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ABSTRACT 

The fourth-order radiative correction to the slope at q’= 0 of the 

Dirac form factor of the free electron vertex is calculated using computer 

techniques. The result, 

m28 F(4)(0)/8 q2 = (o!/7q2 10.48 i 0.071, 

disagrees with previous calculations, and implies a new theoretical value for 

the order a2(Z~)4mc2 contribution to the Lamb shift. The new values for the 

2s 
4 

- 2P, 
z 

separation in H and D are increased by (0.35 f 0.07) MHz and are 

in good agreement with the results of recent experiments. 
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1. INTRODUCTION 

The calculations and measurements of the Lamb shift have had a 

profound influence on the development of quantum electrodynamics. The first 

measurements of the 2Si level displacement from the BP, level in hydrogen 
-2 % 

by Lamb and Retherford’ stimulated the concept of mass renormalization and 

led Bethe to carry out the first finite calculation of the self-interaction of the 

electron with the quantized electromagnetic field. The relativistic theory 

that emerged has met all of its experimental challenges with great quantitative 

success? the agreement is better than 10 ppm for the hyperfine splitting of 

hydrogen and muonium and better than 0.1 ppm in the total magnetic moments of 

the electron and muon. 

Ironically, the only tests of QED which show a serious disagreement 

(2 200 f 70 ppm) between theory and experiment are the 2S, - 23 separations in 
2 

hydrogen and deuterium. The disagreement has become more acute with recent 

measurements by Robiscoe and Cosens4 and others5 of the Lamb interval in H, 

D, He+, Li++, and three measurements 6 of the 2P3 - 2S, interval in 
2 % 

H. The latest experimental results are shown in Table I. The theoretical pre- 

dictions have become more precise over the years with the development of new 

calculational techniques by Layzer7, Karplus, Klein, and Schwinger8, and 

Erickson and Yennie’ for the evaluation of the order 01 (second order in pertur- 

bation theory) self-energy expression for the Coulomb-bound electron. In 

addition, the nuclear recoil corrections (m/M contributions beyond reduced 

mass effects) originally evaluated by Salpeter 10 from the Bethe-Salpeter equa- 

tion have now been checked by Grotch and Yennie” using an effective potential 
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technique. The various contributions to the theoretical prediction of the 

2P 2s1- $ separation in H are shown in column~one of Table II. The total 
z 

result , 1057.56 * 0.09 MHz (lllirnit of error”) is in clear disagreement with 

the experimental numbers in Table I. The corresponding result for D, 

1058.82 5 0.15 MHz is in similar disagreement. The only experimentally 

relevant contribution in the table, ,not checked by independent methods, is 

the fourth order electron self-energy correction proportional to the slope of 

the Dirac form factor at q2= 0, labeled F;(O). This contribution was first 

estimated by Weneser , Bersohn and Krolll’ and calculated completely ana- 
12 lytically by Soto . 

In this paper we present the details of a new 13 calculation of this fourth order 

[ a2(Zo1)4m] radiative contribution to the Lamb shift. Our result differs from 

the previous calculation of 12 Soto and, when added to the other contributions 

of Table II, leads to new theoretical values for the Lamb shift in H and D of 

1057.91 5 0.16 and 1059.17 f 0.22 MHz respectively, an increase of 0.35 f 0.07 

MHz over the previous compilation of Taylor et al. 4 A tabulation of 

the various contributions to the theoretical result for H, including the revised 

fourth order contribution of F;(O), is given in Table II. The com- 

parison of the revised theory with experiment is given in the last column of 

Tables Ia and Ib. The majority of the experimental results are within one 
5 standard deviation of theory, leaving only one high precision measurement, 

which uses the non-atomic beam “bottle” method, in serious disagreement. 

The one standard deviation error limits used in the comparison of theory and 

experiment were computed by combining the standard deviation experimental 

error assigned by Taylor et al! with one-third of the limit of error (L.E.) of 

the theoretical result. 



-4- 

11. DESCRIPTION OF THE CALCULATION 

In principle, one must compute radiative corrections to atomic 

energy levels using bound state perturbation theory. Instead, for the terms of 

interest here, the oz2(Z,y)4m contribution, we can use the so-called scattering 
12,14 approximation which is calculationally simpler. In this approach, one 

calculates the radiative corrections to the scattering of a free electron and then 

infers from this a modified interaction potential from which the level shifts can 

be calculated. 

The matrix element of the electromagnetic current between two free 

electron states is given by 15 

- ieu(p + 8) + & ki , Y/J F2(q2)] u@- z) 

The modification of the Coulomb interaction due to Fl(q2) implies an energy 

shift 
4 2 

aE(n,j,Q = hQo 4(zol) mc m2 
aFl(s2) 

n3 as2 q2=o 

plus contributions of higher order in the binding parameter ZCV. In second 

order, 

m2 
a Fl(2)(q2) 

aq2 
q2_o = gbogy;] (A<< m) 

(2.1) 

(2.2) 

(2.3) 

is infrared divergent for a free electron. This divergence reflects the fact 

that the scattering approximation is invalid for the order Q! contribution. In 

the correct bound-state treatment of the low frequency region, the photon ‘mass 



-5- 

h is replaced by an appropriate energy difference, the Bethe energy 

I En-E I m av’ and Eq. (2.2) with (2.3) gives the dominant contribution to 

the Lamb shift. Photons of wavelengths much larger than atomic dimensions 

do not contribute to the energy shift since they contribute equally to the self- 

energy of free and bound electrons. 

The order (u2 contribution to the slope of the Dirac form factor was 

first shown to be convergent in the infrared by Weneser, Bersohn and Kroll 12,16 . 

