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Summary 

By extrapolating the systematics of the general first- and second-order 
theory of beam transport optics (l,2,3) to include higher order multipole 
terms, it has been possible to evolve a simple, step by step, procedure for 
the design of high resolving power static-magnetic beam transport systems. 
The choice of the appropriate dipole and quadrupole elements for a given 
system may be determined once the resolving power, solid angle, momentum 
range and detector system of the instrument have been specified, The 
partial derivative of any nth-order aberration coefficient with respect 
to an r&h-order multipole component located anywhere in the system has 
been derived. From this "coupling coefficient", the strength and the 
optimum location of multipole element(s) to correct or modify a given 
aberration or group of aberrations is uniquely determined. 
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OF SYMBOLS 

A coefficients used in the expansion of the magnetic scalar poten- 
tial cp. 

8 the radial distance from the central trajectory to the pole of a 
multipole element. 

BO 
the magnetic field at the pole of a multipole element. 

Bx, By, Bt the magnetic-field components corresponding to the curvilinear 
coordinates x, y and t. 

P. 
BP ,;=e the raagnetic rigidity of the central trajectory. 

C x = (xbo) 
First-order Taylor coefficients in the trajectory equations. 

cy = (YIYo,) 

dX 
= (x[6) the spatial dispersion, a first-order Taylor coefficient in the 

tr8jectory equation. 

e the charge of the particle 

Gi(t, ~) the Green's functions used to evaluated the Taylor coefficients. 

h(7) = 5 the curvature of the central trajectory. 
0 

Kn( T> the multipole strength per unit length. 

the path length of the central trajectory. 

e the path length of an arbitrary trajectory. 

L the length of a multipole element. 

pO 
the momentum of the central trajectory. 

P the momentum of an arbitrary trajectory. 

R the radius of curvature of an entrance or exit boundary of a 
magnet. 

Rl the first-order momentum resolving power of a system. 

Sn = 2 Kn(l)dr the total strength of a multi-pole element. 
0 



S x = (XIX;, 

First-order Taylor coefficients in the trajectory equations. 
sy = (YIY;) 

X 

Y 1 

z(x) 

a 

B 

Bh3 

iP =I- 
6 P 

0 

K,h,P,u,X 

prime ( ') 

the transverse coordinates of the curvilinear coordinate system 

(x,y,t). x' = g ; y' = g . 

the coordinate perpendicular to x and lying in the midplane which 
describes the contour of an entrance or exit field boundary of 
a magnet. 

the angle of bend of the central trajectory in a dipole magnet. 

the angle of rotation of an entrance or exit field boundary. 

the sextupole strength per unit length of a non-uniform field (not 
to be confused with the previous @). 

the octupole strength per unit length of a non-uniform field 
expansion. 

the fractional momentum deviation of an arbitrary trajectory from 
that of the central trajectory. 

symbols used as exponents in the Taylor coefficients where 
n = (K -t A + p + v -I-X) is the aberration or multipole order in 
the expansion. 

d means z , the derivative with respect to the curvilinear coor- 

dinate t. 

the location of a multipole component ; a variable of integration. 

the magnetic scalar potential. 
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I. Introduction 

Within the last two decades, significant advances have been made in the 
understanding of charged particle optics. Perhaps the first major contribution 
was the development of the theory of the Alternating Gradient Synchrotron (A.G.S.) 
by Courant, Livingston, and Snyder(&) which led to the first-order matrix algebra 
formulation of beam-transport optics. Subsequent to this a second-order matrix 
8lgebr8 was developed by Brown, Belbeoch, and Bounin(5); followed by the develop- 
ment at SLAC of the digital computer program called TRANSPORT(G) that is widely 
used today in many laboratories for solving first- and second-order static- 
magnetic beam transport problems. In principle, the second-order matrix formalism 
may be extenied to any order, but in practice this approach has proved to be too 
cumbersome. Thus beyond second-order it has been more efficient to use computer 
ray-tracing programs which integrate the basic differential equation of motion 
of the charged particles through the known or assumed magnetic fields. The funda- 
mental difficulty with ray-tracing has been the required computational time to 
complete a design involving the minimization of many higher-order aberrations. 

