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ABSTRACT 

An analysis of pp and pi data in terms of a K-matrix model for the 

Pomeranchuk exchange and the absorptive corrected P’ and w Regge 

pole contributions is presented. The model provides a quantitative 

understanding of high energy pp and pi total cross section measurements 

and the measured ratio of the real to imaginary part of the pp elastic 

forward scattering amplitude. The structure observed in (dg/dt)pii 

around t= -0-8 GeV’, in (do-/dt) pp at t=-1.2 GeV2, the shrinkage pat- 

terns in both differential cross sections, as well as the crossover 

phenomenon are explained in the framework of this model, 
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In a recent publication’ a K-matrix model for the Pomeranchuk exchange con- 

tribution to high energy elastic scattering and diffraction dissociation processes 

has been proposed which is confronted in this letter with differential and total cross 

section measurements for high energy pp and pp collisions. The main feature of 

the proposed model for Pomeranchuk exchange is that the vacuum exchange con- 

tribution is thought to originate from multiple exchange of various lower lying 

trajectories, having an intercept a(O)=0 ,, 5 and a slope CY ‘=l GeV -2 , accompanied 

by the formation of a sequence of intermediate excited states (resonances) of the 

colliding particles D The model at the present stage does not account for spin flip 

contributions. It can be regarded as a unitarized relativistic multiple scattering 

model for spinless incoming and outgoing particles. In terms of j-plane singu- 

larities the proposed interpretation of the vacuum exchange contribution corre- 

sponds to a superposition of cuts in the complex angular momentum plane. How- 

ever, the number of parameters describing the Pomeranchuk contribution is two 

as in the conventional Pomeranchuk pole model. 

The amplitudes for elastic scattering and diffraction dissociation processes 

are written down in the impact parameters language2 neglecting spin and isospin, 

and are made unitary by a multichannel K-matrix parameterization assuming an 

effective two-particle description for the inelastic states in the unitarity relations. 

The attractive features of this model for the Pomeranchuk contribution are that it 

predicts (1) logarithmic shrinkage of diffraction peaks up to very high energies 
1 

corresponding to an effective Pomeranchuk pole of slope c$, , eff = % in agreement 

with the recent measurements from Serpukhovf and (2) a logarithmic approach to 

asymptotic conditions for total cross sections similar to other multiple scattering 

approaches to the vacuum exchange contribution. 4 Furthermore, a natural explana- 

tion for the crossover phenomenon is provided in terms of absorptive corrections 

to the input Regge Born terms. We shall show below that the model is, moreover, 
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able to reproduce the structure in the pp differential cross section at t = -1.2 GeV2 

and in the pp differential cross section between t=-0.6 and -0.9 GeV2. We, how- 

ever, find that the present spinless treatment is unable to account for (do/dt)pp 

beyond t= -2 GeV2. We are inclined to attribute this observation to nonnegligible 

spin flip contributions being present at momentum transfer larger than It!= 2 GeV2 

where the pp differential cross section at plab = 19.2 GeV/c has gone down by nearly 

five orders of magnitude compared to the value at t=O. 

Before we proceedwe collect the relevant formulae partly derived in Ref. 1. 

In the equations written below the upper sign refers to pp scattering whereas the 

lower sign refers to pp scattering. Besides the diffractive contribution we take 

only Pv and w exchange in the t-channel into account. Possible small p,A2,n or B 

contributions are neglectede5 

The differential cross section and the optical theorem read 

da- 1 ---- 
dt 4nq2s 

lf(s,912 

Im f(s, t=O) = l/2 q ss u&s) 

f(s,t) = 2asJmhdb v(b, s) Jo(b&) 
0 

(1) 

(2) 

(3) 

where 
iC(b, s) -D(b, s) 

rl(bys) = l+C(b,s)+iD(b,s) + 
[g’(b,s)+ N”@,s)l o 1-C(b’s)-aiD(b’s)2 

[1+c(bq+Ww)~ 

(4) 
Here s is the total energy squared and q=z ’ q is the rela tive momentum 

with mp denoting the proton mass. C(b,s) and D(b,s) in Eq, (4) are given by 

C(b, s) = Q(s) e -b2/2p ; 

where p =CY ’ log s/so and 6 

Q(s) = 
utot(m) 

