagonalizmg an effective Hamiltonian. Thus nothing special is to be 

expected unless the resonances are overlapping. 

The problem of a set of levels I cr> , I p> , o D D which become unstable 

through the “turning on” of a V can be solved explicitly and without the use 

of perturbation theory’ (subject to the proviso that the effects of turning on 

V are not so violent so as to completely disrupt the spectrum set up by Ho 

or at least that V can be separated into parts to give a new Ho so that this 

does not happen) 0 The resulting formula for M, expressed in the basis of 

states la>, lP>, ooe is 

M =M” + 
s 

a 
<a!lVlk,j+> <+k, jlVlp< 

aP QP k E-E(k) +ie (2) 

The Mzp are the matrix elements of Ho before V is turned on, i.e., the 

original energies. The I k, j > states are the continuum states in the spec- 

trum of Ho, the “final states” of the decay with momentum k in channel j . 

The + symbol takes care of any final state interaction between these 
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states. The integral has a principal value part which is real and corresponds 

to simply a real level shift; we combine this with M” to get a new MO. The 

6 function contribution at E(k)=E brings in a factor of i and gives us a width 

matrix K We have then 

with 

ro, = q 2a<a!lVlj,k+> <+k, jiVip> G(E-E(k)) , (4) 

i.e., the “Golden Rule ” in matrix form. While both M and r are Hermitian 

since the numerator in the integral in Eq. (2) is Hermitian, M can be any- 

thing, obviously D 
With time reversal invariance and the usual choice of phases, 

however, M is symmetric 

%=M 

(using time reversal) 
(5) 

and M and r are real. Thus looking at the integral in Eq. (2)) we have the 

usual correspondence: virtual transitions, with E(k)#E give contributions 

to the real part of M; physical transitions, with E=E(k), give contributions 

to the imaginary part of M. This means that the elements of rmay be 

found or inferred from experimental data on the decays of the states. M on 

the other hand is more difficult and we must rely on models or symmetry 

statements. Although we henceforth assume time reversal invariance, 

note that this does not simplify things especially. Eigenvectors are still 

not necessarily orthogonal and a symmetric matrix need not even be diag- 

onalizable, e.g., 

MATHEMATICS 

The relevant mathematics is the following. By substitution of the 

symbols + - - the usual proof for the orthogonality of the eigenvectors of 

a Hermitian matrix becomes for a symmetric matrix 

qum=o, n#m 
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where Urn is the mth eigenvector 0 The lack of the usual complex conjuga- 

tion in Eq, (6) means that bizarre things can happen, for example, 0, : , the 
eigenvector of the matrix mentioned above, is “orthogonal” to itself in the 

sense of Eq. (6). 

If, however, the eigenvalues of M are nondegenerate or more gen- 

erally if its eigenvectors span the space such things do not happen. 2 Mean 
then be diagonalized and has as many distinct eigenvectors as it has dimen- 

sions 0 But if there should be degenerate eigenvalues then M may not be 

diagonalizable. In this case it will have fewer eigenvectors than dimensions. 

This later situation may be recognized by the fact that although the matrix 

(or relevant submatrix for larger than 2 x2) has degenerate eigenvalues, it 

is not proportional the unit matrix as it would necessarily be if its eigen- 

vectors were distinct. Physically, matrices approaching this nondiagon- 

alizable condition correspond to the appearance of the ‘dipole” phenomenon. 

We can change Eq. (6) to the usual bra-ket notation by using the time re- 

versal operator T to introduce a complex conjugation. That is, since I Q! > , 

18) ) 00. are taken to be eigenstates under T we have 

T(alo> + bl@> , *. .) = a*la> + b*@> ,..D 

so that Eq. (6) is 

<Tnlm> =0, nfm (7) 

Our choice of phases is the conventional one; for example if I a> is p. 

meson (of pure isospin 1) , and I j > is the 2n state, then in the matrix ele- 

ment <crlVlk, j> is essentially the real coupling constant f pm On the 

other hand, the In>, I m> . 0. are expressed in terms of the I Q! > , I /? > . e o 

with complex coefficients, so that the <ntVlk, j> are not necessarily real. 

It is important to notice that the usual expansion of the unit matrix 

as I = z 1 a! > < a! I does not hold for the in> , em> ) due to their nonorthog- 

onality. Instead, if we supplement Eq. (7) with a normalization condition 

so that 

<Tnlm> = 6 nm 
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then we can write 

1=x in> <Trill 
n 

(9) 
= c ITn><nl 

n 

The normalization chosen in Eq. (8) is not the usual one and requires special 

handling as <Tnln> -+ 0. This only happens, however, in the case that M be- 

comes nondiagonalizable, otherwise it is diagonalized by an orthogonal 

matrix3 so that the product is preserved9 and cannot be zero. A final point 

follows from the definition of In>, tm> as eigenvectors with (complex) eigen- 

values En,Em, o 0 D e Applying this and subtracting we get 

<nlM - M+Im> = (Em-E:) <nrm> 

or from Eq. (3) (10) 

<nlrlm> = i (E m - Ez) <nlm> 

For n#m this is known as the Bell-Steinberger relation;’ for n=m it gives 

the width of in>, since En-E: = -ir’. 