In this report, we will outline a systematic procedure for the design of 
high-resolution systems based upon the extrapolation of the first- and second- 
order theory (1,2,3) to include higher-order multipole components. A general 
equation has been derived for the coupling coefficient of an nth-order multipole 
to any given nth-order aberration coefficient. As will be shown later, these 
coupling coefficients are a function only of the characteristic first-order 
trajectories (matrix elements) introduced and defined in References 1 and 2. 

Given this information, a systematic procedure for designing high resolu- 
tion beam transport systems is as follows: 

1) 
I 

2) 

3) 

4) 

Find a satisfactory first-order solution to the problem using 
TRANSPORT or its equivalent, I 

Calculate and make the necessary corrections to the second-order 
aberrations by introducing sextupole components into the system. 
The "best" locations and strengths of the sextupole components 
required may be selected via the coupling coefficients for the 
aberrations to be minimized. 

Calculate and make the necessary corrections (via ray-tracing) to 
the third-order aberrations by introducing octupole components into 
the system. (Note that an nth-order multipole couples with terms 
of order n or higher but not with terms of order lower than n. Thus 
an octupole component will not disturb the first- and second-order 
solutions already found from steps 1 and 2.) 

Repeat the above procedure up to the multipole order desired or 
needed to achieve the design objectives. 

If the design requires a solution to nth-order and a multipoles at each 
order are necessary to minimize the aberrations, the number of computer runs 
previously needed to complete a design was at least (n+m)2. Having a know- 
ledge of the coupling coefficients, after the first-order design has been 
selected, now (in principle) reduces the number of computer runs required to 
n. Since ray-tracing is very time consuming, this is indeed a significant 
saving. 

- l- 



II. Theory+ 

The following results are applicable to static-magnetic charged particle 

optical systems possessing median plane symmetry. As in Ref. 1, we shall use a 
right-handed curvilinear coordinate system (x,y,t) where x and y are the trans- 

verse coordinates. x is the outward normal distance in the median plane away 

from the central trajectory, y is the perpendicular distance fran the median 

plane, t is the distance along the central trajectory, and h=h(t) is the curva- 

ture of the central trajectory. 

The existence of the median plane requires that the scalar potential Cp 

be an odd function of y, i.e., V(x,y,t) = - 'P(x,-y,t). The most general form 

of Cp may therefore, be expressed as follows: 

rP(x, y,t) = 2 2 A2m+l n $ ‘& f . . m=o n=o 
0) 

where the coefficients A 2m+l,n are functions of t. 

In this coordinate system, the differential line element dT is given 

by 

dT* = dx* + dy* + (l+hx)* dt* 

The Laplace equation has the form 

Substitution of (1) into (2) gives the following recursion formula for the 

coefficients: 

-A 
2mt-3, n = A&+ln + nhA&+lnl - nh'A' 

> I - 2m+l,n-1 + A2m+l,n+2 (3) 

+ (3n+l)hA 2m+l,n+l + n( 3n-l!h2A,, n + 
) 

n(n-l)2h3A2m+l n-l 
9 

+ 3m 2m+3,n-1 + 3n(n-l)h*A 2m+3,n-2 + n(n-l)(n-2)h3A2m+3 n-3 
J 

d where prime means dt., and where it is understood that all coefficients A with 

one or more negative subscripts are zero. This recursion formula expresses all 

* The notation used in this report follows that used 
in Ref. 1 unless otherwise indicated. 
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the coefficients in terms of the midplane field By(x,o,t): 

where 
A 1,n = 

2Y 
axn 

= functions of t. (4) 
x=0 
y=o 

Since Cp is an odd function of y, on the meCan plane we have B X =Bt=C. The 

normal (in x direction) derivatives of B on the reference curve defines B over 
Y -c', Y 

the entire median plane, hence the magnetic field B over the whole space. The 
components of the field are expressed in terms of Cp explicitly by $ = $ or 