8n a ’ log 2 
; 

sO 

D(b, s) = R(s) e -3b2/4p 

R(s) = ’ 
87r a ’ log $ 

0 

(5) 

(6) 
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The quantities N p’,cLI(b, s) represent the Fourier Bessel transforms of the single 

Regge exchange terms, g p’,w(s,t), for P’ and w exchange, respectively, which 

are defined in Eq. (13) below. In Eqo (6) o!, is the slope of the particle trajectories 

which generate the Pomeranchuk contribution via multiple exchange and resonance 

excitation in the above described way. In the derivation of EqO (4) it was assumed 

in Ref, 1 that s is large and that the real part of the diffractive contribution, meas- 

ured by D(b, s), is small compared to the imaginary part determined by C(b, s) O 

Separating the real and imaginary parts in Eq. (4) and neglecting terms of order 

( dqotd 2 one obtains,besides a vacuum contribution to Imq(b, s) and Re q(b, s), 

an absorptive correction to the input Regge pole terms at impact parameter b and 

total energy squared s determined by the functions A(b, s) and B(b, s) (compare the 

second term in Eqs. (8) and (11) below) which are given by: 

R s e-3b2/4p l-Q(s) e -b 2/2p 
A(b,s) = 4 . 

-b2/2p3 ’ 1 
B(b,s) = 

-b2/2p 2 1 
(7) 

We finally write down the expression for the total cross sections and the ratio of 

the real to imaginary part of the elastic forward scattering amplitudes in the 

K-matrix model for Pomeranchuk exchange : 

fltot(s) = gEt (s) +- 4:& ,$wbdbiIm [NP’(b,s)* NW(b,s)] B(b,s) (8) 

-Re [N?h s) * N%, s)] A@, sli 

Here the Pomeranchuk contribution to the total cross section is given by 

(9) 

For extremely high energies the right-hand side of Eq. (9) approaches the constant 

value ~tott+y which was the reason for having introduced this constant in Eq. (6). 
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The value of r is related in a simple mamer to the ratio of the real to imaginary 

part of the elastic forward scattering amplitude for both pp and pi; at infinite 

energies according to 

At nonasymptotic s one finds: 

m4 = Re f (s , t=O) 
Im f(s) t=O) 

= Fts, + 4= h 
q q.&(s) 

* NO(b,s) 1 B(b, s) 

+Im [N%, s) * NW@, s;J A@, s) il (11) 

where utot( ) g s is iven by Eq. (8) and F(s) is given by 

dx 
C 
l+Q(s) x213 1 2 

(12) 
which, for s --)a, tends to the constant limit (10) 0 

Let us now turn to the numerical analysis. We first determined a fit to the 

data for o~~t(s), agt(s), and c~~(s)~ 7 As input Regge pole terms we used 

the following Pv and w contributions 

gP’(s,t) = -; (l+;i~~P,(t)) + [$P”t) ; 

(13) 

where p,, and p, are supposed to be constants and 01 p,,,(t) = apry~(0) + to 

Notice that in order to allow a Fourier Bessel transformation to be made we have 

assumed a certain ghost killing mechanism being operative to remove the poles 

1 of the factor sm nol(t) appearing in the usual Regge pole expressions. In Ref D 1 

we introduced a weaker ghost eliminating mechanism which was called minimal 

ghost killing there, being different for positive and negative signature trajectories. 
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To fit the total cross section data and in particular the relatively weak s-dependence 

of oE!(s) , h h w ic comes about through a cancellation of the P’ and w contributions, 
.z 

it turned out, however, that the minimal ghost killing mechanism is not tenable and 

Eqs. (13) had to be used as input, 

The fit obtained,using the program MINFUN of Berkeley-SIAC had a X2 of 24.7 

for 41 data points and ‘7 parameters, is shown by the curves labelled I in Figs. la 

and lb, The energy dependence of the total cross sections is well represented. The 

resulting values for the parameters are: 

atot(w) = 119.8 GeV-2; lyp,(0) = 0.58 ; p,, = 79.8 

(9 
T z-20.4 GeV , -2. y&O) = 0.42 ; /3, =54.3 ; so = 0.421 

The curve labelled P in Fig. la corresponds to the Pomeranchuk contribution alone. 

