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ABSTRACT 

A general unitary phenomenological description of strongly inter- 

acting three-particle systems is developed in terms of two-particle 

phase shifts and binding energies, two-particle wave functions inside 

the range of forces, and the three-body wave function in the region 

where all three force ranges overlap. The two-particle external and 

internal parameters are unambiguously separated from each other and 

the same parameters can be determined from many different experi- 

ments, while the three-body parameters refer to a specific system at 

a specific energy, 
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In order to calculate the wave function, or even the on-shell scattering matrix, 

for three-particle states, it is necessary to know not only the binding energies of 

all two-particle subsystems and their phase shifts at all energies but also the 

interior wave functions connected to these asymptotic parameterizations. 1 
Due 

to virt,ual pion emission and absorption, any system containing strongly inter- 

acting two-particle subsystems will experience three-particle forces in any 

region whose perimeter is less than 3fi/mnc;2 complete knowledge of the two- 

particle subsystems does not determine the dynamics of any strongly interacting 

three-particle system. It has been shown3 that if the wave function is known 

inside this three-body-force region, the exterior three-particle wave function 

can be calculated by solving convergent one-variable integral equations. In this 

letter we convert this demonstration into a practical method for analyzing three- 

particle systems by proving that it is possible to parameterize this interior wave 

function in such a way that only three outgoing particles are present (i.e., that 

the on-shell three-body T-matrix obtained by solving this equation is unitary) D 

These interior parameters can be fitted to experiment at a single energy of the 

three-particle system; they represent an arbitrary (energy-dependent) param- 

eterization of the consequences of unknown two- and three-body forces in the 

interior region. Additional parameters will have to be included to specify two- 

particle interior dynamical quantities e These can be independently determined 

either by making a complete analysis at additional energies of the three-particle 

system, or by using different third particles as probes. Hence this interior- 

exterior separation mades possible the construction of the wave functions of two 

strongly interacting particles inside the range of forces from quantum mechanical 

observables D To the extent that this nonrelativistic quantum mechanical pre- 

scription makes sense, this description should be the same whatever the third 

particle in the system. 
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The Wick argument2 tells us that whenever the outgoing waves in the two 

other Faddeev channels (which are the physical mechanism that probe the interior 

two-particle wave functions in the exterior three-particle region) 3,18 contain 

momenta exceeding pion production threshold within the system probed, this 

three-particle description breaks down, But even in this situation, the hadron 

“soup” which is being probed may have average properties independent of the 

mode of excitation. To the extent that this is true, our analysis will still give 

correctly the probability of finding that part of the “soup” which is connected to 

two, and only two, specified hadrons in the asymptotic region,, The a priori 

limit of validity of our description is for distances averaged over regions of 

order h/m,c, or momenta less than mnc; only the study of specific systems will 

reveal whether it holds down to shorter distances and for higher momenta, 

We assume4 that the two-particle half off-shell t-matrices are bounded by 

t$p.kp2) = T;(P) 
O3 2 

J- 
W W2) P 2(p2 -I- 4k 

P2 
(p2-k2)2 + 2p2(p2-k2) + p4 

where 

T~(P =e 2, sin i$(P)/P and cb 2 
s 

dP c(p2) = 1 
2 

(2) 

Since such two-particle t-matrices can be shown’ to satisfy a Lippmann-Schwinger 

equation in the three-particle Hilbert space, the unitarity of the T-matrix follows 

algebraicall 5 if they are used as driving terms in the Faddeev 697 equations o We 

can extend 5 this unitarity proof to any convergent system of equations for the on- 

shell T-matrix provided the difference between this system and the Fadeev equa- 

Cons vanishes on-shell,, We do not have to assume that the three-particle T-matrix 
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itself satisfies a Lippmann-Schwinger equation, and therefore can allow unspeci- 

fied three-body forces to be present. 

The amplitudes M 
0 

defined by Fnddeev’ can be shown to satisfy two-variable 

equations 839 by introducing the coordinates 2 for the interacting pair and CJ for the 

free particle defined by Lovelace 10 (with the on-shell restriction p2 -t q2 = z) and 

making the partial wave decomposition 

(3) 

Since the outgoing wave is generated from this amplitude by multiplying by the 

singular factor (p2 + q2 -z) -1 , we can define an interior wave function in momen- 

t-urn space by subtracting out the value at the singularity; explicitly: 

d IQA (P, q;z) = MaA ( 3 > 
2 l/2 

a P q-z) - M,“,~(P, (Z-P ) ;z) = tp2 +- q2 -z) Feq$(p, q;z) Tl;‘$;z) (4) 

If IkP is known, the three-particle on-shell T-matrices satisfy 

QP Mph @t (Z-P 2 1’2;z) - T$p;z) =t;(P, P,;P’, A ) 
d&3 

6 o XAOhYcYO 

” dqt2 t;(p,;;p2) c c K;;fh, I”;$@‘sq’;z) T&(P%) 
#a! Q’A’ 