B y = $ = 2 2 A&+l,n $ &~ m=o n=o 

-Bt =&g 2 =x&q go ng A&n+1 n $ = , . ~!cz)! (5) 

The expression for the magnetic field on the midplane is c-3 Byb,o’t) = c Al n $ t . n=o 

At this point we deviate from the notation and formalism of Ref. 1 and 

introduce K,(t), the multipole strength per unit length; and Sn, the total 

multipole strength of a static-magnetic field. 

We rewrite equation (6) as 

By(x,o,t) = BP 2 K,(t) x" 
n=o 

B .pO Where BP = r; = e is the magnetic rigidity of a particle of momentum PO and 

charge e along the central trajectory; from which 

Kn(t) =(k),(5) (-l,r~(~)) =(&)(k)(2) xzyzo 

(7) 

(8) 
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We define Sn as 

(9) 

, Sn so defined is the strength of the nth-or&r multipole component of a field 

over the interval of integration. 

Multipole Strengths for Pure Multipole Fields 

Consider the scalar potential of an nth-order 2(n+l)pole pure multipole 
I 

element: 

cp = 
Born+' 

sin (n+l) 8 
(n+l)a" 1 00) 

where 

x = r case and Y = r sin0 

B. is the field at the pole and a is the radial distance to the pole from the 

central trajectory. . 

Expanding Cp as a function of x and y and differentiating, we have 

B = . . . . . . . 
Y 1 

From which 

and 

sn = ( 
B. L 
an I( ) BP 

Where L is the length of the multipole element. 

-4- 
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For a dipole n=o and the dipole strength is 

so+ CX (The angle of bend of the central trajectory) 

For a quadrupole n=l and 

For a sextupole n=2 and 

S2 =(3)(&) ' _ 

etc. for higher-order multipoles. 

Multipole Strengths for a Non-Uniform Field Expansion 

From the midplane field expansion of a non-uniform magnetic field 

Byb,o,t) = By(o,o,t) [l-nhx+B(hx)2+r(hx)3+ l ****.*] 
. 

the multipole strength factors are: 

KO 
= h, 5 = - nh*, K2 = Bh3, etc. 

and Sn evaluated over the length L of the central trajectory is: 

sO 
=hL = a as before, 

s1 = - tic, and S2 = Ph3,, etc. 

Multipole Strengths for a Contoured Entrance or Exit Boundary of a Magnet 

A third method of introducing multipole components is via a curved entrance 

or exit boundary of a magnet. To calculate the multipole strengths in this case, 

we integrate equation (7), holding x constant, as follows: 

L L 

/ 
By(x,o,t)dt = BP c xn 

/ 
Kn(t)dt = BP c Snxn 

0 0 

(13) 
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To relate this to the field boundary, we assume B to be a constant inside 
Y 

the effective field boundary and zero outside (i.e., we ignore the finite extent 

of the fringing field). In this sharp-cutoff approximation, the field boundary 

Z = Z(x) is: 

L 
1 s2 =- 

' B J y c 

By(x,o,t)dt = kcs X” = - X tan @ +'h x2 + "* 
n (14) 

where h = i and B is the angle of rotation of the entrance or exit face of 

the magnet at x=0. A positive B implies radial (x) defocusing and transverse 

(y) focusing. We note that: 
l 

s1 = - h tan f3 = The "quadrupole strength" 

The radius of curvature of the boundary is related to the sextupole strength 

as follows: 

2 s2 
$ = ,+ = h sec3 p .- 

(1+zt2) 

or 
h sec3 6 

'2= 2R = The "sextupole strength" 

From equation (13), we note that a positive multipole component of the field 

increases the J Bdt for a positive Xj thus a positive sextupole is represented 

by a concave surface of the entrance or exit boundary. 

