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Abstract 

Consider the system of linear equations Ax = b where A is an - w 

nxn real symmetric, positive definite matrix and b is a known vector. 

Suppose we are given an approximation to x , 5 , and we wish to 

determine upper and lower bounds for /Ix - 511 where //...I/ indicates 
w w 

the euclidean norm. Given the sequence of vectors (i}t=o where 

Ti = A;i 1 and z. = b-AE , it is shown how to construct a sequence . - 
of upper and lower bounds for Ilx- 5 II using the theory of moments. we 

In addition, consider the Jacobi algorithm for solving the system 

x = Mx+b viz. x = Ivki+b . It is shown that by examining u- - *i+l 

6. =,xi+l - x. ) -1 -1 
it is possible to construct upper and lower bounds 

for Ik,-xl1 . 



1. Introduction 

Consider the system of linear algebraic equations 

Ax=b (1.1) - - 
where A is an nxn real symmetric, positive definite matrix and b 

is a given vector. Assume we have an approximation to x so that 

x=f;+e (1.2 > 

where k is the approximation vector and e is the error vector. We 

are concerned with determining upper and lower bounds for //et/ where 

Il. * .I1 indicates the euclidean norm of the vector. 

In order to compute bounds for the norm of the error vector, it is 

natural to compute the residual vector, 

=b ,'o +. - -A5 . 

Thus since z. = Ae , 

hOi 
5 l/ell 2 l\A-‘li I\zo\i 

l/A/i - 

(1.3) 

0.4) 

Here I/A// indicates the spectral norm of the matrix A . Assuming that 

//A II = 1 ( t'ris can be accomplished via a simple scaling of (l.l)), we see ..i 

that even though llEoll is "small", ,the bound for ," II II can be quite 

large when I\A-~!/ is very large. 

By computing additional information, it is possible to obtain more 

precise upper and lower bounds on the euclidean length of the error 

vector. In Section 2, we give an algorithm which depends upon computing 

an auxilliary sequence of vectors and an explicit knowledge of all the 

eigenvalues of the matrix A . The bounds are actually obtained as a 

solution to a linear programming problem. 



In Section 3, we use the same sequence of vectors as described in 

Section 2 but we assume that the only information that the investigator 

has is an upper bound on the largest eigenvalue of A and a non-trivial 

lower bound for the smallest eigenvalue. Using the theory of moments, 

an algorithm is given for determining upper and lower bounds. Then in 

Section 4, we consider the Jacobi iterative method for solving the system 

of equations (l.l), and we show it is possible to establish bounds for 

the error by examining the difference of successive iterates. Finally, 

a numerical example is given in Section 5. In a future report, we shall 

give methods for improving the approximate solution using the techniques 

described in this paper. 
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2. Bounds using linear programming 

Consider the Krylov sequence [6], 

where 
,rO 

We define 

so that 

Since A 

r ,i+l = Ar 
,i 

(i = O,l, . . ..k-1 < n) - 

is defined by (1.3). Thus 

Zi = Ai_'o (i = O,l,...,k) . 

(X,Y> = f X-Y. 
i=l IL IL 

(r,, rq) = !Apro,Aqro) 

= (Ap+qro,r 
0 

) 

= Ppfq (p,q = O,l,...,k) . 

is symmetric and positive definite, we have 

AU; = h;u; (i = 1,2,...,n) 

with 

{ 

0 for i f j 

(_"i'-j u) = 
1 for i = j 

and 

O<a<hl_<h2~ . . . <AnIb . 

Now writing 
n 

50 
= c aiUi ) 

i=l - 

we have 
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'm = (Amro, (m = 0,1,...,2k) . 

-1 Since e = A z. , 

m 2 -2 i1_‘112 = (A-2~oJ~o) = _glai hi = Pm2 . 

(2.1) 

(24 

Equations (2.1) and (2.2) are equivalent to 

b 
Pm = J A"aaW (m = -2,0,1,...,2k) (2.3) 

a 

where the weight function of the Stielt .jes integral is determined as 

follows: 

a(x) = 0 for a < A _< hl ? 

a(h) = a; + a; + . . . + cg At < h I ht+1 (t = 1,2,...,n-1) , 

hn<h<b . 

