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ABSTRACT 

The application of numerically stable matrix decompositions to 

minimization problems involving linear constraints is discussed and 

shown to be feasible without undue loss of efficiency. 

Part A describes computation and updating of the product-form 

of the LU decomposition of a matrix and shows it can be applied to 

solving linear systems at least as efficiently as standard techniques 

using the product-form of the inverse. 

Part B discusses orthogonalization via Householder transformations, 

with applications to least squares and quadratic programming algorithms 

based on the principal pivoting method of Cattle and Dantzig. 

Part C applies the singular value decomposition to the non-linear 

least squares problem and discusses related eigenvalue problems. 
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Introduction 

This paper describes the application of numerically stable matrix 

decompositions to minimization problems involving linear constraints. 

Algorithms for solving such problems are fundamentally techniques for 

the solution of selected systems of linear equations, and during the 

last fifteen years there has been a major improvement in the understanding 

of these and other linear algebraic problems. We show here that methods 

which have been analysed by various workers and proven to be numerically 

stable may be employed in mathematical programming algorithms without 

undue loss of efficiency. 

Part A describes means for computing and updating the product-form 

of the LU decomposition of a matrix. The solution of systems of equations 

by this method is shown to be stable and to be at least as efficient 

as standard techniques which use the product-form of the inverse. 

In Part E we discuss orthogonalization via Householder transformations. 

Applications are given to least squares and quadratic programming algorithms 

based on the principal pivoting method of Cattle and Dantzig [5 1. For 

further applications of stable methods to least squares and quadratic 

programming, reference should be made to the recent work of R. J. Hanson [13] 

and of J. Stoer [26] whose algorithms are based on the gradient projection 

method of J. B. Rosen [24]. 

In Part C the application of the singular value decomposition to 

the non-linear least squares problem is discussed, along with related 

eigenvalue problems. 
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A. THE USE OF LU DECOMPOSITION IN EXCHANGE AIGORITHMS 

1. W Decomposition 

if B is an nxn , nonsingular matrix, there exists a permutation 

matrix n' , a lower-triangular matrix L with ones on the diagonal, and 

an upper-triangular matrix U such that 

0-J) 17B = LU . 

It is possible to choose fl , L , and U so that all elements of L 

are bounded in magnitude by unity. 

A frequently-used algorithm for computing this decomposition is 

built around Gaussian elimination with row interchanges. It produces 

the matrices rT and L in an implicit form as shown: 

For k = 1,2,...,n-1 in order carry out the following 

two steps: 

(14 Find an element in the k-th column of B , on or below the 

diagonal, which has maximal magnitude. Interchange the 

k-th row with the row of the element found. 

b3) Add an appropriate multiple of the resulting k-th row to each 

row below the k-th in order to create zeros below the diagonal 

in the k-th column. 
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Each execution of the first step (1.2), in matrix notation, amounts 

to the premultiplication of B by a suitable permutation matrix flk . 

The following step (1.3) may be regarded as the premultiplication of B 

by a matrix rk of the form 

k 

(1.4j k 

1 

. 

. 

. 

1 

1 

gk+l,k 1 

. . 

. . 

. . 

g n,k 
1 

where (gi kl _< 1 for each i = k+l,...,n . 
Y 

By repeating the two steps n-l times, B is transformed into U . 

And at the same time the matrix (L-lfl) is collected in product form 

(1.5) L-37 = rn-lnn-l . . .r,l$ . 

This algorithm requires n3/j+ O(n*) multiplication/division operations 

and again this many addition/subtraction operations. Both U and all 

of the g. 
l1 j 

can be stored in the space which was originally occupied by B . 

An additional n locationsare required for the essential information contained 

in the l-f k * 
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2. Exchange Algorithms 

Many algorithms require the solving of a sequence of linear equations 

for which each Bci) differs from its predecessor in only one column. 

Examples of such algorithms are: the simplex method, Stiefel's exchange 

method for finding a Chebyshev solution to an overdetermined linear 

equation system, and adjacent- path methods for solving the complementary- 

pivot programming problem. 

Given that B (0) has a decomposition of the form 

(2.2) 
B(o) = JqJ(o) , 

where U (0) is upper-triangular, and given that 

stored as a product 

has been 

(2-3) 
,;wl = ,io) (oi n-ifin-1 .** p .q (0) , 

1 

the initial system of the sequence is readily solved: Set 

(24 y = L(oPv(o) , 

and then back-solve the triangular system 

(2.5) u(O), = y . 
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3. Updating the LU Decomposition 

Let the column r. of B(O) be replaced by the column vector a (0) . 

So long as we revise the ordering of the unknowns accordingly, we may 

insert a (0 > into the last column position, shifting columns ro+l 

through n of B(O) one position to the left to make room. We will 

call the result B (1) ) and we can easily check that it has the 

decomposition 

(3.1) ,ii) _ L(‘)H(‘) , - 

where H (1) is a matrix which is upper-Hessenberg in its last n-ro+l 

columns and upper-triangular in its first ro-1 columns. That is, 

H(l) has the form 

(3.2) 

r 
0 

The first ro-1 columns of H(l) are identical with those of U (0) . 

The next n-r0 are identical with the last n-r columns of U (0) . 

And the last column of H (1) is the vector L (oPa(o) . 

H(l) can be reduced to upper-triangular form by Gaussian elimination 

with row interchanges. Here, however, we need only concern ourselves 

with the interchanges of pairs of adjacent rows. Thus UC') is gotten 
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from H(l) by applying a sequence of simple transformations: 

r(l) .,-f @) H(l) , 
.'* r. r. 

where each (') I'. has the form 1 

i 
(3.4) 

i+l 

1 

. 

. 

1 

1 

g(l) i 1 

1 

. 

. 

1 

i i+l 

and each fl!l) is either the identity matrix or the identity with the i-t,h 1 
and i+l-st rows exchanged, the choice being made so that lgCi)l 5 1 . i 

The essential information in all of these transformations can be 

stored in n-r o locations plus an additional n-r0 bits (to indicate 

the interchanges). If we let 



(3.5) ,wi = p n(l) r(l) p ,oP ) 
n-l n-l *.* r r 

0 0 

then we have achieved the decomposition 

(3.6) 
,(‘) = JqJW . 

The transition from B (i> to B(i+l) for any i is to be made 

exactly as was the transition from B (0 > to B(l) . Any system of 

linear equations involving the matrix B W for any i is to be solved 

according to the steps given in (2.4) and (2.5). 