This result was verified by Mills and Kroll14 starting from the fourth order 

self-energy expression for the energy shift of the bound electron. These 

authors have also given an explicit proof that the scattering approximation is 

correct in fourth-order. Sod2 was able to perf0r.m the 

required integrals analytically (including those only bounded by WBK) and 

found some small errors in WBK’s work. His result was 

a Fi4) \’ 
m2 - 

aq2 
= 2 10.1076 . . . ] 

q2= 0 7r2 
(2.4) 

which yields the contribution 0.102 MHz to the 2S1 - 2P, separation in H 
z z 

and D. Other fourth-order contributions to the Lamb shift from F2(0) and 

vacuum polarization corrections are included in the tabulation of Table II. 

Contributions of order q4 from Fl(q2) and vertex-vacuum polarization cross 

terms yield corrections one order of Za! smaller. 

The Feynman diagrams which are required to calculate the fourth 

order contribution to the slope Fl’(0) are shown in Figure 1. The calculational 

and renormalization techniques are similar to those used in magnetic .moment 

F2 (0) calculations of Karplus and Kroll 17 and I?etermann18 > although the slope 
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calculation involves more complicated numerator structures and contributions 

from differentiation of denominators with respect to q2. Furthermore, in the 

standard gauge, individual graphs have log2A and logh behavior in the infrared 

region of photon integration, although the complete fourth order result is in- 
16 frared convergent. In the calculation presented in this paper, all traces, pro- 

jections, and reduction to Feynman parametric integrals are done automatically 

by REDUCE, an algebraic computation program written by A. C. lg The Hearn . 

definitions of the required subsidiary variables in terms of the Feynman para- 

meters are obtained by alternate methods, the standard technique given in 

Ref. (15) and the method developed by Nakanishi and others 20 . The integrals 

over the Feynman parameters (up to five dimensions) are performed numerically 

(often to 0.1% precision) using a program originally written by G. Sheppey and 

modified by A. J. Dufner. In this .method of multi-dimensional integration, 

more fully described in Ref. (21), one calculates the usual Riemann sum, taking 

the central value of the integrand from an average over two random points within 

each hypercube. The difference of the function values is used to compute a 

variance and error for the integration; on successive iterations the computer 

readjusts the grid to minimize the variance. Many of the techniques used in 

this paper are similar to those used by Aldins et al. 21 , for the calculation of 

the photon-photon scattering contribution to the sixth order electron and muon 

magnetic moments. 

Our numerical result for the fourth order slope is 

a Fl(4) 
m2 - 

w2 q2=o 
= 2 [0.48 z!z 0.071 

7r2 
(2.5) 
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The contributions of the individual graphs are tabulated in Table IIL The 

discrepancy with the results of Ref. (42) originates in an overall sign dis- 

agreement and in the calculation of the constant terms in the crossed and 

corner graphs (see Figures Ia and Ib). In the case of the corner graph, 

discrepancy is quite large. The revised theoretical values for the Lamb 

shifts in H, D, He+ and Li i-i- are shown in Tables Ia and Ib. 

this 

III. VACUUM POLARIZATION AND FERMION SELF-ENERGY INSERTIONS 

The contribution of the graph with the second order vacuum polari- 

zation insertion (Figure Ic) is easiest to calculate and we start our discussion 

here. The effect of second order vacuum polarization is summarized by a 

modification to the photon propagator 22 

1 
k2-A2 + it- 

1 
z2(l-3 z2) 1 

1 z2 k2 4m2 -- 
l- z2 

+ ie 

Note that the second order contribution to the slope of the Dirac form factor 

(3.1) 

is positive for all h2. 

D F:2) 1 1 
m2 m2 

5 v2 t-1-v) I- * v4 + 5 v2 t-1-v) I- * v4 + (l-v) (l-v + (l-v) (l-v + 
CY =- 

aq2 q2=o aq2 q2=o 2n 
vdv vdv 

2 2 2 2 
(3.2) (3.2) 

+ A- (l-v) + A- (l-v) 
m2 2 m2 2 1 1 

is positive for all h2. Insertion of (3.1) is effectively a sum over various h2 Insertion of (3.1) is effectively a sum over various h2 

with a positive weight function. function. The vacuum polarization contribution to a4 is The vacuum polarization contribution to a4 is 

thus of the same sign as the second order slope and hence gives a positive Lamb as the second order slope and hence gives a positive Lamb 

shift contribution. (Thus, as is usual, the vacuum polarization modification Thus, as is usual, the vacuum polarization modification 

with a positive weight 

thus of the same sign 

shift contribution. (rl 
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strengthens the contribution of one-photon exchange. ) Upon numerical inte- 

gration, we obtain 

a4(V.P.) = 0.0316 f 0.0002 (3.3) 

in contrast to a negative Lamb shift contribution of the same magnitude in 

Refs. (12) and (13). 

The fermion self-energy correction (Figure Id) is accomplished by 

substituting 

jr&z - Zf(p) (3 -4) 

in each leg of the second order vertex. Here 2 f is the twice-subtracted part 

of the self-energy insertion: 

z@(p) = A + (pl-m)B + ($-m)2Zf(p) (3.5) 

1 1 

ss 
dx dz w(x, ‘) Iti +u’*~ cx, z)l 

0 0 P2 -r(x, z)m2 -I- ie 
(3.6) 

where 

Cd = s(l-x)/z 

r = [x(1 -x)z+h 
m’ 

(l-x) + x2]/[x(l-x)z] 

d&l = m[s(l -x) - (l+x)]/[s(l -x)] 
and 

s = l-2 z(l+x)x/[x2+ (l-x)h2/m2] . 