The above value of ctot(m) of 46 mb coincides with the result obtained by Barger and 

Phillips8 in fitting their cut model to essentially the same data, Observe, however, 

that these authors introduce in addition to a Pomeranchuk pole a cut contribution which 

turns out to require a negative coefficient. In our K-matrix approach such a contribu- 

tion is automatically contained in the Pomeranchuk term. Furthermore, the real part 

of the vacuum contribution comes out to be negative and small compared to the imagi- 
9 nary part. The ratio Ref(s,t=O)/Imf(s,t=O) for pp is predicted to change sign at about 

plab=60 GeV/c. The asymptotic value of <pp(s) and t”(s) is t(a) =+O. 11, 

We now used the Solution I to make a prediction for the pp and pp differential 

cross sections and compared it with the pp data at 10.94, 12.0 and 12.4 GeV/c and 

the pb data at 11,8 and 12,O GeV/c 0 lo The model provided a reasonable prediction 

for t-values in the range 011 t IL0 o 6 GeV2 although the theoretical values corresponding 

to the above parameters come out in the low t range in both cross sections systemat- 

ically somewhat bigger than the experimental values. The crossover of the predicted 

curves occurs at t=-0.20 GeV2, ioeo, exactly where the experimental crossover of 

w/wpp and (do-/dt) p-p appears at this energy, This result differs from the one 
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obtained in Ref. 1 (and also in Ref, 7) due to the different ghost killing mechanism 

involved as required by the fit to the total cross sectiondata and the real to imaginary 

part of the forward scattering amplitude. The striking feature of the calculation for 

(dddtrpij with the parameters I is the dip bump structure which appears between 

-t=(O. 6-O. 9) GeV2. The structure is similar to the one shownin Fig, 3, Curve I, cor- 

responding to plab =16 0 0 GeV/c , showing that this type of interference phenomenon 

producing structure indifferential cross sections persists to rather large energies. 

To determine the energy dependence of the diffraction peaks in this model we re- 

peated the described comparison at somewhat higher energies, i.e., at plab=lSO 0 GeV/c 

for pi and at plab =19,2 GeV/c for pp D 11 The agreement in the interval 0 <_ It I L 0 D 6 GeV2 

was slightly better although the prediction lies still systematically above the experi- 

mental points o The general structure of the theoretical curves corresponding to 

Solution I is the same as at the lower energies and is shown by the curves labelled I 

in Figs 0 2 and 3, In going from 12 to 16 GeV/c, the model predicted a small but 

noticeable amount of antishrinkage for (do-/dtbp, whereas no appreciable shrinkage 

in the pp case could be detected between 12 and 19 D 2 GeV/c D 

We now made a search for a combined solution for (do-/dt)pp at 19,2 GeV/c; 

(du/dt$p at 16 GeV/c, c$I&s), uP$~(s) and tpp(s) 0 The mainproblem consisted in 

estimating how far out in t our spinless model could be used to represent the data 0 After 

some numerical tests we finally decided to limit the t-range and to include only those exper- 

imentalpoints for elastic pp scatteringwith ltll2.0 GeV2, The obtained fits are shown by 

the curves labelled II in Figs o l-3 0 The values for the parameters for this combined fit are 

utot(“) = 118.6; apt(O) = 0.38 ; p,, = 64.9 

tm 
T = -7.64; Q! $9 =0.34 ; p, =53.1; so = 0.082 

%t( ) Q) is essentially unchanged compared to Solution I; 7 is considerably smaller 

and we loose the good description of e”(s) obtained before. We show by the curves 

labelled P in Figs, 2 and 3 the Pomeranchuk contribution to the differential cross 
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sections o To first order in T these curves are independent on T* 
12 