4. Round-off Considerations 

For most standard computing machines the errors in the basic 

arithmetic operations can be expressed as follows: 

fR(a + b) = a(1 + Ed) + b(1 + s2) - 

(4.1) fR(a x b) = ab(1 + s3) 

fl(a/b) = (a/b) (1 + &4) , 

where 1~~1 < f31mt . Here p stands for the base of the number system 

in which machine arithmetic is carried out and t is the number of 

significant figures which the machine retains after each operation. The 

notation fR(a "op" b) stands for the result of the operation "OP" 

upon the two, normal-precision floating-point numbers a and b when 

standard floating-point arithmetic is used. 

The choi:e of an LU decomposition for each B(i) and the particular 

way in which this decomposition is updated were motivated by the desire 

to find a way of solving a sequence of linear equations (2.1) which would 

retain a maximum of information from one stage to the next in the sequence 

and which would be as little affected by round-off errors as possible. 

Under the assumption that machine arithmetic behaves as given in (4.1), 

the processes described in Sections 2 and 3 are little affected by 

round-off errors. The efficiency of the processes will vary from algorithm 

to algorithm, but we will argue in a subsequent section that the processes 

should cost roughly as much as those based upon product-form inverses 

of the B(i) . 
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We will now consider the round-off properties of the basic steps 

described in Sections 2 and 3. 

The computed solution to the triangular system of linear equations 

(4.1) u(i)x = y 

can be shown, owing to round-off errors, to satisfy a perturbed system 

(4.3) (,(i) -+ suqx = y . 

It is shown in Forsythe and Moler [9 ] that 

(4.4) 
liSUci) /I 

;i,(i'li' 
qQ (l.ol)$1-t , 

where !/.../j denotes the infinity norm of a matrix, and thus round-off 

errors in the back-solution of a triangular system of linear equations 

may be regarded as equivalent to relatively small perturbations in the 

original system. 

Similarly, the computed L and U obtained by Gaussian elimination 

with row interchanges from an upper-Hessenberg matrix H satisfy the 

perturbed equation 

(4.5) H+6H=LU , 

where Forsythe and Moler show that 

(4.6) 

and Wilkinson 

II &Hi1 2 1-t 
//ii/lVPP ? 

k8l establishes that p_<n* Thus, the computat ional 
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process indicated in (3.3) can be regarded as introducing only relatively 

small perturbations in each of the H(i) . 

Similar results hold for the initial LU decomposition (2.2) with 

a different bound for p . The reader is referred again to Forsythe 

and Moler. 

The most frequent computational step in the processes which we have 

described is the application of one Gaussian elimination step 

column vector v : 

i 

(4.7) w = rv = 

i j 

The computed vector w satisfies 

(4.8) =v Wk k for k { j 

v1 . . . 
V i-l 

v. 1 

V i+l . . . 
V j-l 

V. 
J 

vj+l . . . 
V n 

wj 
= fe(fe(gvi) + Vj) 

ZZ gvi(l + E3)(1 + El) + Vj(l + s2) 

m toa 

= gvi + vj + gvi(El + E3 +&&‘)+VE 1 3, j 2 ' 
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Thus we may regard the computed vector w as the exact result of a 

perturbed transformation 

(4.9) w = (r + 6r)v ) 

where 

i 
(4.10) 6r = 

j 

J 
i j 

and 

(4.11) cr=g(E1+E +EE) 
3 13 

T'=& 2 * 

Therefore we have 

bl /El + E3 + 5&jl + 1~~1 

1+ I4 
> 

where the right-hand side is bounded, since Id 51 , according to 

(4.13) 
~~wll 
- _< B l-53 + P 
/P/l 

] < 3.01p (&d4 

Hence, the computations which we _ perform using transformations (4.7) also 

introduce relatively small perturbations into the quantities which we manipulate. 

10 



It is precisely with regard to such transformations that we feel 

our method of computation, based upon LU decompositions, is superior 

to methods based upon the inverses of the matrices ,(i) . Such methods 

use transformations of the form 

(4.14) 

1 7 1 

. . 

. 

. . 

' '17k-1 

ilk 

"ilk+l 1 

. . 

. 

. 

rlk 

. 

1 

k . 

k 

These are applied to each column in 
B(i-1)-l (iJel 

to produce B‘-' ; or 

alternatively, in product-form methods, they are applied to the vector 

,(i) to produce the solution to system (2.1). As such, they involve 

successive computations of the form (4.7). Each such computation may be 

regarded as satisfying (4.9). But, since-the 'Qj may be unrestricted in 

magnitude, no bound such as (4.13) can be fixed. 
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5. Efficiency Considerations 

As we have already pointed out, ?t requires 

(5.1) n3/3 + O(n2) 

multiplication-type operations to produce an initial IU decomposition 

To produce the product-form inverse of an nxn matrix, on the other 

hand, requires 

(5*2) n3/2 + O(n2) 

operations. 

The solution for any system (2.1) must be found according to the 

decomposition method by computing 

(2.2). 

LU- 

(5.3) y = ,!i)-l,(i) 

followed by solving 

(5.4) TJ(i)x = y . 

The application of to Ji) in (5.3) will require 

(5.5) n!;-1) 

operations. The application of the remaining transformations in ,(i)-l 

will require at most 

(5.6) i(n-1) 

operations. Solving (5.4) costs 

12 



(5.7) 
n(n+l) 

2 

operations. Hence, the cost of (5.3 ) and (5.4) togeth er is not greater than 

(5.8) n2 + i(n-1) 

operations, and a reasonable expected figure would be n2 + $ (n-l) . 

On the other hand, computing the solution to (2.1) using the usual 

product form of ,(iP requires the application of n+i transformations 

of type (4.14) to v (i) at a cost of 

(5.9) n2 + in 

operations. 

If a vector a W replaces column r. in B(i) 
1 , then the 

updating of ,(i)-l requires that the vector 

(5.10) 

be computed. This will cost n2+ in operations, as shown in (5.9). Then 

a transformation of form (4.14) must be produced from z , and t,his will 

bring the total updating cost to 

(5-W n2 + (i+l)n . 

The corresponding cost for updating the LU decomposition will be not more 

than 

(5.12) ncg-l) + i(n-1) 

operations to find , followed by at most 

13 



(5.13) 
n(n+l) 

2 

operations to reduce Hb+‘) to &+l) and generate the transformations 

of type (3.4) which effect this reduction. This gives a total of at most 

(5.14) n2 + i(n-1) 

operations, with an expected figure closer to n'+i (n-l) . 