The Description of the Trajectories as a Taylor's Expansion 

The deviation of an arbitrary trajectory from the central trajectory is 

described by expressing x and y as functions of t. The expressions will also 

contain x0, y,, x;, Y:, and 6, where the subscript o indicates that the quantity 

is evaluated at t=o. The prime (') denotes the derivative with respect to t, 

and 6 = g 
PO 

is the fractional momentum deviation of the ray from that of 

the central trajectory. These five initial boundary values will have the value 

zero for the central trajectory itself. x and y are expressed as a five-fold 

Taylor expansion using these initial boundary values. The expansions are 
written: 

-6- 



Here, the parentheses are symbols for the Taylor coefficients; the first part 

of the s~ymb~l identifies the coordinate represented by the expansion, and the 

second indicates the term in question. These coefficients are functions of t 

to be determined. The symbol c indicates'summation over zero and all positive 

integer values of the exponents K, A, I-I, Y, x; l 
The constant term is zero, 

and the terms that would indicate a coupling between the coordinates x and y 

are also zero; this results from the midplane symmetry. Thus we have 

(41 > = (yjl ) = 0 

bdYo) = (YIXo) = 0 

(xlu;) = (ylx;) = 0 (16) 

Here, the first line is a consequence of choosing the central trajectory as 

the reference axis, while the second and third lines follow directly from 

considerations of median plane symmetry. 

Since they will appear often in the formalism, it is convenient to 

introduce the following abbreviations for the first-order Taylor coefficients: 

CXIXJ = c,(t) (4x;) = s,(t) (x16) = dx(t) 

(YIY,) = c,(t) (YlY$ = s,(t) 07) 

When the transverse position of an arbitrary trajectory at position t is 

written as a first-order Taylor's expansion as a function of the initial 

boundary conditions, the above five quantities are just the coefficients 

appearing in the expansion for the transverse coordinates x and y as follows: 

x(t) = c,(t) x0 + s,(t) x:, + ax(t) 6 + higher-order terms 

and 

y(t) = cy(t) y. + s,(t) y: + higher-order terms. 

-7- 
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III. Solution of the Equations of Motion 

The general differential equation of motion of a charged particle in a 

static-magnetic field valid to all orders in x and y and their derivatives as 

derived in Ref. 1, equation (5) is: ' 

- h(l+hx)] - x' [x1x" + y'y" + (l+hx)(hx'+h'x)] 
(T'j2 

+ *y 
1 

1 
y" - - 

(Ty')2 
[ x'x" + y'y" + (l+hx)(hx'+h'x)] 

1 

(2hx'-i-h'x) - (l+hx) [xtx~~ 

(T'12 
+ y'y" + (l+hx)(hx'+h'x)] 

= ; T'($' x 5) = ; T' %[y'Bt - (l+hx)By] + ?[(l+hx)Bx - x'Bt] 

+ ?[x'B 
Y 

- y'Bx] O-8) 

If this equation is solved to nth-order for the Taylor's coefficients 

of equation (15), it will be observed that the result has the remarkably 

simple form: 

(x IxKyhx’~y’y x - + 
i 000 0 ’ ) - - [K!A!:&:] 1 G&t,+;(+$o)s;(+;(T)d;(T)K,(~)d~ 

0 

+ Terms containing K 
0’ 

******** Knml (19) 

where the variable of integration is T and n = ( K + A + p + LJ+ X). 