FORMATION AND PRODUCTION 

For ‘formation” reactions in which the resonances are formed 

directly from the incoming particles, as in e+e- -+ (p, W) -+ 2n, the scatter- 

ing amplitude can be solved for directly to give 

T +i = <f ,kf(Vjo> II 1 & ap <PlVlk,,i> l (11) 

If Yinal state interactions” with the same quantum numbers are present 

other than that already accounted for by the resonances, they can be taken 

care of by simply adding to (11) the scattering they would produce in iso- 

lation and then by putting appropriate + and - symbols in the initial and 

final states D ’ 
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By inserting Eq. (9), Eq. (11) can be brought to the form of a sum of 

distinct Breit-Wigner terms : 

Tfi = c 
<f,kflV/n> <TnlVlki. i> 

n En-E 

and using the time reversal invariance of V 

Tfi = c 

<f,kflVln> <i,kilVln> 

En-E (12) 
n 

Note the explicit symmetry in the indices i and f, exhibiting the time rever- 

sal invariance O In general < f, kf IV1 n> will depend weakly on the momentum 

and if we take out an explicit spin function describing the angular distribu- 

tions, we can write for the reduced matrix element 

<ilVln> =fm e (13) 

These fin are the coupling constants from the physical resonance states to 

the initial and final states. Then we have for the resonant cross section 

into channel f 

c ffn fin 

n En-E 

2 
(14) 

The fin can be expressed in terms of the couplings fia! to the basic states 

ICY>, IP> .** e It is the ficu that are real and that are usually known or 

guessed in terms of SU3, the quark model, etc. So if we have 

In> =ala!> +blP> + . . . 

then Eq. (13) becomes 

fm=afia! +bfip+ OOe . 

(15) 

In general M(E) is a function of energy; in addition to the explicit E depen- 

dence in the dispersion integral in Eq, (2), we expect phase space and kine- 

matic factors to vary with energy, This adds no fundamental complication 

since everything we have done can be done at each energy separately. If 
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M varies somewhat across the resonance region, it simply means that the 

En in Eq. (14) and the a’s and b’s in Eqs. (15) and (16) may be slowly en.ergy 

varying. Various models may be used for this energy dependence, for 

example the usual assumption that widths vary as f - k 2pt-1 due to phase 

space factors might suggest using fm - k 2&l since the same phase space 

sums appear D In the present phenomenological context the “current-mixing” 

formalism, which has to do with taking into account threshold constraints 

on S=l meson resonances to presumably coupled to conserved currents, 

simply amounts to a certain model for treating this energy variation. In 

any case, even for rather broad resonances, such as in the w-p system, 

such effects are small. 

If we now consider “production” reactions like nN-+ (p’, o) N, where 

the resonant system is produced together with other particles in the final 

state, we0 cannot, due to the complexities of the more than two-body problem 

give a complete derivation of the scattering amplitude from first principles. 

If we assume, however, that the resonant system, once produced by a pro- 

duction amplitude A, does not further interact with the other particles in the 

final state, then the obvious generalization of Eq. (11) is, for decay into 

channel f 

(17) 

The symbol i represents the ensemble of quantum numbers characterizing 

the initial state of the reaction as well as those of the other particles in the 

final state. The cross section into channel f is found analogously to Eq. (14)) 

by inserting Eq. (9) so that 

Tfi = x<f,kflVln> $- A (9 
n n-E Tn 

and 
- 
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The notation ATn means that the production amplitude A is to be evaluated 

onto the state <Trill related to Eq. (15) by 

<Tni = <ala+ <plb + . . . (19) 

THE NONORTHOGONALITY 

When we imagine “turning on” the V which couples the stable states 

to the continuum it may be that V respects some quantum number which 

serves to distinguish the states. In that case there remain essentially un- 

coupled states that have different quantum numbers and a unitary transfor- 

mation will diagonalize M. Then we have the conventional situation where 

the eigenstates are orthogonal, <mm> = 0. This is the case in the K” sys- 

tem without CP violation or the p, w system without isospin violation. The 

further weak violation of the symmetry here will lead to a small nonorthogo- 

nality of the eigenstates. Or it can simply happen, as may be the case for 

the A2 splitting that there is no quantum number involved and the coupling 

between the states immediately produces a large nonorthogonality. 