Eience, in every case the figures for the LU decomposition: (5.14), 

(5.8), and (5.1) are smaller than the corresponding figures (5.11), (5.9), 

and (5.2) for the product-form inverse method. 

14 



6. Storage Considerations 

All computational steps for the LU-decomposition method may be 

organized according to the columns of the matrices ,!i) . For large 

systems of data this -permits a two-level memory to be used, with the 

high-speed memory reserved for those columns being actively processed. 

The organization of Gaussian elimination by columns is well-known, 

and it is clear how the processes (5.3) may be similarly arranged. 

Finally, the upper-triangular systems (5.4) can be solved columnwise 

as indicated below in the 4 x 4 case: 

I 
' l-51 u12 u13 Ul4!. ix1 IY 
/ 

/ 1' 

1 0 
! u22 u23 u24 x2 ! Y2 
1 = 

\ 0 0 u33 u34 x3 i Y3 
! 

\ 0 0 0 ! v+ x 4 "4 : / 

Bring the y vector and the last column of U into high-speed 

memory. set x4 = y4/~44 . Set y; = yi-ui4x4 for i = 3,2,1 - 

This leaves us with the following 3 x 3 system: 

Yl u12 Y3 i ; x1 : Yi 

0 u22 u23 
/x = 

2 y; 
I 
, 

0 0 
u33 ,x3 (/ Yji - 

We process it as suggested in ,the 4 x 4 case, using now the third 

column of U to produce x 3' Repeat as often as necessary. 
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In the event that the matrices B (9 are sparse as well as large, 

we wish to organize computations additionally in such a way that this 

sparseness is preserved as much as possible in the decompositions. 

For the initial decomposition (2.2), for example, we would wish to 

order the columns of B (0) in such a way that the production of L o-1 

and U(O) introduce as few new nonzero elements as possible. And at 

subsequent stages, if there is a choice in the vector a (i> which is 

to be introduced as a new column into the matrix B W to produce B (i+l) 
> 

it may be desirable to make this choice to some extent on sparseness 

considerations. 

It is not generally practical to demand a minimum growth of nonzero 

elements over the entire process of computing the initial decomposition. 

However, one can easily demand that, having processed the first k-l 

columns according to (1.2) and (1.3), the next column be chosen from 

remaining in such a way as to minimize the number of nonzero elements 

generated in the next execution of steps (1.2) and (1.3). See, for 

example, Tewarson [27] Choice of the next column may also be made 

according to various schemes of "merit"; e.g., see Dantzig et al. [6]. 

The introduction of new nonzero elements during the process of 

updating the i-th decomposition to the i+l-st depends upon 

(6.3) the nonzero elements in L (i)-',(i) over those in a (3 , 

and 

(6.4) the number ri of the column to be removed from B(i) , 

16 



No freedom is possible in the reduction of H (ii-l) to U(i+l) once 

aO has been chosen and the corresponding ri has been determined. 

The growth (6.3) can be determined according to the techniques 

outlined in Tewarson's paper, at a cost for each value of i , however, 

which is probably unacceptable. The more important consideration is (6.4). 

The larger the value of r. , 1 the fewer eltiination steps must be carried 

out on H(l+') and the less chance there is for nonzero elements to be 

generated. Again, however, the determination of the value of ri 

corresponding to each possible choice of a (i> may prove for most 

algorithms to be unreasonably expensive. 
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7. Accuracy Considerations 

During the execution of an exchange algorithm it sometimes becomes 

necessary to ensure the highest possible accuracy for a solution to one 

of the systems (2.1). High accuracy is generally required of the last 

solution in the sequence, and it may be required at other points in the 

sequence when components of the solution, or numbers computed from them, 

approach critical values. For example, in the simplex method inner 

products are taken with the vector of simplex multipliers, obtained by 

solving a system involving B (9 , and each of the non-basic vectors. 

The computed values are then subtracted from appropriate components of 

the cost vector, and the results are compared to zero. Those which are 

of one sign have importance in determining how the matrix B (i+l> is 

to be obtained from B (i> . The value zero, of course, is critical. 

The easiest way of ensuring that the computed solution to a system 

(7J) Bx = v 

has high accuracy is by employing the technique of iterative refinement 

[9 , Chapter 131. According to this technique, if x (6 is any sufficiently 

good approximation to the solution of (7.1) (for example, a solution 

produced directly via the LU-decomposition of B ) then improvements may 

be made by computing 

(7.2) r(j) = v - ,(j) , 

solving 

(7.3) ,,(j) = $1 , 

18 



and setting 

(7.4) ,(j+l) = x (3 + z 0) 

for j = 0,1,2,... until jJz ( j)l( is sufficiently small. The inner 

products necessary to form the residuals (7.2) must be computed in 

double-precision arithmetic. If this rule is observed, however, and if 

the condition of the system, measured as 

(7.5) cod@ = 11 B \I \lB-'Il y 

is not close to @ t-1 , the refinement process can be counted on to 

terminate in a few iterations. The final vector x (j> will then be 

as accurate a solution to (7.1) as the significance of the data in B 

and v warrant. 

Step (7.3) is most economically carried out, of course, via the 

same LU-decomposition which was used to produce x (0) . If this is 

done, each repetition of steps (7.2) through (7.4) will cost only 

0 (n2) operations. The alternative approach of producing a highly 

accurate solution to (7.1) by solving the system entirely in double- 

precision arithmetic is generally more expensive than iterative 

refinement by a factor of n . 
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B. THE QR DECOMPOSITION AND QUADRATIC PROGRAIWCNG 

a. Householder Triangularization 

Householder transformations have been widely discussed in the 

literature. In this section we are concerned with their use in reducing 

a matrix A to upper-triangular form, and in particular we wish to show 

how to update the decomposition of A when its columns are changed one 

by one. This will open the way to the implementation of efficient and 

stable algorithms for solving problems involving linear constraints. 

Householder transformations are symmetric orthogonal matrices of 

the form Pk = I -@kukuE where uk is a vector and 6, = 2/(uEuk) . 

Their utility in this context is due to the fact that for any non-zero 

vector a it is possible to choose uk in such a way that the 

transformed vector Pka is zero except for its first element. 

Householder [ 153 used this property to construct a sequence of transformations 

to reduce a matrix to upper-triangular form. In [29], Wilkinson describes 

the process and his error analysis shows it to be very stable. 