(3.7) 

It should be emphasized that great care must be used in extracting 
2 23 Zf to keep all terms in h . 
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The method of calculation is similar to that for the graph with 

vacuum polarization insertion. The second order contribution to F;(O) 

with one fermion propagator replaced by 

J$ +,tt(x, z) 

P2 - r(x, 2) .m2 + ie 
is 

a Fl@)(q2 1 
m2 ” “’ r, a! 

w2 q2=o = z o s dzl dz2 dz3 6 (1 - zl- z2- z3) 

(3.8) 

f 

z2z3+ (1-z2)(l-z3) 
+ 

y&J 2 -4z1+ z1 )z2z3 

l (1 - Z1)2+Z1 
L 

h f+ (r -1)~~ 
-2 

t(l-zl) 
2 

+Zl h2 + (r -l)z2] 
m2 

4 

Then aF(4d)/aq2) q2= o is given by 

m2 aF(4d) 
- q2= o = ; /dx/ dz w(x,z) aF’2;+$‘A’r) q2= o 

as2 
(3.9) 

where a factor of 2 is included for the mirror graph. This integral is easily 

carried out numerically for various h2 and can be compared as h2- 0 with 

the analytic result of WBK12 and Soto 13 

m2 a F(4d) 2m 

aq2 q2 = 0 h i=< m 
h log 

2 2 
- 
A2 

- k log + - 1.688 .0. . (3 .lO) 
h 

The result for our calculations is shown in Figure II. As seen in Figure II, 

apart from an overall sign, excellent agreement is obtained. 
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The common feature that the actual dependence of the integrals pulls 

appreciably away from the asymptotic formula even at A2 as small as low3 m2 

reflects the fact that Fq. (3.9) is a negative function of A2 for all positive A2 

and does not cross the axis as the extrapolated asymptotic formulas do. 

IV. THE CORNER GRAPH 

In calculating the contributions from the graphs with vacuum polari- 

zation and fermion self-energy insertions, we followed the procedure of first 

calculating the renormalized amplitudes for the subgraphs, inserting their 

spectral integral representations into the second order vertex graphs and then 

doing the over-all renormalization subtractions. 

It is also possible to use a similar procedure 12 for the corner graph 

of Figure Ib (and the ladder graph to be treated in the next section). 

However, the integral representation for the renormalized vertex subgraph is 

much more complicated than that for self-energy graphs, requiring in general 

a dispersion representation in the three off-shell variables. We have used 

instead a different approach which is simpler, at least when the computer is 

used for the algebraic reduction and numerical evaluation of the integrals. It 

will be helpful to first outline the method and then present it in detail. We 

first combine all the denominators of the unrenormalized amplitudes and pro- 

ject out the Dirac form factor F1. The internal momentum integrations are 

then done and the result is expressed as a five dimensional integration over 
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parameters. The ultraviolet divergences corresponding to the vertex subgraph 

and to the graph as a whole will, of course, still be present in the parametric 

integral. The subtraction necessary to remove the internal logarithmic di- 

vergence is implemented by recomputing this expression with the vertex sub- 

graph computed with the external momenta which flow through it constrained 

to the ‘mass shell, again combining all six denominators first. The integrands 

are then subtracted and the resulting five dimensional integral will contain 

only the overall divergence, which is subtracted automatically at q2= 0 when 

we compute F;(O). Once the difference of integrands is differentiated with 

respect to q2 and q2 is set equal to zero, the result (for h2 > 0) is a convergent five 

dimensional integral for Fi (0) which we can evaluate numerically by computer. 

We shall describe several checks on the calculations of Fl’(0) including the 

evaluation of corner and crossed graph contributions to F2(0). 

The unrenormalized amplitude for the corner graph is 

MZorner= 
2(-ie)5i4(_i)2 

d4Q1 d4e, 1 - -- 

x Up-$) 
[ 
y~~4+m)y~~3+m)y,~2”m)yPOdl+m)ya 1 u@- f) (44 

= -iec@+%) JIorner u(p- 8). 

The factor of two is included for the mirror graph. 

We can automatically determine the contribution to the form factors 

(see Eq. (2.1)) through 
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Fj(q2) = IT, r4. +m)JP@-Z +m)Ai) 1 
where(2 5, 

jp7 = 
P [ 

rn2p2yp- m(m2 + q2/2) pcL 1 J.- 
S2P4 

(4.2) 

(4.3) 

(4.4) 

with 
p2 = m2-q2/4, p.q= 0 (4.5) 

After the traces and index contractions are performed to obtain F1(q2) 

we have to consider integrals of the form 

I = 
d4Ql d4Q2 

6 2 
n@ 

-m:+ ie) 
F(pj) 

i 
i=l 

(4.6) 

where mi is the mass corresponding to line i and 

2 

‘j 
= kj + c r=l ‘jr’r 

(j =l ,...,6) (4.7) 

Here 7. 
Jr 

is the projection (& 1,O) of pj along Qr and kj can be any choice of fixed 

momenta (independent of Qr, proportional to p, q ) sue h that four-momentum is 

retained at the five vertices. Feygnan parameters are now introduced 

1 = 
-mj2+ ie) 

5! 

j =l A 

(4.8) 
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If we choose the kj such that 15 

G-9) 

then the kj*Qr cross terms in the denominator vanish. For convenience we define 

U = detU rr’ ’ U 

and 
6 

D = x z.(m.2- kj2) 
j=l J J 

The basic integration over loop moment q then gives 

J d4Q d4Q 
5! 1 2 i27r4 =- 

rr’ Qr*Qrr,+ ic 1 6 D2U2 

(4.10) 

(4.11) 

(4.12) 

The numerator also contains terms quadratic and quartic in the loop momentum 

four vectors. For the la. Qb terms 21 we replace 

‘a*Qb --2Bab; 

where Bab is the signed co-factor of Uab in U. Also 

’ BadBbc ’ Bat 
A2 log 5 t-1 1 . 