The problem of determining an upper and lower bound for \le\\ is 

equivalent to the following: 

Given the (2k+l) moments pi , determine upper and lower 

bounds for IJ--~ . 

The solution to this classical problem (cf. [7]) is dependent upon the 

amount of information available. 

Suppose we know the eigenvalues of the matrix A . An example of 

this is the usual five point approximation to Poisson's equation with 

Dirichlet boundary conditions in a rectangular region. Thus ,to determine 

an upper bound for , we wish ,to maximize 



I 

n 
c 

i=l 
yihi2 

subject to the constraints 

n 
c 
i=l 

(m = 0,1,...,2k) 

(2.4) 
Yi L O (i = l,...,n) . 

The numerical solution to this problem can be obtained by the simplex 

algoritkun of G. Dantzig [3]. Special techniques may be used to take 

advantage of the fact that a Vandermonde system is solved at each 

iteration of the simplex algorithm. A lower bound for jje// 2 *nay 

be obtained by determining the minimum of c subject to the 
i=l 

constraints (2.4) by the simplex algorithm. 



3. Error bounds using the theory of moments 

In the more usual situation, one has the information that 

O<a<hilb for i = l,...,n . 

This is a problem in the classical theory of moments which has been 

solved by A. A. Markov. In order to give a numerical algorithm for 

determining bounds for \le\\ , we review some facts from the theory 

of Gaussian quadrature. 

Suppose we are given {~~j?, , and a function c?(h) (a 5 h _< b) , 

and we wish to determine WJ) so that 
b 

We can determine a quadrature rule such that 
b 

I-1, = J hrda(h) = for r = 0,1,...,2k+m-1 
a 

where {Ai,tij~=, and {Bjjy,, are unknown and [z,3;,, is specified. 

Then 

where 

a 

Ncp 1 = e p pi WZj)[ j) (A-ti)12fia(A) . a jL> i=l (3.0 
a<q<b . 

Thus if o(h) = hw2 and m = 1, 

R[?L-~] = -2(k+l)q -(=+3) 
a 



Hence for zl = a , the Gauss-Radau type quadrature rule yields an upper 

bound for we have a lower bound. It 
a 

can be shown (cf. [7, pg. 801) that these bounds are attainable. 

It is not necessary to solve the equations for the quadrature rule. 

Let us note that 

k 
'r = C Ait; + B& (r = O,l,...,Zk) 

i=l 

where z, may be a or b . Let us write I 

k 
Fr = c 

i=l 

so that 

G -2 2 IJ.4 * 

From (5.2), we see that Fr Sat 

for all r and for z, = a (3.2) 

isfies a (k+l)"1' order difference equation 

go Fr + El ii& + * ” + gk IJ.,-k - cr-(k+l) = ’ (3.3) 
- - 

and tl,t2,..., tk , and a are the roots of the characteristic polynomial 

p(k) = ii,k 
k+l + g,tj k+ . . . + gkk - 1 - 

Since G(a) = 0 7 we must have 

ioa 
k+l + El2 k + . . . + gka - 1 = 0 . (3.4) 

Thus using (3.3) and (3.4) and the fact that pr = cr for r = 0,1,...,2k , 

we have enough equations to determine !Pil~=O * Having determined 

~~i32=0 ’ one can solve for G -2 
by recurring twice backwards with 

equation (3.3). 

To determine a lower bound for the error viz. L-2 ' it is 

necessary to solve for {~g]~=, from equations similar to (3.3) and 

the additional equation 
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Eo b 
k+l + gl bk + . . . - gk b - l= 0. 

Note to solve for @]:=, , it is na:essary to change only one row in 

the matrix and one can use the devices given in [2] for solving such a 

modified system efficiently. 

For large k , the system of linear equations which one solves for 

the coefficients of the difference equation may be quite ill-conditioned. 

For that reason it is sometimes preferable to solve explicitly for the 

quadrature rule. As is well known, the nodes of the quadrature rule are 

the roots of orthogonal polynomials. Now the orthogonal polynomials 

satisfy a three term recurrence relationship viz. 

P-l(h) = 0 > PO@) = 1 * 

The coefficients 

the Lanczos algorithm [8]. 
Again, let 

can be computed directly using 

r =b -AS . -0 - - 

We generate a sequence of vectors {zi]k+k such that 

t 

0 for i f j 

(?i'-j z ) = 
1 for i = j . 