As is clear 

from Fig. 2 the shoulder of the pp differential cross section at t=-1.2 GeV2 comes 

out very nicely in this model and is due to the vanishing of the Pomeranchuk con- 

tribution at this point. The K-matrix model predicts the vanishing of the Pomeranchuk 

term (diffraction zero) to move towards smaller values of It1 in a logarithmic fashion 

as the energy is increased, 

Comparing the set of values I and II we observe (1) that Solution II is closer to 

exchange degeneracy for P’ and w which has a bearing on the shrinkage pattern as 

will be discussed below, and (2) that so in Solution II is considerably smaller. 

Such a small value of so is required in order to obtain a diffraction peak extending 

over four orders of magnitude. It is well known that changing the value of so to so < 1 

corresponds to the introduction of residues decaying exponentially with t. The dif- 

ferential cross section is naturally very sensitive to changes in so. Total cross 

sections,on the other hand,are less sensitive to such changes since the residues 

can always be readjusted in certain limits without altering the goodness of the fit 

to both total and differential cross sections. 

We have examined the interference between the Pomeranchuk term and the 

absorptive corrected P’ and w contributions behaving like l/&,in order to deter- 

mine the energy dependence of the diffraction cone in pp and pi; scattering, i, e., 

the shrinkage or antishrinkage at the present energies. It turns out that the following 

situation is realized in this model. For (du/dt)pp the w contribution subtracts from 

the Pomeranchuk term for It I smaller than the crossover point (tco- - -0,20 GeV2) 

and adds for Itl bigger than the crossover point. The reverse is true for the P’ 

contribution. In a completely exchange degenerate situation the P’ and w contribu- 

tions cancel and the energy behavior of the pp forward differential cross section 

shows as a result logarithmic shrinkage due to the Pomeranchuk term alone. The 

same is true if P’-w exchange degeneracy in the residues and trajectories is only 
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slightly broken as in our Solution II. For pp scattering, however, both Regge pole’ 

contributions of order l/h add below the crossover point and subtract beyond it, 

which makes the diffraction peak on the one hand steeper in pi compared to pp and 

on the other hand expanding due to the decaying of the contributions of order l/ds 

in going to higher energies. Finally, however, at sufficiently high energies also 

the pi differential cross section will show shrinkage according to ol$ 
Y 
eff~ O/2 as 

the pp diffraction peak does. The structure in (du/dt 
lp 6 

around t=-0 ., 8 GeV2 - 

being an effect of the lower lying trajectories - is predicted to disappear with 

increasing s, whereas the shoulder in (du/dtlpp at t=-1,2 GeV2 is connected to the 

Pomeranchuk contribution and will in this model develop into a more profound dif- 

fraction minimum with growing energy, We point out, however, that the curves 

labelled P in Figs. 2 and 3 do not represent asymptotic curves for the differential 

cross sections at large s but possess themselves a logarithmic energy dependence. 

This is implied by the statement that diffraction peaks shrink indefinitely in this 

model as s increases. 

We thank Professor S. D. Drell for his kind hospitality at SLAC and Drs. 

E. Kluge and W. A. Ross for their advice and assistance in using the program 

MINFUN. 
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FIGURE CAPTIONS 

1. Fit to (a) total cross sections and (b) ratio of real to imaginary part at t=O of 

Ref D 7. I: Solution I [P Pomeranchuk contribution alone] ; II: Solution II. 

2. Comparison with the pp data of Ref 0 11 at plab=19” 2 GeV/c. I: Solution I; 

II: Solution II [P Pomeranchuk contribution alone] 0 

3. Comparison with the pi; data of Ref, 11 at plab=16 GeV/c. I: Solution I; 

II: Solution II [P Pomeranchuk contribution alone] 0 
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