In any case it is interesting to note that the nonorthogonality of the 

states is effectively measured in the”missing-mass”type of experiment. The 

size of the interference term needed in addition to the simple sum of inco- 

herent Breit-Wigner intensities gives this nonorthogonality. This is because 

in the missing-mass experiment we sum over all final states f for the decay 

of the resonant system and if the states involved are orthogonal the inter- 

ference dips and peaks in different f cancel each other out. This follows 

from formal manipulation of Eq. (17)) since we can put 

xuf =qlTfJ2;TAt(i)[&] QslVlkf,f><f,kflVl~>[~]~~A~(i) 
- Y 

Now if we carry out the & over final decay states we see that the bilinear 

form V’V in Eq. (20) is by Eq. (4)) just the width matrix r so in symbolic 

notation 

c uf -A’(i) - l &L- 
Mt-E M-E A(i) (21) 
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Now using Eqs. (8) and (9) appropriately 

x0-f - c A&(i) +E <n 1 rl m> Em’-E ATm(i) l 

If rdoes not connect In> and em> there is no interference between different 

Breit-Wigner terms. But <n I rl m> is related to the nonorthogonality of 

tn> and Im> by Eq. (lo), (<nlTim> = i (Em-E3 <nlm>), so if <mm> = 0 
there is no interference in xof. Hence the need for interference terms be- 

yond the simple sum of Breit-Wigner intensities in experiments where de- 

cay modes are not selected is prima facie evidence for the nonorthogonality -- 
of the underlying wavefunctions. In principle the <nlTlm> can be found by 

summing over i and fitting Eq. (22) to the data. The utility of knowing 

<nlrlm> , or <nlm> is that it is a global parameter characterizing the 

entire system. Thus in the theory of the p-w system5 we have a definite 
prediction < p I w> = -i2 Im l y -i (0.12)) while in the A2 problem the in- 

ability to fit with incoherent Breit-Wigner automatically indicates a large 

nonorthogonality of the states. 

THE DIPOLE AND THE ZOMBIE 

What happens if the two eigenvalues of a 2x2 matrix, in both their 

real and imaginary parts, approach each other? Either we get M- I or M 

approaches a nondiagonalizable matrix. When this happens the two eigen- 

vectors approach each other and become parallel; the nonorthogonality dis- 

cussed above becomes maximal, and the dipole can result. 

For 2x2, this matrix is essentially unique up to addition and multi- 

plication by constants. The degenerate eigenvalue Ed fixes one of these 

constants. That is 

EdI - d (23) 

(22) 

is the general symmetric nondiagonalizable matrix, with eigenvalue 

Ed = Ez - i (rd/2) 0 Furthermore let us rotate to the basis in which the 

width matrix r is diagonal. Since by time reversal r is real and 
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symmetric, this can be accomplished by an orthogonal transformation and 

M remains symmetric. Thus (23) still applies but d must now be real, and 

since widths must be positive, -f/2 5 d 5 r/2. The connection with non- 

exponential decay is most seen easily in terms of conventional basis formed 

of the eigenvector of (23), IU> , and ITu> forming a conventional orthonor- 

ma1 basis since < Tulu> = 0. Here M d is in reduced form 

M= 

and the solutions to id’/dt = M@ are (0”) e 
-iEdt -iEdt 

D 
For analyzing scattering, it is helpful to have an explicit repre- 

sentation of l/M-E. The reader may verify by application to a linear com- 

bination of eigenvectors that 

I (En+ Em - E) -M 

M!E = (En-E) (Em-E) = (En- EjN(Em- E) (24) 

where En and Em are the two eigenvalues of M. Then the amplitude for 

production and decay is Eq. (17) or 

a = (En -;;!m - E) (25) 

As long as M can be diagonalized, Eq, (24) breaks up into two Breit-Wigner 

terms. Otherwise we can simply insert M and En -+ Em -+ Ed to find N. 

As M approaches (23) then N becomes 

Nd =I(Ed -E)+d (26) 

and we have 

T= 
tEd-q c1+ (3 

(Ed-q2 
(27) 
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with CI = VA, C2 =d V (ii *f) A as the general degenerate form. In gen- 
eral CI and C2 will vary with the decay mode and the production situation 

as V and A vary. 

A simplification results if one of the elements of our diagonalized 

width matrix is zero O This always happens if there is only one decay mode 

f for the two states, for then there is a linear combination alar> + bl@> 

which decouples from the decay operator V. This then corresponds to 

d = rd/2 in Eq. (23)) with f = 2rd being the width of the coupled state. 

Then 

ND=I(E+) + r/2 (28) 

where we have taken the state 11) as the decoupled one. If in addition, 

state 11> is also decoupled from the production amplitude A, then only the 

N22 element enters and 

Tfi - ‘f2 A2i 
(E;-E) 

(Ed-E)2 ’ 
(29) 

which is the “dipole”. In the original physical example suggested by 

Lassila and Reiuskanen; 6 they consider crossing of S and P levels in the 

hydrogen atom with an electric field to provide the off-diagonal coupling. 