Let zo = 

Then for j = 0,17...,k 7 
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5 j+l = ("j'A"j) ., 

"j+l -j =Az -5 j+l !j -lljzj-I_ 7 (11, = 0) 

lj+l = ll"j+l!l ' 

-1 
"j+l = lj+l ' Yj+l . 

For numerical stability, one must re-orthogonalize z;,, with respect 

to all the previous z.'s . Let 
-J 

J= 

0 
. . 

. . ‘ik 

Vk 'k+l 

It is well known (cf. [5]) that the eigenvalues of J are the roots 

of the polynomial ~~+~(h) . In order to compute the upper bound for 

iig 7 
we need to compute the Gauss-Radau quadrature rule with the fixed 

node a . This can be accomplished by the following algorithm suggested 

by Mr. David Galant [4]. Let 

C =J-a1 

so c is a real symmetric posit i 

C = FFT , 

ve definite or semi-definite matrix. Let 

where F is the lower triangular Choleski factor of C . Now let 
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c 

7 ii1 !l ‘I1 - * 0 e = FTF = . . . . . . 
0 

. . 11 k 

'lk i k+l 
d (k+l>x(k+l> 

and 

. . . 

0 
. . 

:k-1 

0 
17 k-l 

'k 

0 

0 

0 
(k+l.> x(k+l) 

Then the eigenvalues of ("c + a1) yield the nodes of Gauss-Radau rule. 

By using a \-ariant of the algorithm described in [5], it is possible to 

compute the quadrature rule. In order to compute the Gauss-Radau rule 

with the fixed node b , one performs similar operations to those 

described above on the matrix C = bI-J . 
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4. Error bounds for the Jacobi method 

Consider the system of equations, 

cy = f. (4.1) N - 

where C is a real, symmetric positive definite matrix of order n . 

Let D = diag[(cll) -l/2 ) . . .) (cnJ1/"] . We may write (4.1) in the form 

DCDD-'y = Df 

or equivalently, 

Ax = b . (4.3) - - 

Note the diagonal elements of the matrix A are all equal to one. Hence 

A=I-M 

where the diagonal elements of M are zero. We shall assume that M 

is convergent viz. ~~~ Ihi 1 ' 1 . The Jacobi method viz. 
-- 

X -i+l - -Mxi+b (i = O,l,... ) 

is frequently used to solve (4.3). 
Let 

and 

=x -x Zi _ -i = M1 z. 

6 = x. - x = Ml 6 ; 
-i -1+1 -i -0 

The vector 6 -i is the difference vector. Since Ei = x.+l - xi = 

bTTi + b - x. = b - Ax. , the difference vector is the residual vector -1 .-+ -1 

associated with x. . Note -1 
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Thus 

,ei = (I-M) -' Fi = (I-M)-1 p2 6. . 

Given we compute 

(fp,6q) = (to,Mp+' Eo) = V 
P-Q 

, @+q = 0, . . ..2k). 

ll_‘k+1(12 = (;k+17’3k+l) = ((I-M? Mk+l _60,(I-M)-1 Mk+' 20, . 

Since M is symmetric, we have 

Myi=Eiti 7 (i = 1,2,...,n) 

0 

c 

for i + j 

(Zi'-j u) = 
1 for i=j 

and we assume 

Thus 

v = 
m j-’ Em@(k) ' (m = 0,1,...,2k) 

c 

and 

d 5 2k+2 
i_e,,fk+l) = j- d@(E) - 

C (l-O2 

We wish to determine upper and lower bounds for \l_ek+l\\ . This 

-problem was first discussed by H. Weinberger [9] for k = 1 . 
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Again, if the eigenvalues of M are known then one can use linear 

programming for determining upper and lower bounds of Ilek+lllz . Thus 

to determine an upper bound for l\"~~\l~, we wish to maximize 

f Lui 

i=l 

[2k+2 
i 

(l-Ei)2 

subject to the constraints 

n 
c 
i=l 

uli q = vm (m = O,l,...,Zk) 

uJi 2 0 (i = 1,2,...,n) . 

If the eigenvalues are unknown, then we are unable to use the 

arguments associated with the residual vector since the (Zk+l)e 

derivative of rp(E) = 5 2k+2/(l-5)2 is not of constant sign in the 

interval (c,d) . 