(4.13) 

(4.14) 

The dependence on the ultraviolet cutoff A2 is eliminated because of the overall 

subtraction at q2= 0, and we can in fact replace 
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A2 1 + log - - 
D(s2) 

log Ws2= 0) 
W2) 

(4.15) 

These substitutions can also be readily done by REDUCEl’ yielding the reduc- 

tion of the matrix element to an integrand for parametric integration (in the 

form of a punched deck in Fortran form). The program which produces the 

integrand for 

As 

the graphical 

the corner graph is shown in Figure 3. 

an alternate method to the above and as a check we have also used 
.20 method of reduction to parametric form developed by Nakanishl 

and others. A particularly valuable check is obtained for the quantity 

6 
U = Wpm2 + Wqq2 (4.16) 

in which the parametric functions Wp and Wq can be read off very simply from 

the Feynman graph structure. The definitions of all the subsidiary quantities 

kj, Wp, Wq, U in terms of zl.. . z6 for the corner graph are given in Figure 4 

which is the actual Fortran program used as the integrand for the numerical 

integration of F;(O) over five dimensions. 

The internal vertex renormalization subtraction must yet be performed. 

Thus we subtract from MEorner the corresponding amplitude with the internal 

loop calculated as if lines 3 and 6 (see Figure lb) were on their respective mass 

shell: 
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Mzorner sub= 2 (-ie)5 i4 (-i)2 
d4Ql _ l/,ti4+&%3+mP 
- u 

cw4 I-l (pj”- rni) 
U 

j =3,4,6 
(4.17) 

I d4Q2 $Tr r,(ti2+m)pl@$ + 1 [ m yP(R +.m,1 
x- 

wo4 m2 l-l 
j=1,2,5 

@f - mj2) 

where p1 + p5 = p2 + p5 = R 
and R2 =m2. The corresponding integrand and modification to the definition 

of U, kj, Wp, Wq are shown in Figure 4 . This integrand is then subtracted 

from the above before numerical evaluation of the five-dimentional integral. 

The subtraction is sufficient to remove the ultraviolet divergence associated 

with the vertex subgraph which appears as logarithmic singularity as z 1’z2’ 

z5 - 0. The over all divergence, characterized by the A2 in Eq. (4.14) is 

removed automatically when we compute Fl’(0). Thus an untraviolet cutoff is 

unnecessary and the integral can be performed as a function of m 2 22 =m =h. 5 6 
Our result for the contribution to s F;(O) from the corner 

graph along with the analytic result for the asymptotic region (A << m) given by 

Soto is shown in Figure 5. After correcting for the sign discrepancy the two 

curves become parallel in the asymptotic (h- 0) region rather than joining. 

The expectation that the sum of corner plus self-energy contributions are finite 

for A - 0 is confirmed in Figure 6. 

In order to determine the constant term in the corner graph contri- 
2 -2 bution, we have constrained the coefficients of the log h and log h -2 terms 

to be the negative of Soto’s and performed several types of least-square fits to 

the results of the numerical integration using lrbackgroundfl terms multiplying 

fl, ,/?log,z and h210gh2. The resulting constant term from the corner graph, 
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shown in Figure 1, column 2, differs substantially from the constant term in 

Soto’s expression. A consistent value for the sum of self-energy and corner 

contributions for h2 - 0 can be obtained directly from Figure 6 without any 

detailed curve fitting or knowledge of the infrared divergent behavior of the 

individual contributions. 

As another check on the calculation we have also calculated the 

corner graph contribution using intermediate renormalization. In this method 

the subtraction term is computed as in Eq. (4.17) but the internal vertex is 

computed with its fermion and photon legs all on them = 0 mass shell. The 

subtraction term can be obtained immediately from the unrenormalized ampli- 

tude by replacing kl,k2 - 0, B14 - 0, and keeping only the terms in U, D, k3, 

k4 which are of lowest order in zl, z2, or z5. A complete discussion of inter- 

mediate renormalization in Feynman parameter space is given in Ref. (24). 

The correction term which compensates for the error made in re- 

normalizing at m = 0 is simply 

dF(2) 
(2) -- x 

dq2 0 C d2)(0, 0,O) - At2)(m , m, 0) 1 (4.19) 

where the first factor is defined in Eq. (3.2 ) and 

d2)(0 0 0) -A(2)(m, m, 0) = Q! , , 
(-2 +2z +z2) + log z2 +h2(l-2) 
z2 + h2(1-z) z +h2(l-z) 1 

(4.20) 
- f 
h << m C 

log T - ; 1 
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is calculated from the coefficient of ya! of the unrenormalized vertex in second 

order. The numerical results are consistent with that obtained using renormali- 

zation on the mass shell. 

As a final check on the corner graph contributi.on to F;(O) 

we have also projected out the contribution of this graph to F2(0), the anomalous 

magnetic moment of the electron. Since the same parametric functions that 

enter F1 also enter F2, since the same method of internal renormalization is 

used, and since the same integration program is used, this is a reasonably good 

check on the calculation. The result shown in Figure 7 is in excellent agree- 
18 ment with Petermann’s result . The logarithmic dependence on the photon ‘mass, 

which cancels when the contributions of all fourth order graphs to F2(0) are 

added, arises from the integration region z 1’ z2 - 0. The choice of variables 

z1 = vu 

z2 = v(l-u) (4.21) 

dzldz2 = vdvdu (0 < u < 1) 

improves the integration efficiency since there is slow dependence of the integrand 

on u. Sitilar variable changes were .made in all of the numerical calculations in 

order to check consistency and improve the integration efficiency. 