The xi have the following meaning: 

x1 = x(t) x2 = x'(t) x3 = y(t) x4 = y'(t) 

c7 c x YJ sx9 s y, and dx are defined by equation (17) and in general are func- 

tions of the variable of integration T over the interval of integration. K, 

is defined by equation (8) and in general is also a function of T. , 
The Gi's are Green's functions where: 



Glh T> = (x(t)lxW) = SxWCxW - CXWSX(~) 

G2(t, 0) = (x’(t) lx’(T)) = s;(t)CxP) - Cpx(T) 

G3h T) = (YWY'W) = "it,p - c,W,( T) 

G4h T) = (y'(t) lY'( T,) = s;(t)c,( 0) - c;(t)sy( T) (N 

Note that the Gi's are just first-order Taylor's coefficients measured from 

the location ('c) of the multipole component to the end of the system (t). 

Thus we see that the coupling coefficient to an nth-order multipole is 

a function only of the first-order matrix elements c x7 cy7 sx7 sy7 dx and 
their derivatives with respect to t. 

From median-plane symmetry considerations, the allowed aberrations are 

those with y and/or y' appearing an even number of times in the Taylor co- 
efficient. For example (XIX:), (xlyoy~) and (ylyzyi) are allowed aberra- 

tions; whereas (~IY,), blx$$J or (yly:) are not allowed and are there- 

fore equal to zero. 

The minus sign is used when y and/or y' appear 0, 4, 8, 12 l *** times 

and the plus sign is used when y and/or y' appear 2, 6, 10 l ***** times,. For 

example for the coefficients (xl& and (Yl& the minus sign is applicable; 

whereas for the coefficients (~IY$) and (ytlyay~~) the plus sign is 

applicable. 

Equation (19) is derived by observing in the pattern of the solution of 

the differential equation that an nth-order aberration term containing the 

nth-order multipole strength factor Kn cannot include multipole strength factors 

of lower order than n; or stated physically, an nth-order multipole cannot 

couple to aberrations (terms) of order lower than n. This fact allows the 

recursion formula equation (3) to be reduced to the simple form 

A 2m+3,n = - *2m+l,n+2 (a 

I 
- in so far as it applies to the derivation of nth-order terms containing only I 

! Kn' As a consequence, the scalar potential for deriving these terms assumes 
I 
!/ I, 

the simplied form 

v(x,y,t) = 2 2 (-l)m Al,2m+n $ Y&+1 
In=0 n=o (2m+l)! (22) 



From which, it follows that 

Bx(x, ytt ) = k) 2 2 ( -ljm Kb+n+l ‘m X”Y&+’ 
n=o 

and 

By(x,5.,t) 
m=o n=o 

For terms containing only K,, the basic differential equations assume the 

form: 

x” + . . . . . . = - e 
P BY 

Substituting the Taylor's expansion of equation (15) and solving for the 

nth-order terms using a conventional Green's function solution (see Ref. 1) 

yields equation (19) above. 

IV. Interpretation and Use of Equation (19), 

For most practical cases of interest, Kn will be a constant over the 

interval of integration. In this event we may define the coupling coefficient 
of an nth-order multipole to an r&h-order aberration as the partial derivative 

of equation (19) with respect to the K in question as follows: 
n 

(25) 

where now the interval of integration is over the multipole length L represented 

by Kn- For a distributed multipole component (such as in a non-uniform field 
bending magnet), equation (25) is used. 

In many cases where a curved entrance or exit pole contour is used or a 

short multipole magnet is used such that the characteristic first-order func- 

tions cx, c , 
Y 

sx, s and dx are essentially constants over the interval of 

integration (the le&th of one multipole), then the coupling coefficient is best 
defined as the partial derivative of equation (19) with respect to S as follows: n 

- 10 - 



t n. K!A!/.L!v!X! 1 (26) 

Examples 
Assume a situation where the end of the system is a point-to-point image 

or the origin (i.e., s,(t)=o), then using equation 26, the coupling cpefficients 

of a sextu&e of strength S2 to various second order aberration coefficients 

are: 

acxlYog 
a s2 

= - 2 cx(t) c s Y XSY 
(27) 

etc. Where the Green's function used in these examples is 

Gl = sx(t)cx - cxwsx = - cx(tbx (since s,(t) = 0 for point-to-point 
imaging) 

The aberration and c,(t) are evaluated at the end of the system. c,(t) is 

equal to the magnification Mx in the examples given. The remaining coefficients 

c 9 Sx' sY 
and dx are evaluated at the location of the sextupole S2. The 

Y 
above results are in agreement with Table VII of Ref. 1. 