Now, if we can determine a polynomial p,,(S) such that 

p,,(k) = co + elk + .a* + C2kE2k _> 5 
Ln., c.2 

(l-5) 2 

for c<E<d - - 

then this will determine an upper bound for \l_ek+l\12 since 

Jd p2k(E)dB(5) = c v + 0 0 . . . + C2kV2k > r d ‘2k+2 d@(E) . 
C c' (1-E)" 

The polynomial p,,(E) is not unique and consequently we desire that 

-polynomial for which 
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cv +...+c 
0 0 2kV2k = min. 

Unfortunately, there does not seem to be any numerical algorithms which 

will satisfactorily solve this problem in general. 

Let h = (1-E) so that 

d 5 2k+2 
s 

c (1-O" 
dB(E) = r 

b (l-h)2k+2 &(h) 

a.' A2 

=v -2 - 2(k+lh, + 

where 

a = l-d , b = l-c 

b 
1-1, = j X'da(X) (s = -2,-1,...,2k) . 

a 

It is easy to verify that 

% 
= (-l)s AS v. 

where 

&I 
0 

=v -v lo 

ASV 
0 

= h(As-l ‘Jo) 

and hence ~1 s = (,, (I-M)'fiO) 

and lower bounds for 

1-1-z - 2(k+lbl 

. Our problem now is to determine upper 

. 

In order that there exist a distribution function a(h) in the 

interval b,b) associated with bsl;:-, Y it is necessary and sufficient 

that 
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and 

G= 

. 

. 

. 

. 

. i 'k-1 

. . 'k 

. . . 

. . . 

. . . 

. . '2k 
- (k+2)x(k+2) 

. 

. 

where 

‘j = -Lab vj - (a+b)vj+l + P~+~] (4.4) 
be positive semi-definite (cf. [l]). It is easy ,to see why G must be 

positive semi-definite. Note from (4.4) 

b . 
y. = - S( abXJ 

J a 
- (a+b)J.j+l + hjt2)&(h) 

= f h'(h-a)(b-h)dcz(h) . 
a 

Hence, 
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z*@iT = y y YiCj zi zj 
- ?.L i=-1 j=-1 

b k-l 
= J(C ziLij2(h-a)(b-a)dc@) _> 0 - 

a i=-1 

A similar argument shows that IVI must he positive semi-definite. 

Observe that there are two elements which are unknown in G and two 

elements which are unknown in M and they occur in either the first 

row or column of the matr ix, 

Figure I 

Since 14 and G are positive semi-definite, it is necessary and 

sufficient that det(M) > 0 and det(G) _> 0 in order for the values 

P-2) p-1 be consistent with some distribution a(h) with moments 

i-Lo>5? “‘>P21i * The positive semi-definite property of 1.4 and G is 

equivalent to the non-negativity of the sub-determinants indicated in 

Figure I. 

We partition the Hankel matrix M as folio-ws: 

iJ-0 I-l1 . I: i 



Since M is positive semi-definite 

de-t(M) = det(C) det(A-BC-l B*) 2 0 

so that 

det 

where 

‘[ rl 

r2 

p-Z 
I P-l 

fr 1 

+r 2 

7 
r2 

= -BC -1 BT 

r3 J 

> - 0 (4.5) 

The matrix -BC -1 BT can easily be computed by applying the Choleski 

algorithm to the matrix 

One must begin the pivoting operation, however, from the bottom diagonal 

element and after k eliminations, the upper 2x2 matrix will contain 

-BC-1 B* . In a similar fashion, 

-abp 

; 

-2 + (a+b)vml - p. + s1 y -abYe + (a+b)vo 

det 

-abi-lsl + (a+b)po - pl + s2 , -abpo + (a+b)pl 

From equation (4.5), we see that 

I 
(IJ.4 + ri) (cl, + r3) - (v-, + r2j2 2 0 

I-l1 + 

P2 + 
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and hence since PO + r3 > 0 by the positive semi-definiteness of M 

(KI + c-J 2 (Kl + R2j2 
~1-2 L PO+ r3 -rl z I*~+R~ -Rl . 