Thus if A = (al,...,an) is an mxn matrix of rank r , then 

at the k-th stage of the triangularization (k < d we have 

*(k) = Pkml Pk-;! . . . PO A = 
,/ Rk 'k 
I 

\ 0 Tk 

where X k is an upper-triangular matrix of order r . The next step 

is to compute ,!k+l) = Pk A(k) where Pk is chosen to reduce the first 

20 



column of Tk to zero except for the first component. This component 

becomes the last diagonal element of Rk+l and since its modulus is 

equal to the Euclidean ,length of the first column of Tk it should in 

general be maximized by a suitable interchange of the columns of 

i' 'k 

iTk ' :I 

After r steps, Tr will be effectively zero (the length 

of each of its columns will be smaller than some tolerance) and the 

process stops. 

Hence we conclude that if rank(A) = r then for some permutation 

matrix ?f the Householder decomposition (or "QR decomposition") of A is 

r n-r 
rcI.. 

&An = Pkml Pk-2 . . . PO A = 

where Q = Prml P,-2 . . . PO is an mxm orthogonal matrix and R is 

upper-triangular and non-singular. 

We are now concerned with the manner in which Q should be stored 

and the means by which Q , R , S may be updated if the columns of A 

are changed. We will suppose that a column a is deleted from A and 
P 

that a column a is added. 
q 

It will be clear what is to be done if only 

one or the other takes place. 

Compact Method: 

Since the Householder transformations 'k are defined by the vectors 

uk the usual method is to store the uk's in the area beneath R , with 

a few extra words of memory being used to store the @,'s and the diagonal 
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elements of R . The product Qz for some vector z is then easily 

computed in the form P r-1 'r-2 '*' PO z where, for example, 

PO" = (I -~ouou~)z = z -/30(u~z)uo. The updating is best accomplished 

as follows. The first p-l columns of the new R are the same as 

before; the other columns p through n are simply overwritten by 

columns aply.. -'anJaq and transformed by the product P p-lPp-2 *** P 0 

S 
to obtain a new 

t 1 

P-l ; then T is triangularized as usual. 
T P-l 

P-l 
This method allows Q to be kept in product form always, and there is no 

accumulation of errors. Of course, if p = 1 the complete decomposition 

must be re-done and since with m > n - the work is roughly proportional 

to (m-n/3)nc this can mean a lot of work. But if p t n/2 on the 

average, then only about l/8 of the original work must be repeated 

each updating. 

Explicit Method: 

The method just given is probably best when m >> n . Otherwise 

we propose that Q should be stored explicitly and that the updating 

be performed as follows: 

(1) The initial Q 

matrix ,thus: 

' 'r-2 r-l 

can be computed by transforming the identity 

. . Po!Ap 1 Im) = 

22 



(2) If a is added to A then compute s = &a4 and add it 
4 (2 

to the end of 

(3) Delete ap where applicable (p < r) . This normally means 

just updating the permutation vector used to describe ll . 

(4) The initial situation 

&ATT = 

has thus been changed to 

Qiiff = 

Yl 

- - --_ 

6 

-- 

where the areas are the same as before. 
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This is analogous to the Hessenberg form encountered in 

updating LU decompositions. We now employ a sequence of 

(r-p) plane rotations, as used by Givens and analyzed 

by Wilkinson [30], to reduce the subdiagonal of area 0 3 

to zero. This changes areas @ , @ and @ , and the 

corresponding rows of Q must also be transformed. Since 

the plane rotations are elementary orthogonal transformations, 

the latter step produces a new matrix Q* which is also 

orthogonal, and the work necessary is approximately proportional 

to 2mn+n2 . 

(5) Finally, a single Householder transformation Pr is applied 

to produce 6 = PrQ* , where this transformation is the one 

which reduces area 6 0 to zeros except for the first 

element. The work involved is proportional to 2(m-n)m . 

Thus the transformation 6, reduces Al? to a new upper-triangular 

form, and the original transformations Po,...,Pr 1 , the plane rotations, 

and the final Householder transformation may all be discarded since the 

required information is all stored in 6 . The total work involved is 

roughly proportional to (2mn+n2)+2(m-n)m = 2m2+n2 and the stability 

of ,the orthogonal transformations is such -that accumulation of rounding 

errors during repeated applications of the updating process should be 

very slight. 
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9. Projections 

In optimization problems involving linear constraints it is often 

necessary to compute the projections of some vector either into or 

orthogonal to the space defined by a subset of the constraints (usually 

the current "basis"). In this section we show how Householder 

transformations may be used to compute such projections. As we have 

shown, it is possible to update the Householder decomposition of a 

matrix when the number of columns in the matrix is changed, and thus 

we will have an efficient and stable means 

with respect to basis sets whose component 

one. 

of orthogonalizing vectors 

vectors are changing one by 

Let the basis set of vectors a1,a2,...,an form the columns of 

an mxn matrix A , and let Sr be the sub-space spanned by {ai] . 

We shall assume that the first r vectors are linearly independent 

and that rank(A) = r . In general, m _> n _> r , although the following 

is true even if m<n. 

Given an arbitrary vector z we wish to compute the projections 

u=Pz, v = (I-P)z 

for some projection matrix P , such that 

(a) = u+v Z 

(b) 
T uv = 0 

(4 u&, (i.e., 3x such that Ax = u) 

id> V is orthogonal to Sr (i.e., ATv = 0) . 



One method is to write P as AA' where A+ is the nxm generalized 

inverse of A , and in [7 ] Fletcher shows how A' may be updated 

upon changes of basis. In contrast, the method based on Householder 

transformations does not deal with A+ explicitly but instead keeps 

A.2 in factorized form and simply updates the orthogonal matrix required 

to produce this form. Apart from being 

the method has the added advantage that 

sets of vectors available, one spanning 

complement. 

As already shown, we can construct 

such that 

r n-r h- 
R S 

&A = 
1 1 0 0 

where R is an rxr upper-triangular 

(94 W = Qz = 

and define 

\ I w2 3 m-r 

more stable and just as efficient, 

there are always two orthonormal 

'r and the other spanning its 

an mxn orthogonal matrix Q 

matrix. Let 

(9.2) = &’ w1 
U i 1 ? v = QT 

0 

0 
L 1 

. 
w2 

Then it is easily verified that u,v are the required projections of z , 

which is to say they satisfy the above four properties. Also, the x in 
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(c) is readily shown to be 

R-lw1 

x = i ) . 
0 

In effect, we are representing the projection matrices in the form 

(9.3) 

and 

(9.4) I-P = QT (0 Imwr)Q 

and we are computing u = Pz 3 v = (I -P)z by means of (9.1), (9.2). 