V. THE LADDER AND CROSSED LADDER GRAPHS 

The two remaining contributions to the slope of the Dirac form factor in 

fourth order are shown in Figures Ia and Ie. The su-m of the ladder and crossed 

ladder contributions is infrared convergent and it is convenient to discuss them 

together. 
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The calculation of the crossed ladder contribution is quite easy 

since there is no internal ultraviolet divergence. The method of the previous 

section can again be used except that for this graph, no internal renormalization 

subtraction need be made. The result is shown in Figure 8 and again, apart 

from an overall signagreement is found with the log h -2 term in Soto’s ex- 

pression. However, as shown in Figure 1, we disagree slightly with Soto in 

the finite (non-infrared) term. We have also calculated the contribution of 

this graph to F2(0) and have againfound excellentagreementwithPetermann’s result. 

The calculation of the ladder graph contribution is nearly identical to 

that of the corner graph. The internal vertex subtraction is carried out in the 

same way and in this case we find complete agreement with (the negative of) Soto’s 

result. The comparison is shown in Figure 9. The sum of ladder plus crossed 

graph contributions is shown in Figure 10. 

VI o CONCLUSION 

The total contribution to the slope of the Dirac form factor in fourth 

order is given in Eq. (2 o 5) , The corresponding contribution to the nS1 - nP1 
H % 

level splitting is 0.45 f 0.07 MHz X [Z4(2/n)3], an increase of [0.35 rt 0.07 MHz] 

x [ Z4(2/n)3] over the previous contributions 2,326 . Our result for the fourth 

order corner graph, which is the primary source of the revision, has been con- 

firmed by a new partially-analytic and partially numeric calculation by de Rafael, 

Lautrup and Petermann 25 . It would be desirable, however, to have a completely 

analytic calculation of the F’ contribution in order to eliminate the errors limits 1 
introduced by the numerical calculations D A complete calculation of the order 

a(Za) ‘rn contribution to the Lamb shift will also be required in order to obtain 

a theoretical prediction with a limit of error several times smaller than the 

errors quoted for the experimental results. 
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The reconciliation of the QED calculations with the Lamb shift 

experiments (see Table I) is very gratifying. At the present time not one of the 

sensitive QED comparisons of theory and experiment is in serious disagree- 
3 ment 0 

Unlike the colliding-beam, (g-2)cI and hyperfine splitting measure- 

ments, the Lamb shift measurements are not particularly useful for limiting 

high-momentum transfer modifications of QED, 
26 although the current agreement 

with experiment does rule out speculations of the type discussed by Barrett et al. 
27 

(long charge tails on the nucleus) and Yennie and Farley28 (low mass scalar 

particle exchange). It is interesting to note that the magnitude and Z and n 

dependence of the proposed modifications of the hadronic contribution to the 

Lamb shift are the s.ame as those caused by the reevaluation of the fourth order 

contributions discussed in this paper, 
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TABLE CAPTIONS 

Table I The Lamb shift in Hydrogenic Atoms (in MHz). The experimental 

results for H and D are from Refs. (l-3) 0 Robiscoe’s and Cosen’s 

values include a correction for the non-Maxwellian velicity distri- 

bution of the atoms in the beam4, (R. Robiscoe and T. W. Shyn, 

private communication. See B. N. Taylor et al,, Ref. (4)) note added 

in proof.) The values for 9 exp listed in parenthesis are computed 

from experimental measurements of the large interval 

“AE- 2 ” = AE(2P3 - 2SL) and the theoretical fine structure (see 
z z 

Table HI) ., The “old” theoretical values are from B. N. Taylor 

et al. (Ref. 2). The revised theory corresponds to the corrected 

result for the fourth order contributions discussed in this paper, We 

use the conventions of B, N. Taylor et al, , Ref, (4)) and take the 

limit of error (L. E .) to be three standard deviations o 

Table II Tabulation of the theoretical contributions to the Lamb interval 

2 = AE(2SL - 2P1) in H. References to the various entries may be 
-z 2 

found in G. W. Erickson and D 0 R. Yennie (Ref. 9) and B, N. Taylor 

et al. (Ref. 4)0 The dependence on nuclear charge is retained to 

distinguish binding and radiative corrections, Column one gives the 

former theoretical result which includes the order o12(Zcr)4m contri- 

bution to the energy shift from the slope of the Dirac form factor in 

fourth order as given by M. Soto (Ref. 12). The revised theory, 

corresponding to the corrected value for this contribution as given 

by Eqs. (2.5) and (2-2)) is listed in column two. Note that fourth 

order contributions to the Lamb interval also arise from the fourth 

order anomalous moment and vacuum polarization corrections D 



-24- 

Table III Comparison of the results of this calculation and that of Ref. (12) for 

the Feynman graph contributions to a4~ = m2d Fl/dq2 (q2=O)/(a2/n2) ., 

The corner and self energy graph results include the contribution of 

mirror graphs 0 The infrared behavior is expressed in terms of a 

photon-mass parametrization for h2<< m2. The infrared convergent 

ladder plus cross contributions (0 ., 68 f 0 0 04) as well as the corner 

plus self energy contribution (-0 ., 23 f 0 D 03) could be obtained without 

knowledge of the infrared divergent behavior of the individual graphs, 

which were, however, found to be consistent with the negative of the 

asymptotic behavior (A2 << m2) given in Ref 0 (12). The individual 

non-infrared remainders given in the last column were determined 

from fits with the logarithmic terms constrained to those values plus 

“background” terms multiplying 4~ , J- h2 log h2, and h2 log A20 ‘2 
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FIGURE CAPTIONS 

1. Feynman diagrams for the fourth order vertex of the electron required to 

compute the anomalous magnetic moment F2(0) and the slope F;(O). 