To illustrate a more complex example, consider the fourth-order aberra- 

tion coefficient (Y lY$@) and assume parallel-to-point imaging in the y 

coordinate (i.e., c,(t) = 0). The appropriate Green's function is: 

G3 
= sy( t>c - cy(t)sy = sy(t)cy 

Y 

and the coupling coefficient to a fourth-order multipoie of strength S4 is: 

a( Y lYEY;a 

a s4 
= - sy(t)c3s d 

YYX 
(28) 



where again the aberration coefficient ( Y 1 Y~Y$ and sy(t) are evaluated 

at the end of the optical system and c , s 
Y Y' 

and dx are evaluated at the 

location of the fourth-order multipole S4. 

V. A Systematic Procedure for Designing High Resolution Systems 

First-Order Considerations 

In m=-ry respects,' the determination of a satisfactory first-order magnetic- 

optical design is more difficult to achieve than is the subsequent higher-order 

design. This is true not only because the'basic equipment configuration is 

dominated by first-order optical considerations but also because the choice of 

the first-order optics affects the magnitude of all higher-order aberrations 

and the ease with which these aberrations may be minimized by introducing 

multipole components into the design. 

The dominating design parameters that must be clearly specified in order 

to evolve a first-order design are the momentum resolving power; the spatial 

resolution of the particle detector system to be used (this determines the 

momentum dispersion required); the required phase space acceptance (the solid 

angle, the source size, and the momentum range) of the instrument, and the , 
first-order imaging requirements in both the x and y coordinates. 

Given the above specifications (assuming they are self-consistent), the 

optical mode and physical configuration of the instrument may be determined. 

Often, more than one theoretical solution exists; in which case the choice is 

usually resolved by practical or economic considerations. In other cases, 

no solution is evident and the basic specifications must be modified accord- 

ingly. In any event, the following equations and discussion are applicable to 

the solution of the problem. 

1) First-Order Resolving Power 

A general equation for the first-order resolving power has been de- 

rived in References (1,2, and 3). For point-to-point imaging the first-order 

momentum resolving power R 1 is defined as the ratio of the momentum dispersion 

at the image plane to the total image size. Thus if 2x0 is the total source 

size then from Reference 1 we have: 

P 
%=5= 

dx( t) 
qp-7 

t 
1 

=T / 
sx( r)h( T)dT (29) 

0 

Note that h(T)dT = da is the differential angle of bend of the central trajectory 
of the optical system. 
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Equation (29) may be expressed in a number of useful forms. If we consider 

a particle originating at the source with x m 
0 = o and 6 = p = o and lying in 

the midplane (i.e., a monoenergetic point source), the firgt-order equation of 

its trajectory is 

x(o) = sx( ‘)X:, (30) 

We may then rewrite equation (29) as follows: 

x(T)h(T)dT = 
(L-e,) 

00 c 2x0x; 
(31) 

where (k-t) is the path length difference between the trajectory described by 

equation (30) ,and the central trajectory. Or we may also write equation (31) 

in the form 

B x(z)dT 
BP = (;;I;;) (b) / BdA 

00 
(32) 

where BdA is the magnetic flux enclosed between the central trajectory and 

the trajectory described by equation (30), and BP is the magnetic rigidity of 

the central trajectory. Please note, however, that if the trajectory of 

equation (30) crosses the central trajectory or the sign of 3 changes, this 

changes the sign of the integration. From equation (32) we may define resolv- 

ing power as the magnetic flux enclosed per unit phase space area (2x0x;), per 

unit momentum (BP) of the central ray. 