The first r calms of Q span S and the remaining m-r span 
r 

its complement. Since Q and R may be updated accurately and 

efficiently if they are computed using Householder transformations, we 

have as claimed the means of orthogonalizing vectors with respect to 

varying bases. 

As an example of the use of the projection (9.4), consider the 

problem of finding the stationary values of xTAx subject to xTx = 1 

and CTx = 0 , where A is a real symmetric matrix of order n and C 

is an nxp matrix of rank r,with r_<p<n. It is shown in [12] 

that if the usual Householder decomposition of C is 

r n-r 
hm 

QC = 
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then the problem is equivalent to that of finding the eigenvalues and 

eigenvectors of the matrix $A , where 

i, = I -p z QT Q 

is the projection matrix in (9.4). it can ,then be shown that if 

QAQT = 
G12 

J G22, 

where Gll is rxr , then the eigenvalues of %A are the same as 

those of G22 and so the eigensystem has effectively been deflated 

by the number of independent linear constraints. Similar transformations 

can be applied if the quadratic constraint is xTBx = 1 for some real 

positive definite matrix B . 
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10. Orthogonalization with Respect to Positive Definite Forms 

Fletcher also shows in [ 7 ] how to update projection matrices when 

it is required to orthogonalize with respect to a given positive 

definite matrix D . We now show how to compute such projections using 

Householder transformations, and hence the comments made in the last 

section concerning changes of basis may also be applied here. 

Given an arbitrary vector z i,t is required to find u = Pz , 

v = (I -P)z for some P , such that 

(4 z =u+v 

(b) T uDv=O 

(4 3x such that Ax = u 

(d) (DA)~V = 0 . 

For simplicity we will assume that rank(A) = n . Then, rather than 

computing P explicitly as Fletcher does according to 

P = A(ATDA)-' ATD , 

we obtain the Cholesky decomposition of D thus: 

D = LLT 

where L is lower-triangular and non-singular if D is positive 

definite. We then compute B = LTA and obtain the decomposition 

QB= "0 . 
(> 



Defining 

w1 
0 

In 
W zz QL’CZ = 

w2 m-n I 

and 

0 
U = L-TQT -T T 

> v = LQ 

0 w2 

it is easily verified that u,v are the required projections, and 

-1 
again the x in (c) is given by x = R wL . Since changing a column 

"k of A is equivalent to changing the column LTak of B , the 

matrices Q and R may be updated almost as simply as before. 
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11. Linear Least Squares and Quadratic Programming 

We first consider minimization of quadratic forms subject to 

linear equality constraints. The solution is given by a single system 

of equations and the algorithm we describe for solving this system will 

serve as a basic tool for solving problems with inequality constraints. 

It will also provide an example of how solutions to even strongly 

ill-conditioned problems may be ob,tained accurately if orthogonalization 

techniques are used. 

Let A,G be given matrices of orders mxn , pxn respectively 

and let b,h be given vectors of consistent dimension. The least 

squares problem to be considered here is 

Problem IS: min j/b - 42 

subject to Gx=h. 

Similarly, let D be a given positive semi-definite matrix and c 

a given n-dimensional vector. The quadratic programming problem 

corresponding to the above is 

Problem QP: min ' T 2 x Dx f cTx 

subject to Gx=h. 

Now we can obtain very accurately the following Cholesky decomposition 

of D : 
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where we deliberately use A again to represent the triangular factor. 

If D is semi-definite, a symmetric permutation of rows and columns 

will generally be required. If D is actually positive-definite tZlen 

A will be a non-singular triangular matrix. 

With the above notation, it can be shown that the solutions of both 

problems satisfy the system 

(11.1) 

where 

and z 

c=o ) r=b-Ax for Problem LS, 

b-C, x-=-Ax for Problem QP, 

is the vector of Lagrange multipliers. In [ 21, [ 31 methods 

for solving such systems have been studied in depth. The method we 

give here is similar but more suited to our purpose. This method has 

been worked on independently by Leringe and Wedin [l':]. The solution 

of (11.1) is not unique if the quantity rank G 0 A is less than n , 

but in such cases we shall be content with obtaining a solution rather - 

than many. The important steps follow. 

(1) Let Ql be the orthogonal matrix which reduces GT to triangular 

form, and let Ql also be applied to AT , thus: 

(11.2) Ql(GT 1 AT, = . 
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As explained earlier, Ql can be constructed as a sequence of 

Householder transformations, and the columns of G* should be 

permuted during the triangularization. This allows any redundant 

constraints in Gx = h to be detected and discarded. 

(2) Let Q2 be the or5;hogonal matrix which reduces TT to triangular 

form: 

(11.3) Q,T' = 
*2 ( i 0 

Here we assume for simplicity that T is of full rank, which is 

equivalent to assuming that (11.1) has a unique solution, and 

again we suppress permutations from the notation. 

(3) The combined effect of these decompositions is now best regarded 

as the application of an orthogonal similarity transformation to 

system (ll.l), since the latter is clearly equivalent to 

The resulting system consists of various triangular sub-systems 

involving Rl 7 R2 , S J and can easily be solved. 

(4) If desired, the solution thus obtained can be improved upon via 

the method of iterative refinement [ 9 ], since this just involves 

the solution of system (11.1) with different right-hand sides, and 

,the necessary decompositions are already available. 
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me algorithm just described has been tested on extremely ill-conditioned 

systems involving icverse Hilbert matrices of high order and with iterative 

refinement has given solutions which are accurate to full machine precision. 
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12. Positive-definite Programming 

With the algorithm of the previous section available, we are now 

prepared to attack the following more general programming problems: 

Problem LS: min Ijb - till2 

subject ,to Glx = h 1' 

G2x _> h2 . 

Problem QP: min ' xTDx + cTx 
-5 

subject .to the same contraints. 

Let Gl,G2 be of orders plxn , p2xn respectively, and again suppose 

that D has the Cholesky decomposition ATA . In this section we 
A 

consider problems for which rank 
0 Gl 

= n (which is most likely 

to be true with least-squares problems, though less likely in QP ). 