2, Contribution to the slope of the Dirac form factor in fourth order fr&n fer-mion 

self energy insertions in the second order vertex (Figure Id) D The solid 

curve is the result of numerical calculation for various h2 (in units of 

the electron mass squared) 0 The results of this calculation agree 

asymptotically with Soto’s analytic result for h -0 (dashed curve) except 

for over-all sign. The top graph gives the difference between the two 

curves 0 The error bars represent approximately la in the numerical 

integration 0 

3. REDUCE program for computation of the corner graph contribution 

(Figure lb) to the slope of the fourth order Dirac form factor. The output 

of the program is the integrand for five dimensional integration shown in 

Figure 4, The REDUCE input 19 is in the form of statements beginning 

with instruction keywords “LET”, “MATCH”, etc. and ending with 

semicolons 0 The “SM X”; (simplify) instruction causes the algebraic 

simplification (and the taking of $ trace) of X according to the substitutions 

defined by previous LET and MATCH statements. The label keywords 

“VECTOR” and “INDEX” define four vectors and contracted indices, 

respectively. The quantity G(L, P) represents 7 0 p where Ye is the Dirac 

matrix for fermion L. Other conventions not obvious from context are 

defined in the non-operational “COMMENT” statements 0 The constructed 

program implements the steps outlined in Eqs. (4,l - 4.15), 
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4. Fortran program for the numerical evaluation of the renormalized inte- 

grand for the five dimensional integration of the corner graph contri- 

bution (Figure lb) to the slope of the Dirac form factor in fourth order. 

The definitions of the various auxiliary variables U, D, Bab, etc. , as 

determined from E@. (4.9 - 4.11)) are given in terms of the Feynman 

integration parameters z 1’ z2a 0 0 0 Z5” The integrand is renormalized 

using Eq. (4.1’7) D 

50 Numerical results for the corner graph contribution to F;(O) as a function 

of photon mass A 0 The dashed curve is the negative of Soto’s analytic 

result for the asymptotic region 1 - 0. The top graph indicates that the 

two curves become parallel in the asymptotic region rather than joining, 

This is the major source of numerical discrepancy between the results 

of the two calculations. 

6. Sum of corner plus self energy contributions Figure (lb, Id) to F;(O) in 

fourth order as a function of photon mass h20 The expectation that this 

sum of contributions (Figures lb and Id) is finite in the infrared is confirmed. 

The contribution (-0 0 23 rt 0,03) ($2 can be obtained without any knowledge 

of the infrared divergent behavior of the individual contributions. 

7. Numerical contribution to the fourth order magnetic moment of the 

electron from the corner diagram (Figure lb) as a function of photon mass0 

The dashed line is Petermann’s result (Ref. 18)) F:(O) = [$ Bn hm2- 0.5641 cx2 
7 

derived for A - 0. As is the case for F;(O), the infrared divergence is 

cancelled by the self-energy contribution (Figure ld) D 

8. Numerical contribution to F;(O) from the crossed diagram (Figure la) as a 

function of photon mass ho The dashed curve is the negative of Soto’s analytic 

result for A - 0, The top graph shows that the two curves become parallel 

in the asymptotic region, disagreeing slightly in the value of the non-infrared 

remainder 0 
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9. Numerical contribution to F;(O) from the ladder diagram (Figure le) as 

a function of photon mass A. The dashed curve is the negative of Soto’s 

analytic result for the asymptotic region A - 0, Within errors, the two 

curves are in good agreement as A--- 0. 

10. Sum of ladder plus crossed diagram (Figures la and Id) contributions to 

F;(O) as a function of photon mass h -2 0 The combined contribution 

(0 0 68 * 0 04) ( %) 2 to Eq. (2 D 5) can be obtained without any knowledge of 

the infrared divergent behavior of the individual contributions. 
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TABLE II 

VARIOUS CONTRIBUTIONS TO THE LAMB SHIFT IN H (n = 2) 
OLD NEW 

DESCRIPTION ORDER TABULATION TABULATION 

2ndORDER - SELF-ENERGY a(Za)4r^{ log Za, l} 1079.32 zk 0.02 1079.32 f 0.02 

2ndORDER - VAC. POL. a( Zcr)4m - 27.13 - 27.13 

2ndORDER - REMAINDER a(Za)5m 7.14 7.14 

a(Zcv)6m{log2Zct, log Za, l} - 0.38 A 0.04 - 0.38 f 0.04 

4thORDER - SELF-ENERGY 

4thORDER - VAC. POL. 

REDUCED MASS CORRECTIONS 

RECOIL 

PROTON SIZE 

2 4 Fl’ (0) 0.10 0.45 rt 0.07 

Cl! (za) ‘m F2(") - 0.10 - 0.10 

(u2(Za)5m zt 0.02 rt 0.02 

a2(Zm)4m - 0.24 - 0.24 

a(Za) Em{ log Za, l} - 1.64 - 1.64 

(ZOJ)~ gm{log Za, l} 0.36 f 0.01 0.36 f 0.01 

(Za)4(mRN)2m 0.1.3 0.13 

g%= AE(2S - 2P, ) 1057.56 zt 0.08 1057.91 i 0.16 (L.E.) 
2 2 

-1 Q = 137.03608 L?EG3 - 9911.47 f 0.15 9911.12 * 0.22 (L.E.) 
7 

2s;) 

AJWP3 - 23 ) 10969.03 f 0.12 10969.03 f 0.12 (L.E.) 
T 



TABLE III 

- 

Sot0 This Calculation 

a cross (Fig. la) -2 - 2.314 -2 - t- xt Elogh 2.37 0.02 

a corner 2-2 1 (Fig. lb) -&ogA E log 2-2 1 h-2+ + 2.432 hlog A z log Y2- 1.91 0.02 - f 

avac-pol (Fig. lc) - 0.0316 + 0.0316 f 0.0002 

2 a (Fig. Id) &log h 1.688 2 -2 self-energy -&ogh + & log h-2+ 1.68 f 0.01 

-2 aladder (Fig. le) - $logh + 1.710 l3 +- zlogA -2- 1.69 f 0.02 

“4 0.108 0.48 f 0.07 
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B E G IN 0  
C O W 4 E N l  R E D U C E  P R O G R A C  To  C O M P U T E  F l (C lS l  CONTRIBt iT ION O F  C O R N E R  G R A P H : 