From (4.6), we have 

det 
p-1 + S2 I.- > 0 
s3 

where 

s3 = aWo - (a+b)vl + v2 - s3 < o 
ab 

since ab>O, 

and hence 

(v-1 
I-L-2 5 

+ s2j2 
s3 - 3 

Therefore 

(p-1 + R2j2 
- R1 5 1-1-z 5 

(IJ-_l + s2) 
2 

R3 s3 -sl . (4.7) 
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?1 + R2j2 
i-1-2 = R3 

level lines of 

- Rl 

Figure II 

Thus to determine the maximum of 

1-1-z - 2(k+hl > 

it is simply necessary to examine the boundary of the shaded region in 

Figure II. A short calculation yields (Q,,Q,) for which 

Then ~1~~ - 2(k+l)v-, = maximum subject to (4.7) if 

d (CL-1 + s212 

dv-1 s3 -sl zc d 
dl-l-1 

Z(k+lhl 

with 9 -1 = -S2 + (k+l)S3 

and 

19 



U 
Ql I tsl I Q2 ; 

U 
otherwise the maximum occurs at p-I = Ql or 

U 
v-l = Q2 according to 

U 
p-1 = max{Ql, min{-S2 + (k+l)S3,Q2]] . 

Similarly, the minimum occurs at 

L i-l-1 = max{Ql, mini-R2 + (k+l!R3,Q2]] . 

Thus, it is possible to determine upper and lower bounds for j/e ,k+l/i ' 

and these bounds are attainable. 

20 



5. A numerical example 

Consider the system of equations 

Ax=b - - 

where A is a tri-diagonal matrix with elements (-1,2,-l) and 

b = Q ) the null vector. It is well known that 
- - 

hj(A) = 2 + 2 cos jn 
x ' j = 1,2, . . ..n . 

The Jacobi matrix M is also tri-diagonal and has elements WY 0, $w * 

Here 

hj(M) = cos jn n+l 9 j = 1,2, . . ..n . 

The <Jacobi method was used for solving the system for n = 20 and 

g = (l,l,...,l) . In Tables I, Ii, and III, we give the error bounds 

associated with the error vector of x10 * To use the methods of 

Section 3, we must compute in addition T_r,] for p = O,l, . . ., k . 

In Tables II and III, we give bounds for the error using the difference 

vec,tors {S,-,] for p = O,l,...,k . Note that the bound using the 

residual vector is slightly better tkian those computed using the difference 

vec,tors but it requires additional work to compute ~;p&-J whereas 

the difference vectors are computed in the natural sequence of events. 

In addition, note that the lower bounds are less influenced by the 

interval of the eigenvalues than are the upper bounds. Furthermore, we 

see that in this case that a knowledge of all the eigenvalues does not 

provide m~h smaller intervals for the error. 
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Error bounds after 10 iterations 

II e II 
2 = 2.700138 

Table I 

Error bounds computed from residual vector using Gauss-Radau quadrature rule 

k 

Lower bounds Upper bounds 

a=1.116917i0-z 

b=l. 988831 

a=lO- ' 

b=l.gg 

1.35 1.35 

1.55 1.54 

1.66 1.66 

1.81 1.81 

1.89 1.89 

a=l.l16917l0-~ 

b=l.g88831 

3.40,,1 

2.05101 

9.40 

6.89 

4.84 

a=lO- ' 

b=l.gg 

4. 21101 

2.52101 

1.12101 

8.08 

5.50 

Table II 

Error bounds computed from difference vectors using determinantal inequalities 

k 

-- 
1 

2 

7 , 

4 

5 

Lower bounds Upper bounds 

a = 1.1169171o-2 

b =1.988831 

1.35 

1.43 

IL.48 

1.56 

1.54 , 

a =lO-' 

b =1.gg 

1.35 5.29,,1 6.59101 

1.43 3.88,,1 4.8~~~1 

1.48 2.05,,1 2.51101 

1. 56 1.70,,1 2.08~~1 

1.59 l.2glo1 1.57,l 

a =1.11691710-z a =lC -2 

b = 1.988831 b =l.gg 



Table III 

Error bounds computed from difference vectors using 

linear programming 

k Lower bounds Upper bounds 

1 1.35 5.&,,1 

2 1.45 3.86,,1 

3 1.55 1.73,,1- 

4 1.61 r.~Olol 

5 1.62 l.CJ+,,l 
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