In such cases the quadratic form is essentially invertible (but we 

emphasize that its inverse is not computed) and so x can be eliminated 

from the problem. With ,the notation of the preceding section the steps 

are as f0llOWS: 

(1) Solve (11.1) with Gl,hl to get the solution x = x0 , then compute 

the vector q = G2x0 -h2 . 

(2) If q 2 0 then x0 is the solution. 

Otherwise, transform the inequality matrix using Ql from step (l), 

so that 
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(3) If Q2TT = R2 
t 1 

as before and if M = RiTVT it can be shown that 
0 

the active constraints are determined by the following linear 

complementarity problem (ICP): 

w = q + MTMz 

(12.1) 

w,z io , T zw=o . - 

w, z are respectively the slack variables and Lagrange multipliers 

associated with the inequality constraints. 

(4) The active constraints (for which w. = 0 in the solution of 1 

the LCP) are now added to the equalities Glx = hl and the final 

solution is obtained from (11.1). 

We wish to focus attention on the method by which the ICP (12.1) is 

solved. Cattle and Dantzig's principal pivoting method [ 5 ] could be 

applied in a straightforward manner if MTM were computed explicitly, 

but for numerical reasons and because MTM (p2xp2) could be very 

large, we avoid this. Rather we take advantage of the fact that no more 

than n -pl inequalities can be active at any one time and work with a 

basis Ml made up of k columns of 14 , where 1 < k 5 n -pl . The QR - 

decomposition 

is maintained for each basis as columns of M are added ,to or deleted 

from Ml and as we know, Q and R can be updated very quickly each 
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change. Then just as in the LU method for linear programming, the new 

basic solution is obtained not by updating a simplex tableau but simply 

by solving the appropriate system of equations using the available 

decomposition. 

As an example we show how canplementary basic solutions may be 

obtained. Let the basis *1 contain k columns of M and let M2 

be the remaining (non-basic) columns. The system to be solved is 

with obvious notation. If we define y = -MlzR this is best written as 

(12.2) 

( iy 'I) (I.) = (J 

(12.3) wB = q2 - M;y 

and the solution of (12.2) is readily obtained from 

-1 u ]k 
u=R -T ql , zB = -R u > Y = QT 

0 
. 

0 ] n-pl-k 

The blocking variable when a non-basic variable is increased can be 

found from the solution of the same set of equations with the appropriate 

right-hand side. It is worth noting that the equations can be simplified 
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if the basis is square (i.e., if there are as many constraints active 

as ,there are free variables). Since it seems very common for the basis 

to fill up during the iterations (even if the final solution does not 

have a full set of constraints) it is worth treating a full basis 

specially. 

cost-cor~~lemeiitary solutions can be obtained in similar fashion 

(with somewhat more work required as the system is then not quite so 

symmetric). Thus an algorithm such as Cattle and Dantzig's can be 

iml'lemented using t‘nese techniques, and convergence is thereby guaranteed. 

Of special interest, however, is the following unpublished and 

apparently novel idea due to Yonathan Bard, with whose permission we 

report the results he has obtained. N-most-complementary bases are 

never allcwed to occur; instead, if a basic variable is negative, 

then it is replaced by its complement regardless of the effect on the 

other basic variables. Bard has tried this method (carried to convergence) 

on hundreds of problems of the form w = q+Mz and cycling has never 

occurred when the most negative element of q is chosen. In a series 

of tests on 100 random matrices of orders between 2 and 20 , 

principal pivoting required a total of 537 pivots whereas the 

Cattle-Da&zig algorithm required 689 . 

The present authors' experience with fewer but larger problems 

confirms the above observation that convergence does actually occur and 

usually after a small number of iterations. Since the idea eliminates 

all work other than computation of complementary solutions it is 

particularly suited to the techniques of this section. At worst it should 



be used as a starting procedure to find a close-to-optimal basis quickly, 

and at best if the conjecture can be proven that it will always converge, 

then a lot of computer time could be saved in the future. 

[It transpires that Bard has applied the principal-pivoting rule to 

I.CP's of the somewhat special form in which 

M = PTP, q = -PTp 

for some P, p. Problems of this form have been studied by Zoutendijk 

in [31] where several pivot-selection rules are discussed. Finiteness 

is proven for one rule, but simpler methods (such as Bard's) are recom- 

mended in practice for efficiency. 

The question of finiteness for the more general LCP remains open, 

and it is likely that somewhat more sophisticated rules will be required.] 
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13 * Semi-definite Frogramming 

We now consider the more general problem in which the rank of the 

quadratic form combined with the equality constraints may be less than n . 

The method we propose is conceptually as simple as it is stable. It is 

analogous to the revised simplex method for linear programming in that 

the essential steps to be implemented are as follows: 

(1) Find the current basic solution from a certain system of equations 

for which a decomposition is available. 

(2) Determine according to a certain set of rules what modifications 

should be made to ,the system to obtain a new basis. 

(3) If necessary, update the decomposition and return to step (1). 

Thus, suppose that the current basis contains GBx = h B as active 

constraints. As in (11.1) the corresponding basic solution is then 

given by 

(13.1) 

and 

(13.2) wB B - GBx . 16 - 

(Here, 
- 

GBX _> hB are the currently inac,tive constraints, wB the 

corresponding slack variables, and zB the Lagrange multipliers or dual 

variables associated with the active constrain-:;s.) The elements of zB 
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corresponding to any equality constraints may be either positive or 

negative and need never be looked at. Ignoring these, the basic solution 

above is optimal if and only if 

>0 and 'B - WB>O . 

A "QP algorithm" is now to be regarded as the "certain set of rules" 

mentioned in step (2) whereby zB,wB and possibly other information are 

used to determine which constraints should be added to or dropped from GB . 

The efficiency of the method will depend on the speed with which this 

decision can be made and on the efficiency with which the decomposition 

of (13.1) can be updated. 

Once again the most promising pivot-selection rule is that of Bard, 

as discussed in the previous section. The general idea in this context 

is as follows: 

(4 Find w a = min w. 1 ' =B 
= min 2 i from those eligible 

elements of w z B' B * 

(b) If wa < 0 , constraint a could be added. 

(c) If zB < 0 , constraint p could be dropped. 

(d) If there are already n constraints active and wa < 0 , 

constraint a could replace constraint p . 

We do not consider here the question of convergence, but as already stated, 

this type of rule has been found to work. 

The problem of updating the requisite decompositions is more relevant 

at present. We discuss this and other points briefly. 
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(1) The matrices 
QIJ R1 of Equation (11.2) can be updated 

using the methods of Section 8. 