C C U H E N T  T h E  F O L L O W ING N A M E  4 - V E C T O R S  A N D  IN(DICES ; 
V E C T O R  Y A e Y Z v Y 3 r Y 4 r Q . P ;  
I N D E X  LA,SlsCl~eRt i :  
IFLAG;  
c a n H E N  T n E  E X T E R N A L  P H O T C N  4 - H C H E N T U M  IS  Z*C?* 0 .9~QZ=PS/4 ;  
O R D E R  O S ,MZ;  F A C T O R  Q S ,H2rP2;  
C O W E N T  G(L ,PJ  IS  G A M H A .F =  P  S L A S H ; 
O P E R P T O R  G H r P R L ;  
R U L E  G M ( P ) =  G(L ,P )+M;  
R U L E  P R l  tHU ) =  ( -P2*G(L ,~UJ+3*C*P.H~~/ (4*P24~21 ;  
L E T  P . C = O , P . P = P 2 r P 2 ’ E ( 2 - Q S / 4  ,Q .CI=QS/~ ,M**~=M~;  

L E T  P R  =  G M l P - Q J * P R A ~ M U J * G ~ t P , P I ;  
C O M M E N T  T E S T  P W O J E C T I U : d  O P E R A T 3 F \  F O R  Fl  F O R M  F A C T O R ;  
C O H E N 7  R E C U C E  C O H P U T E S  l/4 * T R A C E  IN S M = S InPLIFY S T E P ; 

S M  PK+(G(L ,~UIOJ-GIL IQ ,~U~) ;  
GCDIT;  
S n  PR*GIL,HUJ;  
N O G C O ; 
O P E R A T O R  STR;  
C O H H E N T  T h E  F U L L O d I N G  IS  T H E  T R A C E  S T R I N G  F C R  T H E  C O R N E R  G R A P H : 
R U L E  S T R t G 4 r G 3 , G Z s G l J =  PR*  
G(L ,LAJ*G4*  G(L,kJ*;3 +G(L,SIJ*G2*G(L,LAJ*GI*G(LISIJ ;  
S H  STR(GM(Y4 l ,GM(Y3J ,GH lY2J ,GM(Y l JJ :  
O P E K A T C R  FS;  S A V E A S  FSiZJ;  
C O H H E N T  T H E  R E S U L T  IS  S T O R E D  A S  FStZJ , Z  IS  A  O U W IY  A R G U M E N T ;  
C L E A R  PZ;  
L E T  P S  =  4*t n2 -PzJ  i 
C C M M E N T  T b E  F O L O d I N G  E X P R E S S  4 - M O M E N T U M  C O N S E R V A T I O N ;  
L E T  Y 3 = Y 4 - 2 + C ;  
L E T  Y 2 - =  Y l + Y Q - F - U ;  
S M  FStZJ;  
S A V E P S  FS(ZJ i  
V E C T O H  Ll,LZ,L3,L4: -  . 
L E T  Y l  =  b l+P+B l *O+S*L l ;  
1 E T  Y 2 =  42*P+ez*u+s*Lz ;  
L E T  Y 4  =  A4*P tB4*d+S*L4 ;  
C O W E N T  T h E  F O L L W I N G  E L I M I N A T E S  0 0 0  P O W E R S  O F  L O O P  M C M E N T A  IN T H E  NUH;  
M A T C H  S = O , S * + 3 = 0 1  S **Z=SZ ,S **4*54; F4CTi lR  52154 :  
S M  FSdZJ;  S A V E A S  FStZJ;  
V E C T O R  X e Y ; F R L E  X ,Y ; 
C O C H E N T  T h E  F O L L C M I N G  E L l H I N 4 T E S  L.P*L.Q T E R M S ;  
L E T  S Z + P .X *E .Y = O e  S4*P.X*P .Y=0 ;  
S M  FSIZ);  S A V E A S  FSIZJ;  
F R E E  P ,Q ; 
O P E R A T O R  FX;  S A V E A S  F X (  P ,U); 
L E T  CP**Z=  P2/4,  CP**L=  E S /16; 
I N D E X  UI,PI; 
C O M H E I~ ~ T  T H E  F O L L d w I N G  R E P L A C E S  P .L*P.L kITH L/4+PZ*L.L:  
S P  FX(CP*PI rCL*OI ) ;  
O P E R A T O R  FT; 
F R E E  X : S A V E A S  FTIXJ: 
VECTOR-U,v ;  FREt  U,V; 
C C M H E N T  T h E  F L J L L U ~ ~ I N G  IS  F C R  L U U P  I N T E G R A L  W ITH QlJ9RTIC k U M E R 4 T O R ;  
L E T  S~*X.Y*U.V=C*(~*X.Y* IJ . \+X.U*Y .k+X.V*Y.UJ;  
S M  FTtXJ; 
S L V E A S  A N S ; . 

C L E A R ’Q S  ; 
L E T  P2=!42-CS/4 ;  
C C W I E N T  F  IFJPL S U B S T I T  IJNS F O R  L O O P  I N T E G R A T  ICN; 
S H  ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

L l .L l=B l l ,L2 .LZ=R22,L? .L3Ea33 ,L4 .L4=B44,A~~S~:  
F R E E  Z: 
S b V E A S  -FS(Z  1;  
C O M M E N T  T H E  F U L L W I Y G  A R E  ~ S td F O R  C U M P U T A T I C N  dF  F l (C lS)  S L O P E  A T  Q S = O : 
F A C T O R  HZTT2,C2TCS.SLT~S.S2TCt ;  
H A T C H  C2*+2=k2TT2,  -  i 4 2 i j S = M 2 T d S 9  S 2 + O S = S Z T P S ,SZ*CZ=S iTMZ:  
S H  FS(ZJ;  
C C M M E N T  T k E  F t iLLOh i l JG P K i l W i F S  A  FOqT4 \1  O tCK O F  T H E  C U H N E R  t iRbPH K E S U L T ;  
P F O R T  CALC:  
END;  Fig . 3  I515AII  