Here only the P state can decay or be excited. The situation is then 

exactly analogous to the one just discussed. As further suggested by these 

authors, it is perhaps not wildly improbable that the same situation approx- 

imately obtains for the A2 since there is a strongly dominant decay mode 

(np) and the production might also proceed peripherally through a np inter- 

action. Then production and decay would couple to the same state and 

granting that the splittings of the original states had been properly arranged 

to give Eq. (28) (namely original states (I 1> f 12>)/42 split by r/2), 

Eq. (29) could result. 

If all this is true, however, the situation for a rare decay mode, 

f’, is interesting, For there is no reason to suppose that f’ couples in the 

same way as the dominant decay mode and there should be a Vf ,1 coupling. 

Then under the same conditions as before, since the weak coupling.of f’ 
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should not change ND very much 

Tfti hr 
Vft2(E;-E) f fVftl 

(Ed-q2 
A2i * (30) 

We would expect the dip to be shifted off center and asymmetric. If, as 

reported at this conference, by the CERN Boson Spectrometer Group (CBS), 

the other decays have the same shape as np, then all decay modes are de- 

coupled from I l> O 

To summarize, then, to get a “dipole” by this mechanism we 

need 

1. initial states (I l> f I2 >) /J2 split by an amount A 

2. the state II> decoupled from decay and production, at least 

for the dominant channel 

the state I 2> has a width r= 2A 

zhis will give a “dipole” for the dominant decay mode, (Eo-E)2/[Ei-(r/4)2]2e 

If in addition we demand symmetric “dipoles” for the rare decay modes 

then 

4. the state I l> is decoupled from all final states, and becomes a 

kind of ‘Zombie” state which is more dead than alive and only 

sees the light of day through its virtual interaction with I 2> 

which gives rise to A. 

If we are willing to go so far as to consider the possibility of these 

“Zombie” components to the wavefunction, perhaps it is worth dropping the 

dipole to see what the “Zombie” by itself will do. 

Even though now with ,E,#E, the amplitude has a conventional 

two-Breit-Wigner representation, it is convenient to still use Eq. (24) 

and Eq. (25) in the basis with r diagonal. Then since the Zombie width is 

N=I(En+Em-E) - 

M22 
(31) 
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and using the invariance of the l.r:~cc 

N22 =En+E m - nf22 4-iT-E=M11-E 

Since the Zombie, II>, is not coupled to production or decay only p’l,,2 id 
enters <and for a11 decay modes 

Mll-E 1 
Tfj = El1 - E En1 - E ‘~f2 ‘5% (32) 

is the “general Zombie form”. Now if we multiply through by ir, we see 

this is proportional to (Im det IM-E[)/(detlM-El) ) giving two peaks of equal 

height when Re detlM-El = 0, and a zero in-between at MI.,-. 

For elastic scattering this l.eads simply to S - [(En-E) (Em-E)]*/ 

[(Eli-E) (E,-E)]. Near the Zombie the amplitude has in quick succession 

a peak followed by a zero, the width of the effect being given by the width 

in the Zombie eigenvalue En. This width is mainly acquired by the Zombie’s 

proximity to a normal resonance; if the initial Zombie mass MI1 should fall 

far from a normal resonance with the same quantum numbers then the real 

mixing potential MI2 will be ineffective in mixing the states and the Zombie 

width reverts to its usual (very small) value. Thus the missing-mass land- 

scape could be littered with Zombies and we would never know it unless one 

happened to drop on a “normal” mate. A symmetric effect results if the 

mixing is sufficiently strong to make the widths in En and Em equal, an 

exact “dipole” is not necessary. To get such a mixing, without a large MI2 

which would give a strong repulsion of the levels, does mean that the Zombie 

has to land rather near the center of the other resonance, however. Dalitz7 

has discussed the possib1.e nature of ,the states involved and considered the 

problem from the point of view of a K matrix with two poles. This and 

Eq. (32) lead essentially to the same structures since the K matrix leads 

to a 2nd order polynomial in E where we have (En-E) (Em-E) in S. Should 

it turn out that the A2 effect is not the same independknt of the mode of 

production and decay and so Zombies arc not relevant, we re-emphasize 

that Eq, (25) applies for any production and decay configuration. 

The Zombie-A2 coupling 1 ‘s smn’L1; to get a mixed Zombie width of 

20 MeV with an A2 width of 60 h/icV we need MI2 - 10 MeV. Sillce this is 

almost an order of magnitude less than norm:~l mass splitting forces, we 
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should expect the production and widths of the isolated Zombie to be down 

with respect to normal states by perhaps one or two orders of magnitude. 

Could it be found in isolation by high resolution experiments? 
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