(2) Q2i'R2 obtained from the matrix T in Equation (11.3) 

efficiently 

unfortunately 

cannot be updated, but the work needed to recompute them might often 

be very small, for the following reasons: 

(4 in Problem LX, a preliminary triangularization of A (mxn) 

can be applied to obtain an equivalent problem for which m < n . - 

The Cholesky factor of D in Problem QP already has this property. 

(73) If there are many constraints active (up to n) then T has 

very few rows. 

(c) If the rank of the system is low (relative to n) then T 

has very few columns. 

(3) Hence the method is very efficient if close to n constraints are 

active each iteration, as should often be the case. It also has the 

property, along with Beale's algorithm [l], of being most efficient 

for problems of low rank. 

(4) The procedure can be initiated with any specified set of constraints 

in the first basis, and an initial estimate of x is not required. 

(5) Any number of constraints can be handled, in the same way that the 

revised simplex method can dealw-v i+h any number of variables. 

(6) If D = 0 the problem is a linear program-and only bases containing 

n constraints need be considered. The method reduces to something 

like a self-dual simplex algorithm. 
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Finally we note that with semi-definite problems it is possible 

for some basic system (13 .l) to be singular. If there are any solutions 

at all then there are many (this will always be the case with low rank 

least squares problems) but this does not matter, since zB is still 

uniquely determined. However, a low rank quadratic program might be 

unbounded, and this is manifested by a singular system (13.1) proving 

to be inconsistent. In general, this just means that there are not yet 

enough constraints in the basis, so that trouble can usually be avoided 

by initializing the procedure with a f'ull set of constraints. 
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C. THE SVE ATT NON-LINEAR LEXST SQUARES 

14. The Singular Value Decomposition 

Let A be a real, mxn matrix (for notational convenience we 

assume that m _> rl) . It is well known (cf. [ 1) that 

(14.1) A=UCVT 

where U,V are orthogonal matrices and 

c= 

U consists of the orthonormalized eigenvectors of AA*, and 

V consists of the orthonormalized eigenvectors of ATA . The 

diagonal element of C are the non-negative square roo2s of the 

eigenvalues of ATA ; they are called singular values 

of A . We assume 

o1 2 o2 _> . . . > cTn 1 0 . - 

Thus if rank(A) = r , OX-t1 = Dti2 = . . . = On =o. 

or principal values 

The decomposition 

(14.1) is called the singular value decomposition (SVD). -- 
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An nxm matrix X is said to be the pseudo-inverse of an mxn 

matrix A if X satisfies the following four properties: 

(i) AXA=A , (ii) XAX = X , (iii) (XA)T = XA , (iv) (AX)T = AX . 

We denote the pseudo-inverse by A+ . It can be shown that A+ can 

always be determined and is unique (cf. [21]). It is easy to verify 

that A+ = vnu' where A is the nxm matrix 

A = diag[ai',oi',...,o ,~,o,o,...,ol . There are many applications of 

the SVD in least squares problems (cf. [ll]). 

The SVD of an arbitrary matrix is calculated in the following way. 

First, a sequence of Householder transformations iP&=, J iQkj;l; 

are constructed so that 

pnpn l...PlAQ1Q2...Qn-l = PTAQ = J 

and J is an mxn bi-diagonal matrix of the form 

J 

The singular values of J are the same as those of A . 

Next the SVD of J is computed by an algorithm given in [ll]. The 

algorithm is based on the highly effective &Ii algorithm of Francis [lo] for 

computing eigenvalues. If the SVE of J = XCYT then A = PXCYTQT so 

that U = PX , V = QY . 
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15. Non-linear Least Squares 

Consider the non-linear transformation F(x) = y where xeEn 

and yeEm with n < m . We wish to consider the following problem: - 

min l/b -F(x)j12 

subject to 

(15.1) Gx=h, 

where G is a pxn matrix of rank p and heE . 
P 

A very effective 

algorithm for solving such problems is a variant of the Levenberg-Marquardt 

algorithm [18,1i;]; in this section we consider some of the details of the 

numerical calculation. Further extensions of ,the algorithm are given 

by Shanno [25] and Meyer [20]. 

Let us assume that we have an approximation x (0) which satisfies 

the relation Gx (0) =h. Then at each stage of the iteration we 

determine 8(k) so that 

(15.2) x(k+l) = x(k) + 6(k) 

and 

(15.3) @j(k)=0 . 

where Ql is the product 

of p Householder transformations and R is an upper triangular matrix. 

Let 

(15.4) Q18 Ck) 

Gk) 1 P 
z 

( i 
Tjik) ] n-p * 
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Then from (15.3), we see that f&k) = 0 . 

For notational convenience, let us drop the superscript k ; 

we write x (k) as x0 and x(~+') as x1 . 

In the Levenberg-Marquardt algorithm one determines the vector 6 

so that 

(15.5) llr - J$ + h /I 6 /I2 = min. 

where 

r = b -F(xo) , 

J is the Jacobian evaluated at x0 , and h is an arbitrary non-negative 

/ parameter. From (15.4), we see that (15.5) is equivalent to determining 17 

so that 

(15.6) 
j/r- JQl T T ’ 11: + h(/j 5 11: + jj TlI/E )= min. ( 1 

c subject to t=o . 

Now let us write JQF = [M,N] where N consists of the last n-p 

columns of JQI . Then (15.6) is equivalent ,to finding 71 so that 

Consider the SVD of N ; namely 

N=UCVT . 

Then 
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where 

s =UTr , {=liTTl. 

Writing out (15.7) explicitly, we have 

a3 = f (Sj - cr,1;)* + h nfp (cj)2 
J=l j=l 

where p is the rank of N . (Note p may change from iteration to 

iteration.) Then 

p(i) = min 

when 

t = ‘j”j 
j h + 0; 

= 0 

and hence 

for j = l,;i,...,p , 

s .o . 
(15 -7) 7J=f JJ vj 

j=l h + O* 
j 

for j > p 

where v 
j 

is the j-th column of V . Thus 
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Note it is an easy matter to compute 7' (and hence S) for various 

values of h . The algorithm for computing the SVD can easily be 

organized so that s is computed directly ([ 1). 

There are several possible strategies for determining h . One 

possibilVcy is to choose i so that 

lib - F(4) > ]I2 5 lb’ - F(xl(h)) jj2 - 

This requires, of course, the evaluation of F(x) at a great many points. 