FUNCTICN f-(Q) 

C INTEGRAND FOR FIVE OIMENSICNAL INTEGRATION 
C CONTRIBUTION TO SLOPE OF Fl(QSJ AT QS=O. 
C CORNER GRAPH WITH SUBTRACTION TERM 

IMPLICIT REAL*8 (A-Z) 
DIMENSION Cl(S) : 

C  THE FOLLOWING NUMERATOR EXPRESSION WAS PUNCHED AUTCHATICALCY BY REDUCE 
CORNERtQSJ = 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~36*A4**2*B14+12*A4*844+16*A4*B11+84*A4*B14+4*644-4*B11J+S2TQS*~2 
1*A1*A4*B44+2*A1*A4*B14+2*A1*B44+2*A1*814+~4**2*@11+84**2*B14-2* 
184*844*81-2*64*81*B14-2*~4*B11-2*B4*B14-A4**2*B11-A4**2*B14-2*A4 

c THk FCLLCIWING IS THE CORRESPONDING SUBTRACTION TERM 
CORSUB (OS J = 

1~H2TT2*~8*A4**2*41**2-32*A4**2*A4**2-32*A4*41**2+128*A4*A1- 
132*44+8*41**2-32*Al+8)+M2TQSa(-2*84**2*B4**2*41**2+~*B4**2*Al-2*B4**2+ 
14*84*41**2-16*84*A1+4*B4+2*44**2*A1**2-8*A4**2*A1+2*A4**2+4*A4* 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
116*Al*B44-4*B44-4*Bll J+QSTS2*(64**2*811-2*B4*B l l-A4**2*Bll-2*A4* 
lBllJ+8'k*B44*611J/O 

C (OS IS 4 OUMMY ARGUMENT IN ABOVE ARITHMETIC STATEMENT DEFINITIONSJ 

L 
/ 

L2 = 5 .E-5 
C L2 IS THE PHOTON MASS SQUARED 

QS=O. 
C INTEGRATIGN IS OVER Q(IJ,I=1,5 FROM 0 TO 1 

X = Q(1) 
Y= Q(2J 
v- C(3) 
U=Q(4J 
ZS=Q( 5 J 

= X+V+ZS 
C THE i:LLOwJhG CORRESPONDS TO THE THETA FUNCTION CONSTRAINT 

IF (ZT .LT. 1.) GO TO 1 
F=O. 
RETURN 

1 26 = 1 .-ZT 
23 = v*u 
24 = v*(l.-ul 
zi= x*v 
Z2= X* L 1-Y J 

C WRK IS bvRChSKIAN FUR VARIABLE CHANGE 
WRK = V*X 
H2 = 1 
z14 = z1+z4 
z15 = z1+z5 
216 = 2 l+Z6 
245 -= z4+z5 
256 = Z5+Z6 Fig. 4 

. 
. . - 
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223 = Z2+Z3 
246 = Z4+Z6 
z12 = z1+z2 
z34 = z 3+z4 
236 =Z3+Z6 
22346 = Z23+246 
Z1456 = Z14+256 
21234 = Z14+223 

C CORNER GRAPH DEFINITIONS 
c DEFINITIONS UF AUXILIARY VARIABLES IN TERMS OF Z’S 

Ul = Z 12+Z5 
Z125 = Ul 
u4 = Z3+246 
U=Ul*U4+ ZZ*Z15 
WPP = ~Z3+Z4J*~Zl25*Z6+ZL*~22+25)1+25*26*(zl+Z5*Z6*~Zl+Z2J+Zl*Z2*Z5 
WQ= Z3*Z4*Ul+Z2*Z4*Z5 
OH = (Z1234 + Z56*L2J*U 
Al =(Z5*Z2346+22*Z34J/l, 
Bl=(-Z5*Z2346+Z2*Z4-Z2*Z3J/u 
A4 = (Z2*Zl+Z6*UlJ/U 
64 = (Ul*(Z3+236) l 22*(215+25J J/U 
all=22346 
B44=U 1 
814=-Z2 
DEN = OM-W PP 
M2TT2= 2*WQ/DEN 
HZTQS= 1 
S2TM2=-2*WQ/U**2 
S2TQS=-2*OEN/U**2 
QSTSZ=S2TQS 
M2TS2 = S2TM2 
C=WQ*DEN/U**4 
Fl= CCRNER(QSJ/DEN**2 
FU = F1/8 

C SUBTRACTION TERM FJR RENDkWPLIZ4TIDN OF INTERNAL VERTEX ON MASS SHELL 

KU 1*u4 = (21234 + Z56*LZJ*U 
WPP= Z6*Z34*Ul+Z5*Zl2*U4 
WQ=Z3*Z4*Ul 
Al=Z5/U 1 
A4= Z6/L4 
64=(23+236J/U4 
911 = u4 
B44= Ul 
B14=0. 
DEN = DH-WPP 
HZTTZ= 2*UQ/DEN 
WZITCS=l 
S2TM2=-2*WQ/U**2 
S2TQS=-?*DEN/U**2 
QSTSZ-SZTQS 
M2TS2 = S2TH2 
C=#Q*DEN/U**4 
FlS- CORSUB(QSJ/DEN**2 
FS = FlS/8 

C NOTE FACTOR OF 2 INCLUDED FOR MIRROR GRAPH 
F * FU-FS 
F = WRK*F 

C F IS SLOPE OF FL FOR.4 FACTOR IN UNITS OF (ALPHA/PI))**2 
RETURN 
END 1515A9 
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