In any given design, one or more of the above equations may be used as a 

guide toward achieving the required resolving power. One of the design decisions 

that must be made is the appropriate choice of the dipole magnet parameters 

(width and length) to achieve the required s BdA. From first-order considera- 

tions, this choice is dominated primarily by practical and economic factors. 

However, a study of the nature of the origin of aberrations (see for example 

Ref. 1) suggests that it is advisable to keep the amplitude of sx small. In 

order to simultaneously satisfy this requirement and meet the required resolv- 

ing power R 1, we see from equation (29) that the total angle of bend a of the 

central trajectory should be chosen as large as is practical. Also, in general, 

the focal plane angle tends to be more normal to the optic axis for larger 
Ct.- a property usually desired in most designs. 

- 13 - 



2) Dispersion 

From Reference 1, 2, or 3; for point-to-point imaging (sx(t)=o) the 

dispersion at the image plane is 

(33) 

where "x(t) is the magnification at the image plane. 

The dispersion and hence the magnification in the design of a spectro- 

meter is dominated almost entirely by a compromise between the spatial resolu- 

tion of the particle detectors used at the image plane and the momentum range 

to be covered by the instrument; or in the case of a momentum defining (analyz- 

ing) system, by the acceptable momentum-defining slit spacings. 

3) The Selection of the Optical Mode 

By optical mode, we mean the type of imaging (e.g., point-to-point 

or parallel-to-point, etc.) required at the image plane in both the x and y 

coordinates, and the number of intermediate images imposed between the source 

and image planes. The imaging requirements at the image plane are usually 

dominated by the physics to be performed by the instrument and the nature of 

the particle detectors used. However often (especially at low energies) the 

imaging in the y plane may be unimportant as far as the physics requirements are 

concerned which in turn provides some additional flexibility in the optics design. 

A study of the coupling coefficients to the aberration coefficients 

(equation 19) shows the not surprising result, that multipoles located at 

intermediate images in a system do not couple to aberrations in the plane in 

which the intermediate image occurs. Hence it often proves beneficial to 

intentionally create an intermediate image in the y plane of an optical system 

so as to achieve some degree of "orthogonality" in the minimizing of x and y 

aberrations. 

The considerations of 1), 2), and 3) above are the determining factors 

in the selection of the first-order solution of a system design. 

The optical mode and dispersion of the system are determined to a great 

extent by the choice of the quadrupole components chosen to achieve the first- 

order imaging although it is clear that the dipole elements also influence the 

first-order imaging to a greater or lesser extent depending upon the total 

angle of bend of the system. 

4) Aberrations and their Correction 

A study of the source of second- and higher-order aberrations (see 

for example Ref. 1) suggests that it is advisable to maintain the characteristic 
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first-order functions cx, sx, dx and cyj sy and their derivatives as small as 

is feasible through the magnetic elements of a system when choosing the first- 

order design. This procedure will tend to reduce the initial size of the 

aberrations and hence simplify the problem of minimizing them by the addition 

of.multipole components to the system design. 

The procedure for minimizing aberrations has already been outlined in the 

Introduction and as such will not be repeated here. The "keyIt to the minimiza- 

tion procedure is the coupling coefficient given by the integral expression in 

equation (19). The "best" location for the correcting multipole is where the 

coupling coefficient has its maximum value. 

The preferred method of introducing the multipole components, i.e., via 

pure multipoles, contoured entrance or exit boundaries, or non-uniform fields 

is a combination of practical and economical considerations and, of course, 

personal taste and experience. All three methods have been used with pure 

multipoles dominating the situation for higher energy physics and the other two 

methods dominating medium and low-energy physics applications. All three 

techniques should be considered in any given design situation to be certain 

that an important economic or practical advantage has not been ignored. 
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