Another possibility is to choose 6 such that 

(15 -8) 

IIT -JG1/2 = min. 

subject to ll~ll*<~ - 

This is equivalent to determining 1 such that 

i 1 
2 

/I 17 I!; =& 'A < a2 . 
j=l h+aZ - 

When A = 0 , we have the solution to the unconstrained problem and 

s . 
&yj . 

j=l 

Let /jJlI/2 = B . If B _<a, then we have the solution to (15.8). 

Otherwise, we must determine 1 so that 
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(15.9) 
P 2 

c =a* . 
J=l 

Let 

-1 5;ls2 
u=a 3 . R = diag(ot,oE, . . ..o* 

P) 
; 

. . 

\ i 

5 s 
P P 

we assume 
'j + 0 for j = 1,2, . . ..p . By repeated use of ,the 

relationship 

det(X) det(W -ZX-4) if det(X) # 0 

we can show that (15.9) is equivalent to 

05 JO) det((R + AI)* - UU~) = o 

which has 2p roots; it can be shown that we need the largest real 

root, which we denote by h * ([81)- Let 

2 

T(h) = 

tc ) 

sj5j - a* 
J= h + 5; 

and assume that 2 o1 _> 5; 2 . . . _> 5; > 0 . Note r(O) = p* -Q2>0, 

and I'(h) -+ -a2 as 1 + ~3 , SO that 0 < A* <a and it is the only - 

root in that interval. We seek a more precise upper bound for X*. 
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From (15 .lO), we see using a Rayleigh quotient argument that 

A* < max [-YTaY + (y'ny)* - yT(n2 - uuT,y ] . 
- llyilg=l 

A short manipulation then shows that 

(15.10 

Thus, WC‘ y.is:l to find a root of (15 .lO) which lies in the interval 

given by (15.11). Note that the determinantal equation (15.10) 

involves a diagonal matrix -plus a matrix of rank one. In the next 

section we shall describe an algorithm for solving such problems. 
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16. Modified Eigensystems 

As was pointed out in Se&ion 15, it is sometimes desirable to 

determine some eigenvalues of a diagonal matrix which is modified by 

a matrix of rank one. Also, Powell [23] has recently proposed a 

minimization algorithm which requires the eigensystem of a matrix after 

a rank one modification. In this section, we give an algorithm for 

determining in O(n*) numerical operations some or all of the eigenvalues 

and eigenvectors of D+ouuT where D = diag(di) is a diagonal matrix 

of order n and WE n' 
T Let C = D+o'uu ; we denote the eigenvaluesof C by hl,h2,...,kn 

and we assume hi _> hi+l and di 2 di+l . It can be shown (cf. [30]) 

that 

(1) If c7 _> 0 , 
T dl+OUULhlLdl f di,lL'i->di (i = 2,...,n) , 

(2) If o < 0 , di 2 hi _> dim1 (i = 1,2,...,n-1) , dn _> 1, 1 dn+ouTu . 

Thus we have precise bounds on each of the eigenvalues of the modified 

matrix. 

Let K be a bi-diagonal matrix of the form 
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and let M = diag(pi) . Then 

. Y 
(w1+lz& 

: 

p25 

I-125 . 

* 
. 

(16.1) KMKT = 

. 

. 

0 
pk+lrk 

m 

. 

is a symmetric, tri-diagonal matrix. 

Consider the matrix equation 

(16.2) (D+ouuT)x = Ax . 

Multi-plying (16.2) on the lef't by K , we have 

K(j)+ ,uu~)K~K-~x = h KKTK-Tx 

or 

(16.3) (KDK?+~K~~~?)~ = hKKTy 

. 

. 

. 

%7m-l 

. 

I-ln'n-1 

'n 
I 

where . Let us assume that we have re-ordered the elements of u 

so that 

=u =... =u 5 2 p-l = 0 and 0 < byI 5 b-$1\ 5 - - 5 \Un/ . 
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Now it is possible to determine the elements of K so that 

(16.4) 

Specifically, 

r. =o 1 (i = 1,2, -44 , 

r. = 1 -ui/ui+ 1 (i = re,PtL-4) T 

and we note that Iri/ 5 IL ' (This device of using a bi-diagonal matrix 

for annihilating n-l elements of a vector has been used by BjBrck 

and Pereyra [ 4 ] for inverting Vandermonde matrices.) Therefore, if Ku 

satisfies (16.4), we see from (16.1) that KDF?+oKuuTKT is a 

tri-diagonal matrix and similarly KK? is a tri-diagonal matrix. Thus 

we have a -problem of the form 

AY = hBy 

where A and B are symmetric, tri-diagonal matrices and B is'positive 

defi:nite . 

In [22], Peters and Wilkinson show how linear interpolation may 

be used effectively for computing the eigenvalues for such matrices 

when the eigenvalues are isolated. The algorit‘hm makes use of the value 

of det(A-XB) . When A and B are tri-diagonal, it is very simple 
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to evaluate det(A- hB) for arbitrary h . Once the eigenvalues are 

computed it is easy to compute the eigenvectors by inverse iteration. 

In Section 15, we showed it was necessary to compute a parameter 

h* which satisfied the equation 

(16.5) det((S2 + hI)2 - uuT) = 0 . 

Again we can determine K so that Ku satisfies (16.4 

is equivalent to 

-) and hence (16.5) 

(16.6) det(K(n + hI)"KT - KuuTKT) = 0 . 

The matrix G(h) = K(R + hI)=KL - Kuu'K" is tri-diagonal so that it is 

easy to evaluate G(h) and det G(h) . Since we have an upper and 

lower bound on hX , it is possible to use linear interpolation to 

find h* , even though G(h) is quadratic in h . Numerical experiments 

have indicated it is best to compute G(h) = K(R + hI)2KT - KuuTKT 

for each approximate value of A* rather than computing 

G(h) = (KQ2KT - KuuTKT) + 2hKnKT + h2KKT . 

The device of changing modified eigensystems to tri-diagonal 

matrices and then using linear interpolation for finding the roots can 

be extended to matrices of the form 

D u 

c = (F-H . 

UT D 

Again we choose K so that Ku satisfies (16.4) and thus obtain the 

eigenvalue problem Ay = hBy where 



so that A and B are both tri-diagonal and B is positive definite. 

Bounds for the eigenvalues of C can easily be established in terms of 

the eegenvalues of D and hence the linear interpolation algorithm 

may be used for determining the eigenvalues of C . 
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