(5) 

where 

p2 = p’2 + q12 -z+p2 

cos p = 
aY [ 

mUmy/(ina f m 
d 

(my+ mr,) 1 l/2 

and KFG,h, are purely geometrical recoupling coefficients O 
8 
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As already noted, the algebraic form of these equations guarantees that the 

T-matrix determined from them will be unitary provided that the terms by which 

they differ from the Faddeev equation vanish in the on-shell limit. This happens 

automatically for those terms which are independent of the interior functions F, 

since these are proportional to 

(P2+q2-z)-l +P,P;z-q2) -t;(P,P;P2) 
II 1 (7) 

and Kowalski 11 has shown that this difference is always proportional to (p2+q2-z) 

times a remainder function which itself vanishes on-shell. Equation (4) has re- 

moved the (p2+q2-z) -1 singularity from the terms proportional to the F’s by 

definition. Therefore any (convergent) complete set of functions which have no 

discontinuity across any of the three- or two-particle branch cuts in the on-shell 

limit can be used to expand the interior wave function. 

This proof of unitarity still fails if the operator for inverting Eq, (5) does 

not exist. The existence of this operator was proved in CS, but the proof was 

cumbersome and required a finite range cutoff R. By using the bound (Eq, (1)) 

justified above, the kernel in the last term of Eq. (5) which has to be integrated 

over p’ becomes 

where 

L*= [g*&? Sillp 
2 
> aY 

-p2 cos2 /J 1 @Y / cos2 /“6 
aY 

(9) 

The asymptotic convergence of this kernel follows immediately from the fact that 

for z > p2 the limits have complex conjugate imaginary parts and hence that the 

result of the y integration is bounded by -/r/2; by making the change of variable 

(p2-z) l/2 = r sin $I, p’ = r cos Q, it then follows that if T(P) is bounded’ by A/p2, 
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the integral s”dp’ ~dp’2Q2(p,p’) converges at least as well as yr3dr/r6 at 

the upper limit. The remaining singularity across the physical three-particle 

branch cut can be handled in the same way as the singularities in the Faddeev- 

Lovelace” (or Amado, l3 or Mitra 1 
4 equations for separable interactions 0 

Because we have kept the interacting pair in the physical region and allowed the 

free particle to become virtual, only this singularity occurs; ‘potential singu- 

larities ” 15 are absent, and only physically accessible wave functions need be 

known. The implicit limitation to systems with no two-body bound states is 

easily removed 12 by separating out the bound-state poles in the two-particle 

t-matrices and coupling in the additional terms they contribute to Eq. (5) 0 The 

appropriate branch cuts for elastic scattering and rearrangement collisions then 

appear automatically in the unitarity relation. 

Since our proof of convergence given above guarantees the existence of a 

resolvent kernel for Eq. (5) even in the zero-range limit @2-~) for the two- 

particle interactions, in this limit Eq. (5) provides one-variable integral equa- 

tions for the three-particle T-matrix using only physical two-particle phase 

shifts and binding energies formally valid at any energy. Whether this is a good 

physical approximation will depend on whether the interior effects are physically 

significant or not; 16 in particular, we know that this limit cannot be used for 

three-particle bound states, since Thomas 17 has shown that the zero-range limit 

gives infinite binding to the ground states of such systems. 

This Letter provides the necessary 18 formalism for the inclusion of what- 

ever knowledge is available about two-particle systems in three-body calculations ,, 

Three types of parameters occur, The two-particle scattering amplitude 7 (p) 

is available from experiment for stable two-particle systems, but must be deter- 

mined from three-particle experiments in the case of unstable particles. Our 
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formalism allows this to be done umquely, utilizing all interference terms in 

all regions of the Dalitz plot, since the remaining parameters can be measured 

independently. The second set of parameters refers to the interior two-particle 

wave functions for bound and scattering states. We have demonstrated that, in 

principle, these can be determined. from three-particle states, and their 

uniqueness verified by showing that the same parameters are determined at 

different three-particle energies or for different third-particle probes O Because 

of pion production, these wave functions are, strictly speaking, measured only 

in the sense of an average over distance of order h/mP, but the description 

might turn out to have a higher accuracy than that. Finally, there are parameters 

which refer to the three-particle interior region, These can be computed once 

some assumption is made about the two- and three-body forces in this region, 

or assigned phenomenologically to fit three-particle experiments at a single 

energy. If they are chosen appropriately, rapid energy dependence of these 

parameters would demonstrate genuine three-particle “resonances” not due to 

the pairwise interactions of the exterior region. Since they refer to a region 

whose perimeter is approximately 3li/m,c in length, a small number of such 

parameters must suffice at low energy; otherwise it would be possible to measure 

details of the interior wave function smaller than any exterior wavelength,, Study 

of the exterior region in the three-body problem has demonstrated that we do 

not yet know whether the basic two-body interactions are local or nonlocal, 18 

but now has yielded a method for investigating that question experimentally. It 

is to be hoped that the study, both theoretical and experimental, of the parameters 

which describe the interior three-particle region will clarify still further the 

extent of our understanding of strong interactions. 
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